{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# CS 583 -- Fall, 2021 -- HW 01\n", "\n", "\n", "### Due date: Due Friday, October 1st, @ midnight in GradeScope \n", "\n", "\n", "### General Instructions\n", "\n", "Please complete this notebook by filling in solutions where indicated. Be sure to \"Run All\" from the Cell menu before submitting. \n", "\n", "Please download, run, and digest the material in the following notebook BEFORE starting this homework.\n", "You may freely cut and paste code into your homework:\n", "\n", "https://www.cs.bu.edu/fac/snyder/cs583/Homeworks/IntroAudioProg.zip\n", " " ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "# General useful imports\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import librosa \n", "import librosa.display\n", "from IPython.display import Audio\n", "\n", "from scipy import signal\n", "\n", "%matplotlib inline\n", "\n", "# Basic audio parameters\n", "\n", "SR = 22050 # sample rate default for Librosa\n", "\n", "# Utility functions\n", "\n", "# Round to 4 decimal places\n", "\n", "def round4(x):\n", " return np.around(x,4) \n", " " ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "261.62556530059896" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# create a dictionary of piano key frequencies\n", "\n", "# see https://en.wikipedia.org/wiki/Piano_key_frequencies\n", "\n", "notenames = ['A0', 'Bb0', 'B0', 'C1', 'C#1', 'D1', 'Eb1', 'E1', 'F1', 'F#1',\n", " 'G1', 'Ab1', 'A1', 'Bb1', 'B1', 'C2', 'C#2', 'D2', 'Eb2', 'E2',\n", " 'F2', 'F#2', 'G2', 'Ab2', 'A2', 'Bb2', 'B2', 'C3', 'C#3', 'D3',\n", " 'Eb3', 'E3', 'F3', 'F#3', 'G3', 'Ab3', 'A3', 'Bb3', 'B3', 'C4',\n", " 'C#4', 'D4', 'Eb4', 'E4', 'F4', 'F#4', 'G4', 'Ab4', 'A4', 'Bb4',\n", " 'B4', 'C5', 'C#5', 'D5', 'Eb5', 'E5', 'F5', 'F#5', 'G5', 'Ab5',\n", " 'A5', 'Bb5', 'B5', 'C6', 'C#6', 'D6', 'Eb6', 'E6', 'F6', 'F#6',\n", " 'G6', 'Ab6', 'A6', 'Bb6', 'B6', 'C7', 'C#7', 'D7', 'Eb7', 'E7',\n", " 'F7', 'F#7', 'G7', 'Ab7', 'A7', 'Bb7', 'B7', 'C8', 'R']\n", "\n", "# Create chromatic scale, e.g., as on the piano, as a dictionary \n", "\n", "Freqs = {} \n", "\n", "f = 27.5\n", "\n", "for name in notenames:\n", " Freqs[name] = f\n", " f *= 2**(1/12)\n", "\n", "Freqs['R'] = 0 # a rest (silence) \n", "\n", "# test\n", "\n", "Freqs['C4']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Periodic Signals \n", "\n", "\n", "In this class, a signal $X$ is just a function from non-negative integers into 64-bit floating point numbers:\n", "\n", "$$X\\,:\\, [0,1,.., (N-1)]\\,\\rightarrow\\,[-A..A]$$\n", "\n", "where $t = 0, 1, 2, ...., N-1$ represents time and $A$ is the maximum amplitude of the signal. \n", "\n", "A signal is stored in a Numpy array of size $N$. Several things to keep in mind about this data structure for signals:\n", "\n", "- In general, we will work with signals where $A = 1.0$ but this is not absolutely necessary (`IPython.display.Audio` will scale the signals before playing, so you always get the same loudness); when adding or multiplying signals, we are generally safe from overflow, but when storing a signal in a file it may be useful to scale the signal into the range $[-1.0 .. 1.0]$ by simply dividing all samples by the value of the maximum sample value; \n", "\n", "- When displaying or manipulating a signal, it may be more readable to use seconds rather than sample numbers; it is easy to convert between the two by scaling by the sample rate `SR`:\n", "\n", " duration in seconds = SR * number of samples and number of samples = duration/SR\n", "\n", "SR will generally be 22050 Hz, so each sample represents 1/22050 = 0.00004535 sec (we will generally round floats to 4 significant digits). \n", " \n", "A periodic signal $X$ has a pattern that repeats every $p$ time units, where $p$ is called the period (and can be expressed as the number of samples, or as fractional seconds). Technically, a signal $X$ of length $N$ is periodic if there exists $p>0$ such that\n", "\n", "$$X[x] = X[x+p]\\text{ for } 0\\le x\\lt N-p$$\n", "\n", "The term **cycle** refers to the completion of one period of a signal, so Hertz (Hz) refers to *cycles per second* or *periods per second*. " ] }, { "attachments": { "Screen%20Shot%202020-05-29%20at%2011.23.15%20PM.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAAFWCAYAAABElQcIAAAMRmlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSSWiBCEgJvYkiSJcSQosgIFWwEZJAQokxIYjYkUUF1y4iYENXRRRdCyB27GVR7P1hQWVlXSzYUHmTArr6vfe+d75v7v1z5pz/lMy9dwYAnWqeVJqD6gKQK8mTxYUHs8ampLJITwACMKANbMFgHl8uZcfGRgEo/fd/yrsb0BrKVRcl18/z/1X0BEI5HwAkFuJ0gZyfC/E+APBivlSWBwDRG+qtp+ZJlXg8xAYymCDEUiXOVONiJU5X4wqVTUIcB+IdAJBpPJ4sEwDtJqhn5fMzIY/2LYhdJQKxBAAdMsQBfBFPAHEExENycycrMbQDDunf8WT+gzN9gJPHyxzA6lpUQg4Ry6U5vGn/Zzv+t+TmKPpj2MFBE8ki4pQ1w77dyp4cqcQ0iLsk6dExEOtD/EEsUNlDjFJFiohEtT1qypdzYM8AE2JXAS8kEmJTiMMkOdFRGn16hjiMCzFcIWiBOI+boPFdIJSHxms4q2WT42L6cYaMw9b41vNkqrhK+5OK7ES2hv+WSMjt539bKEpIVueMUfPFSdEQa0PMlGfHR6ptMJtCESe630amiFPmbwOxr1ASHqzmxyZmyMLiNPayXHl/vdgCkZgbrcGVeaKECA3PDj5Plb8RxE1CCTuxn0coHxvVX4tAGBKqrh27LJQkaurF2qV5wXEa39fSnFiNPU4V5oQr9VYQm8rz4zW+eEAeXJBqfjxamheboM4TT8/ijYpV54MXgCjAASGABRRwpIPJIAuIW7sau+Av9UwY4AEZyARC4KLR9Hskq2Yk8BoPCsFfEAmBfMAvWDUrBPlQ/2VAq766gAzVbL7KIxs8hTgXRIIc+Fuh8pIMREsCT6BG/FN0Psw1Bw7l3M86NtREaTSKfl6WTr8lMZQYQowghhEdcRM8APfDo+A1CA433Bv36c/2mz3hKaGN8IhwndBOuD1JXCT7oR4WGA3aYYQwTc3p39eM20FWDzwY94f8kBtn4ibABR8BI7HxQBjbA2o5msyV1f/I/Y8avuu6xo7iSkEpgyhBFIcfPbWdtD0GWJQ9/b5D6lzTB/rKGZj5MT7nu04L4D3yR0tsAbYXO4Mdx85hh7BGwMKOYk3YReywEg+soieqVdQfLU6VTzbkEf8Uj6eJqeyk3LXOtdP1s3ouT1igfD8CzmTpNJk4U5THYsM3v5DFlfCHDmG5ubq5AqD8jqhfU2+Yqu8Dwjz/TTdvHQD++/r6+g5+00U2A7C3DADqzW86+5nwdXAcgLNVfIUsX63DlRcCoAId+EQZA3NgDRxgPW7AE/iBIBAKRoEYkABSwETYZRFczzIwFcwAc0EJKANLwSpQCdaDTWAb2An2gEZwCBwHp8EFcBlcB3fh6ukAL0A3eAd6EQQhIXSEgRgjFogt4oy4Id5IABKKRCFxSAqShmQiEkSBzEDmIWXIcqQS2YjUIr8jB5DjyDmkDbmNPEQ6kdfIJxRDaagBaobaocNQb5SNRqIJ6AQ0E52CFqLF6GK0Aq1Bd6AN6HH0AnodbUdfoD0YwLQwJmaJuWDeGAeLwVKxDEyGzcJKsXKsBqvHmuH/fBVrx7qwjzgRZ+As3AWu4Ag8EefjU/BZ+CK8Et+GN+An8av4Q7wb/0qgE0wJzgRfApcwlpBJmEooIZQTthD2E07Bp6mD8I5IJDKJ9kQv+DSmELOI04mLiGuJu4jHiG3Ex8QeEolkTHIm+ZNiSDxSHqmEtIa0g3SUdIXUQfpA1iJbkN3IYeRUsoRcRC4nbycfIV8hPyP3UnQpthRfSgxFQJlGWULZTGmmXKJ0UHqpelR7qj81gZpFnUutoNZTT1HvUd9oaWlZaflojdESa83RqtDarXVW66HWR5o+zYnGoY2nKWiLaVtpx2i3aW/odLodPYieSs+jL6bX0k/QH9A/aDO0h2pztQXas7WrtBu0r2i/1KHo2OqwdSbqFOqU6+zVuaTTpUvRtdPl6PJ0Z+lW6R7Qvanbo8fQG64Xo5ert0hvu945vef6JH07/VB9gX6x/ib9E/qPGRjDmsFh8BnzGJsZpxgdBkQDewOuQZZBmcFOg1aDbkN9wxGGSYYFhlWGhw3bmRjTjsll5jCXMPcwbzA/DTIbxB4kHLRwUP2gK4PeGw02CjISGpUa7TK6bvTJmGUcapxtvMy40fi+CW7iZDLGZKrJOpNTJl2DDQb7DeYPLh28Z/AdU9TUyTTOdLrpJtOLpj1m5mbhZlKzNWYnzLrMmeZB5lnmK82PmHdaMCwCLMQWKy2OWvzJMmSxWTmsCtZJVrelqWWEpcJyo2WrZa+VvVWiVZHVLqv71lRrb+sM65XWLdbdNhY2o21m2NTZ3LGl2HrbimxX256xfW9nb5dsN9+u0e65vZE9177Qvs7+ngPdIdBhikONwzVHoqO3Y7bjWsfLTqiTh5PIqcrpkjPq7Oksdl7r3DaEMMRniGRIzZCbLjQXtku+S53Lw6HMoVFDi4Y2Dn05zGZY6rBlw84M++rq4Zrjutn17nD94aOGFw1vHv7azcmN71blds2d7h7mPtu9yf3VCOcRwhHrRtzyYHiM9pjv0eLxxdPLU+ZZ79npZeOV5lXtddPbwDvWe5H3WR+CT7DPbJ9DPh99PX3zfPf4/u3n4pftt93v+Uj7kcKRm0c+9rfy5/lv9G8PYAWkBWwIaA+0DOQF1gQ+CrIOEgRtCXrGdmRnsXewXwa7BsuC9we/5/hyZnKOhWAh4SGlIa2h+qGJoZWhD8KswjLD6sK6wz3Cp4cfiyBEREYsi7jJNePyubXc7lFeo2aOOhlJi4yPrIx8FOUUJYtqHo2OHjV6xeh70bbRkujGGBDDjVkRcz/WPnZK7MExxDGxY6rGPI0bHjcj7kw8I35S/Pb4dwnBCUsS7iY6JCoSW5J0ksYn1Sa9Tw5JXp7cPnbY2JljL6SYpIhTmlJJqUmpW1J7xoWOWzWuY7zH+JLxNybYTyiYcG6iycSciYcn6UziTdqbRkhLTtue9pkXw6vh9aRz06vTu/kc/mr+C0GQYKWgU+gvXC58luGfsTzjeaZ/5orMTlGgqFzUJeaIK8WvsiKy1me9z47J3prdl5OcsyuXnJuWe0CiL8mWnJxsPrlgcpvUWVoibZ/iO2XVlG5ZpGyLHJFPkDflGcAN+0WFg+IXxcP8gPyq/A9Tk6buLdArkBRcnOY0beG0Z4Vhhb9Nx6fzp7fMsJwxd8bDmeyZG2chs9Jntcy2nl08u2NO+Jxtc6lzs+f+UeRatLzo7bzkec3FZsVzih//Ev5LXYl2iazk5ny/+esX4AvEC1oXui9cs/BrqaD0fJlrWXnZ50X8Red/Hf5rxa99izMWty7xXLJuKXGpZOmNZYHLti3XW164/PGK0SsaVrJWlq58u2rSqnPlI8rXr6auVqxur4iqaFpjs2bpms+VosrrVcFVu6pNqxdWv18rWHtlXdC6+vVm68vWf9og3nBrY/jGhhq7mvJNxE35m55uTtp85jfv32q3mGwp2/Jlq2Rr+7a4bSdrvWprt5tuX1KH1inqOneM33F5Z8jOpnqX+o27mLvKdoPdit1//p72+409kXta9nrvrd9nu696P2N/aQPSMK2hu1HU2N6U0tR2YNSBlma/5v0Hhx7cesjyUNVhw8NLjlCPFB/pO1p4tOeY9FjX8czjj1smtdw9MfbEtZNjTraeijx19nTY6RNn2GeOnvU/e+ic77kD573PN17wvNBw0ePi/j88/tjf6tnacMnrUtNln8vNbSPbjlwJvHL8asjV09e41y5cj77ediPxxq2b42+23xLcen475/arO/l3eu/OuUe4V3pf9375A9MHNf9y/Neuds/2ww9DHl58FP/o7mP+4xdP5E8+dxQ/pT8tf2bxrPa52/NDnWGdl/8c92fHC+mL3q6Sv/T+qn7p8HLf30F/X+we293xSvaq7/WiN8Zvtr4d8balJ7bnwbvcd73vSz8Yf9j20fvjmU/Jn571Tv1M+lzxxfFL89fIr/f6cvv6pDwZT7UVwOBAMzIAeL0VAHoKAIzLcP8wTn3OUwmiPpuqEPhPWH0WVIknAPXwptyuc44BsBsOuyDIDe/KrXpCEEDd3QeGRuQZ7m5qLho88RA+9PW9MQOABPczX2R9fb1r+/q+bIbJ3gbg2BT1+VIpRHg22OCqRFcs9oIf5d9IWoBpyIeUgwAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAAgRpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDUuNC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnRpZmY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vdGlmZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjczODwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj43NzY8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4Kut3VfgAAQABJREFUeAHsvXmQZdl913ky8+WetXdX9aZWd0tqdUtWa7Mk5C0w4JDBRjODLUa2DBM4MCJggBgchO0AggCxDEQQ8BeBxrsdhnHYMAiN8TKWBZKllq29tfWi3qu7q7prr6zcl/l+zru/m+fdvPe9+94752a+0jtV+e52zu93fsv5nf13JnYV3DiMOTDmwJgDYw4cOg5MHrocjTM05sCYA2MOjDngOTA20GNFGHNgzIExBw4pB8YG+pAKZpytMQfGHBhzYGygxzow5sCYA2MOHFIO9G2gx3OKh1SS42yNOTDmwE3HgYEM9NhIj54eILOx3CLJrcF1T2O5RZLZAYCJUd4mBGQgdSPZxMTEAZA9RtkvB8ay6pdjhy/+WIaHTyZVOYopq75b0L/+67/uvvzlL3vjvLOzU5XHKO8hdHl52W1vb0eB1wvIysqKW19f99HAnTKAB3ypgynL+fPn3blz55KiM55tbm26GzduJG+xG76trS2PLylxAfDr16+71Lpv6J599ll38eLFRsobONHJjY0Nj974a3mJfW2qDFi+19bWHH8pA3pBw/XatWvuqaeeysvAoLysZaBD4P/gH/wD98QTT3ga1WlOSauHDUOtMIT5SIEYxaSwNxE2NzfzyiAlPuPZlStX3OXLl3NU9j5/EfFmZ3unoyCkxEW2qcCtYo1IRikoaFldXc0LXmmkCC+NZ1SsVAgEexcBfCWIpsuAVQaVGYrwwfhGmeMvZTBc6MhLL700tMxa/Wb2LW95i5ubm/PJJlz6IY7JycnGhlKo+ZoatgEPtKUORk+r1corutQ4gR/SZnlIhRf4qXGEeQ9pC9+nuJ+ens552QSNTeAwPjUttyZpQ0eQ3bChbwvhhxvSN5yHpWucvsABanar3fnUpLIWsjJ+7IMDocz6SDZU1CYaXkNlcNDEI2i3+jbQvqA3MLQxqAzG6QocqFDKgyj4hZyNH/vkwFhmfTKsEL2JIVlDGUtWXQ10LCSW6fH1ADhQMQp107aSDoDFTaFsqtfTpCFrindN44klq0oDjXGOhaRp5ozx1eBAheGukXIc5SbnwM1aeY8iXaUGemycb6ISOB7iuGmE2VTLtik8TQumSbpijT7sM9C2ju/ll192n/nMZ/ySosPSkj4s+WhasYbCF7SUQ/6F90PBL0mcEnaIrik8B4GzjLamWoBluEMejNq90WPXpPnPypvhsuugOFu2xhgA1DBTk1Me1s/93M+5D33oQ+7FF1908/Pzfq2pIbPaIUw7aAa6pQMPOPize8tDt3SDfjNcpOc+FS6W4BRxDZrnXung29TUVM5Dow1Zxy7whouVPkYftPI+RTB8hotr6gBOw9cEbYYPupqgz2gzfDdbGYAueMpfisAeAGyo8ZGyYEtcB+FlCyUrhk984hPu7//9v+/+5t/8m/knCjmB+La+D8Spw+zsrJuZmfFoLA+pcILLaGsCl+Eok0FsGqHNCnhqfKyTRzGNvkEUsx/6oY0NRqnpsjyFepKaNnQffISbsbyZjjQhO+MjMkslN6MDufFnMjM6TYfqXltspbawtLTkdwn+8i//svvwhz/sXnnlFT/EceTIEX8FOTtxSEOBYFsoiFPURjAQg8IOOAo7xJqBsfzGupqwrl696g00fPAFfkKtP/2LHeCj8RDYqegCNrLBYEIbeNiZCT9jywweAhN9YBeVbWO39+QlRYCX7CJka3lqXAYfneQ+le4bnyjcbBmm0XDLLbd4vqbCCT2EYhmw95anWNcmywB5hm/wkoA9292hZMct2/CKsrUwv+D5yA5Q/qZaalGrZT1IaH3961/3xujYsWPu9ttvd7/2a7/mfuRHfsS97nWvc//23/5bTxjbTZ955hmvKBCJf4CvfvWrvrDD6J6FHdn3yQuIBS74FhcXPe5UhsyUEKNJoVhYWPCM7snQAegCJjzDgFEJHD16dHADXQM/PKTlYH4BwAkfe8qsJ/FZBMtDdjWDSUVAQTA51gVXGs9whB8DfGwXplKAl4RotIX4dG+0YKDBlcpYGlp08cknn/S+OKCPiqhWeTMAfVwHLgN94AijWhnAoKEnqcq24QQflTiB8p1CR+Ah9NAgwmYyPEzZQ08Gpa/1pje9yWeaceZPfepT7h//43/s/uk//afu4Ycf9gb69a9/vXv/+9/v3vnOd+aG/L777nNs+cbIQHiqABPxH0FhoBUBkaZIKXBSGVAoUBgMWSpcE2qZt1vQm+7EiRMDC68OD+AZCmM9kAceeCBvQcemD3mhjNaCPn78uNePVHIzfFQG6CL4Ugdw4rwIudEy6rfhUTd/4EHn6bGeOnXKvfa1r3Urq+qxZnNEdeH0G48WNLqyuLgkPUlYBiYn3PL1dk88dRkwPeloQYu/KYJvQasCOHv2rG9YPvTQQ96m8H6Q8tbCMFtACT72sY/5Av3oo4+67/3e73X33nuvN1gUPBSmNdXy30lDTZQ60DpiyKGJABOh0f7S4lz0hY/C0ESgF4KhbII2dAVlDHUrJY1UquCjImoiwEv+mgjwkHIGfYsL6XHSMEEnZ2bwIzG8L4luPNpd3PWNhSbLAHy0sehueRv2G/qB3Ia1kS1qFwtnzpxx/BFuvfVW94UvfMG3nClwGC9ayzu7O751SZwt1bApa3TyhsJgpBFiqpYYtBDM01VKXNAEH8Fl+KCLgPLEDODiD/mBy/DY+xT4Qtq8vNRSYrwvNi74VOQlz6kDONBJ/uAr45ixV8OEtBku3hnO2DSGNIADWaUsA+QfHFub4qNsCCFl2Q71BLxU5Kl0BTtJg4HyBi95Rk8Gpa9VLDhknHd33XWX++mf/um89QoSC5ZmUl11u7dvsa/At2EU7lPiC+GH9zFpsvxzNbrsGhMPsMBhihjSE97HxunxyihDk8eD+dJzymD0cE0dQlxGXxKcGSmGDxzG09j4wgoGfKaPIe7YOIGHXkzstAk1nCnwGMwQB7SlCAbXZGXPg/Jy3wAygCjUdK0w0nSJrZCnIGgMk5ZgOi5Uya7qfZSciJ4QfngfBf4BAmmMlhKdiL3qoIqNjdFYlYFE75ukKxaufQYa3pjVj4UkEb9vGrCJKnPPn7B11CTDTIfAGd43mYcxrjEHRp0DpQbaiBoXLOPECF8renJj2Y6eTJuqbJvC07QEmqQrVvnqaqCbZuAYXwIOlHSVE2AZgxxzYMyBBBwYG+gETO0XZNIx6IqFuqmHr0L44X2/vBnH3+NAU3xsaqx7jzKWk6dvSTSBw2iKJauxgTaOHuD1QMagK4Y+YrEh7OKF97Hgf0vCSSwz42mTQwFN4jwIuoy+Qa9jAz0o50YlXUWhHkVlHRWWp8rnWGapOHt44Y4N9OGVzThnYw6MORCRA00OccTqNY4NdEQFGBRU0jHoCuCxxsiqaA7hh/dV8cfve3OgKQPTFJ7eFI9ujFg6PzbQh0AHKkYhIuUsLfRImRyDGXPgpuLAuAV9E4kz7fx1Wug3kRjGpIw5EI0D0VrQpYBUpnlf+i0gofL7PpvQfhHGL8IPny2evbPnAHXn7T58nVuNLbKHV1jOUwU7fN9xz4KgcNgg45Xh8FfLD1e757bA0z04BZgdwADR/r4Xfy9C8V34HN7vpdh/VxkvyPv+VIO96YXLvkNzR9Aj3+x7x7fCQzGOPdu1EN3zl3c5zgC1pbGrjxfIP3zv4e5Lu/diX1yfwCO2u+7XDBRw7K+YwGgwXPZMPP8ugGFpLW4exz6UXffI2ftaAnPvY+ddmO8i3vA5TxXgC9OiHkZbabocQOdNGDe8z2MF+DyOCp2rg7sMPu/8e/Jv90Lu4RVwk6d9zpJ8RtUrDmeMw+Y69+Z0JHSg5NPZz75edftFEY5F51r2DTz8GZ4wTphWmd0XyuL2emf4AGY0ch+m83wJ8ek+5BXx8/yE8QpwQlwhfJ++8LMPZ/C9mDZ85t6eQ3pIbu+L9wHoPTo6XlY/GEyjzZ7tWgeXxS3jafGdxTV8ljN7X3wuvs+/ZwLL4QdyszThFX00ftp7g5XLXi+K34rPZWnsncUNaavEaYnAabRkazftmSgGs9t9V9p8Qn4KIeNXCL8QI38M44DLjFj4Po/MTYks/He9N9oq02aA7Dv8s3sPumx9a4AP3IYjA5Vf7H0Ij48mI5ObPVs8uxLXYOT3Bdy8b+Ggu04AMMzc3NzwzuY53aEJh/042cZVn3faJLeVMC1FgFnXrrcd9tuRVyEzY+JEaHbkFTigL1VAZvi/Rc7cg3fbH78TVtdxsAOfQmcO9IEKrbxPEcrwpcBThAkvkVtoYIpxYjzjthL9R/ftyCsr8DHgl8EAH65Gzc1pE2WAfKQsA8CHbxw/RYC2VDoJHTiaQ0fAx+k76AluRwfhZYvEvQLE7AGXKcuUk7QpFQa8wAcPfzsTaU9UCXF10tyLQ/19Nzzg8PzvUlP3B3l/bBQm5192T6wU9Bk94DMauZKHPf3Zn8dB34T4jMZBYdVNB05oMvp4ThE6adsrA+BNGUx2Rl8KuZF/g290psIDLsMBTrNdqeQGvpCHRifvB6Gx1e9pJdTmnBZA7W5nwIE8VaDmAQ+ENhGgr4kTF6AHp97DnrhQlyfIGaVs4pQTWmAoKUeHNRHAhz72q8uD5g25cYZnE4GytrR0pJGTcKAHHYGfTZQBDNb2lg5ZbeBkplBWTeDDZqGPw9rIjhNVQiKK9zAT4fFn3RGMZ0rDCS5wGB5OcwnHbYp5HOYZuHaaBMqZqtVHHuGlnbbAM3SmCsBGRvDQ8Ng1Ns4QF/jgIbibwJey21rkE7SBj0ohFW3g9AYs03+erRxwHztY+QYHf4TUZcDzMTtRJSUfocV4yT0hFT5oQi+Mj5zmPTk1eC+yfJKwTUP+a8RAZBh4Lr4Lv8e4D3FgRFPi68CVmLYirhi86gYDfFVy7JZu0G9N0me4uKYO8NDwgSsVzlBWhiPEm4JOg085M9oMd0p8hisFDmDmvISuTEVS0RXC9fcBvvBbXVqbGTeom5txvPgcqGicm9LGRziGmIoDtrQrFfybHW6j/MsM87A8HRvoYTkYIX3CEY58rWiEbPYFIqwAwvu+gIwjd3KgorLtjDT8U6OGLMvuQeAcnlNdIESS1dhAd+FxU59S9sytu1qkZZDuVhFG3ecmcdXN0yjGu5n5WKWnMeXUBA7LbyxZjQ20cXR8jcqBWAoaNVNjYGMONMWBcQu6KU6POJ5IY2EjzoVx9vvgQJMtzT6yNVpRI5W7cQt6tMQ+zu2YA2MOfAtxYGygv4WEPSZ1zIExB0aLA2MDPVryipbb8cqKaKxsDNBYZsOxusmVIrFkNTbQw8l8ZFOPxxlHT3TjidfRkVksWY0N9OjIfLCcVswmN9maGCzj41RFDjQls6bwFOm7mZ7HLeibSZopaamYTY5Vw6fM+hh2Jwea6vU0haeTuvRPTdIVq3yNW9CmF9rOtyvnPvzdVKGqBZ1y+2LDDMzldhPRVMbCplq2jeEJy1sDsmuKLmQXqwVd25tdqcJg1Py5MGVfh3tHDQSR9mfQYhHehkfzsm3BwDcpN4uT8kRFoNBP4InNP8X9sdrVaLFrXCxtaMinquUQF29bXiFtwDc5xqWtLbddHeAwMZXJTS5AhaxdwabcmilCQr6F93FpDKFlWmiXBMbMy0m6EtIT3oe5GfoevVDZmlBZM2+YhiuNvuzl2PDYde/L8Hem+wapiKP4bPG6XWt5swsBkAljKj5/fajoRofpBrkHDzgMT5EBg8Dcn2Yv89s3brgpuRqVM1y5CGzTtvd1f8ph3hhtwEhDVzt3BttkZnm29/Yc4zox0e6QmcwMZwpcuCXDOBOQ2/bKDScH1L7gx6ClGwzoS0vbHnbwTE62dTFtOfAc7ShvRuNebiLdZRXo7saG215bc3Iw3yG3NPrSdqRvFKTGEasMtDgCqU7wBKnmww8uR13ZNZUQafXh/9mOqfFHXiVoOdBiXj/3krvyja+7S48/5qYX5t2tD73VLb32dW5KjsR3RC8ts5gBntmRVwjS/GvHxGGwqLXxbw0+8KytrcpXrYZyEvASmDqix62q0NlxaNAaHZfwTOpghS0dJ3T1Ucnt6191mxub7sZDD7ljD7zBTZ885XayFrXxIeYVnWxNtdxUa+9MvZjwDRZ+hW+o8pmbm/OHO6yuruYVg8WJdaV8Iydoo6zhbJ4yHtWQCT6t5l3px/KTT7gLX/uaW7v4ijv5uvvd8Te+yc3dfke7LDDMmKDMmS2Bzug6mQmCMsahGOCizHGljOMfehBetvvzPaQcEpOSuDAbdM2LAdyDEFmEwzOwMB4vf+Fz7vxv/Ve39cp517rzbrd5/iX39B8/7Ba//U+4O7//B9z86dO+sPvWYSQ7bTzk6gOXSLDbAPd+cxzZK1Aa/li83MMm2How+Pae5yi4BId/k61pd+2Zp92Lktvq1x5xM3ff67Z2tt3zv/ZL7uXXPeju+IE/746/7vVuWy00utIxg/HT62cmvpjwDVaOB5oRmoJdLU7Mq8EuXmPhAK5vDKlSfeG3/193/bOfVsv5iGsdP+nO/+5/cy9/8r+72977F9wtb36rN87Ej6IzAd+Mtlg0lcExHMVrWdw67wY68oojY6jdOdIoFhOrMkstDh7r3lXFG+T9taeedJekLBzx89r//f9wE6dvcxPCd+NrX3HP/6f/6K7oWKMT/9NfcFM6viZ2gG/Q1sTxO+Sdo5Osdo9NSxEeuoG8oh95haES39YvXXKXPv77bvPpb7rX/PgH3ZEH3+BW1Crbfu5Z9/xv/kd36WO/506cuc0dOX0Gqxa9NbYhww9tqXqPIT/bR14t+VYtxyelLm/oCOWBVnvssKODps9/+pPuxmcfdne85wfdkbe8zU2otTl5+bJ79iP/2V386P/jjt96qzv++gdjo/bwoA3+wdNUARzoBT0Q8AxrI/tuXlAzxKodejHJcMXEZ6s01jOlQGnuff+PuVMPvcW1xNAFFey7vu89qs1/2F34/d925/7oYRXybGUHhT1SMNoigasEE/LO7isjD/khhB+bPg9bhWtb8jor43ztC3/s7v7R/83d9l3f42ZPnHIzR4+52979ne7u//XH3I0nHnXP/c5vtcc3lcZkPiR5efLYtOWAw5tM1UJcngdhnAT3KfGd/+wfuZd/77+5W//Ue9yrf+C9buH2O11rYdEdf+BBd+/73u8mZufds//5NzTscaFNWaTyFvItvE/Avtw2AtvjymgYFG8tAz0o8BQMGAamp0MFlnDuM592y49+zd3x3v9FNfYD/h3jzVvrmrRQDXiHCv7Rd7xb3eiPuOUXXvDfKTMxeWGw7OqRRP6pgl31PgZ6YIfww/uB4KPkmdyuPPGYe+X3f8fd+p4/7858+zs9uO2N9faYs57OvONd7oxaZ5cf/kN34ZEvt9FhpBMU9oFoqZnID6EU4saioQB232NMPLtZ42ZF8zwv/d5vu4XXPeDu+tN/xk1onHt7Y609x6McHL3vNe6u9/7PbvX5Z92L/+PjbpdzEZF5JLlBZEy69jGt8MJwDdukq2WgC7hH91HCpotzXV3hi5/+hDumycAzb//2Nj18k2G2McvZ48fd7X/yT/sJjXOf+kO3K+Mdu3tp8OyagrFVsKvex8pDCD+8HwQ+Sk61uqXJ6fOf/kM3feKku+07v8sviwSel5kVZl1v+87vdrN33OXOa1xz/fKlttwiFnRwHkQYlo9181y1LLNu+jyeL2+aJFa3/6VP/g+3efmiu+P7vt/NahKXwLyOlTeeb1Ev9uR3fI+7+MmPu+vPP8erqCEaXTVyFUtW3zIGmhrNlOHCFz/vNi684m773j/tpuYX2rU0BbwQjr/mte6UjPTFT3zMXX3qKf+1zfhh68VORClth9XknRjTtyZCvOF9MR89n30hb8vmolZrXP3MH7ozf+b73aJm/PeFTIZzp25xt8sQ3Pj6I+7i177ajqZvQ+VjH7LmX5S1qlPkIhYe4/fy2efd5c9+xh3XxPvJN7xxL8tBmaPFzD6E0+98FzWuO//wp/Za0XsphrqLRVedTBjtdeJ2i/MtY6A1Q+b5wHDFJSnLsbe/yx2/vz20oap8H492WBajya5b3vp2N6lxsgtf/JxaAu3j6EsWmOxL38+LEvT9JO8at6omT92aCPGG910zW/LRqsLN5evuFbWe59VFvuWhN/uYyGhfyGq7k2/8Nt+dvqhxT+YbfB5S1oT7MhL/RWqZWY6j4KFizVbQXNRQE+vUb33HO/3yyNI5gawQHHvN69yJd32Hu/yZT+Wt6FjGLgpdxqQe12F0PgT9LWGgEfCEVhUQLn9Da2Zfedmdfte727sGexTapTvvckfV9bryhc+61ZdfDnk30vdNtiaGYZQpOhXr8te/4k6+/R2OFjLBvpXBnzly1N3y7u9yK49/w119+sl2FIxAD3mXwTos72IZqibosbyunDvnG0RLb9QadY0z+1DSIsGY04qmnNIoYkzr4pe+kEXf34AahIYmdd7oHySfYZpvCQNthXL90kV3+ctfdIsPvNEdvecezwdroYVM4d4rjFrd7Cw8pbWZW9evuotfeaQdrUTBiukPzXMFgd2M2+HJe5Z5yeHSVx9xU4tLfn0zPR7fCiuTA98yI0x3uqXxzstKu63JX2i2b4eGxj4yMhIyy+lpG1U2EW1ob8HpP/Gdbmpu3vO/ko6sxb1016vcksroVcltTUORhBhyG7egc+Eczpvrzz/vVrQE6+S3v8NNq4VVNxy79zVu6cGHfEtg/crldrKILbGIoPaRVNVqiKHw+5AFL0L44X0QpfbtjfPn/KqMY1q1sXTXXbXT0dI+/vZ3umuPfMmtnD9fO91hjTgsH+vSVaUztdOrQp2YnHCby8vu2mPfcPP33KfW830+eVVbmKrYV6BK29I+ixNverNbf+kFd+WJJ9poIxSSYemqSz/xYsnqpm9B09LyrWGtwrgiZWlpvSy7zHyQ0Ctrc0XwCqM409qUcPzb3uTWpDDLZ8+200b8LWsIxgJf2WqoKimREId8De9rg6dAZoy5/I2vaU3zqjupbvLk9IxvPdv4Zhk8TxqyVYvspAr6jsavr2gbP8HrArBHMSSWmbGkUmcsQq9rxt8bL73objz5TXf0wTe6mWPH26kqlD0nLft+Qmujp28943s/O9mO0GGN3tB09aI7wfeb3kAbz1Y07nz1kS9qPPltbuGWW/3rnsUUZcmU7ei997lJ7Xq6+vij7XcVimb4Ds011/zOHI2KsuJM5+qjaoW9+j63dOednURUPUk2JttFbTxaoLus3aEbV6+2U4yogR4JmcHbbKiC7fg7azfcce309KEG360yp/dz7NsecsuaQ6AHVTd9O+LN83tzG2gphHlYY6nPlsagj6lmZnUGocJ2lUp34cwZtyAjcY0xtWujXdBLCTykL6lYV5950i2p1zOn9c8+9FE5zmh79HEV9BVtcLmhzRJ76c2Et1+Nf+NwgFYuRnbj6hV3RQ2ihfvud0fuursv4NZSZsv3zuqKu/50e4mr9aj6AhZEbnKIwyqaAP1Atze1gfaClhVmO/fVxx5106dudUfufnWbUdTmNQq67xIzLqb10ie0sWXthee1KqCtMLGKeI2GxUDCJZEpexFA1ftivEGfQ/jhfW14We1JK2xLFeJRxjBtpr+O3ITI8B5R7wdZsUGJQOFJyXOPJMFPUwYmBp7rahCtfvNxv+qGMeVBwuIdd7rZM7e7a+q10pPyclNZHIVgujdsXm9qA23MWdPEHl2lI3JFOXey3QobxLhiJFoaS6PLTYhVS9awN0ZK39eqbnGsvFdlKMTbNy5vPdt+NxiamJO3uiOa2fehLrOIl1nhRfV+5rXp6CpuSeW+c1RDyNPDSANGyc8N6Lr87DPaeDKr1VL37mW1puxMX9jNu6S9Cssax879c+xB6/uuSf4ZDX1nspDgpjXQvgbLHMgzWbHx4lk/vIGrSkLWQCuwo+IxU6z5W25xi1pIv/yUFEbDJYRhakpLa9cK7EO9rmoNpcTp+ZKPAvfPI6s8VzW8cUOtJyaZ2B7s39cs5J5pWdxpLc879uC3+TXRwNwLhmnvzWG+Sy2zoWnPKsRNbUpZVs9n7lWvliOrrEGUfavCUaSNZ9ZEMyS5delC3mv16XvAqsQR6GRVnFjvi/QMCreWgS7WBsXnQZH3m64fvBhgXz4lTNyKtk7eokmmbIkWAi4p6FXw/XulmZqdc0vqLm+8fM6tDrtsSxk0fHbtlx914oewq+7rwOknDniGwWVprzPJJEdIONLxQTKwbzxX3bcjZ98zWTPJS3wbz2yn7aua9mANp10NV+xrGfyyd7HxAm9YPGsXL7pVbQ46IidkzAHUgVnEac9HNSQ5o9Uc19WK9v5wsglID7Tmj8Gya81kA0UzHMXrQMCUqIX/0jrBEBLX0ti1Tvp+44AP+PYX4q0FSwWTY6vW5CB8WRNEC5pkmtYSuxxOYKCNNnBZzce9vfeJMniLMvK7OpGEMbYTmp1mGd9uAKtO3vwpIzpPDxx5fuokHCAO9OCbmavh497oHABkZRLDBR7/J09mOrCpb1x0kzHM1775hJ83mL/tdo/Tb78vFFB4mePL+BlmEPlMaVJ49pRckt75KndVunD6T3yHm9aKHL9VvE/ZAdvwoR8p+Gj593oSyAq8qXCarhttRqe9tzz1ulLlLb/4gttUq3fx7nt8dGAWg8nN+FcWhwl+9issapjjhsazV7RpZVG64E8nkU6L+UWwlc+GzyKU4bNvg17hFXANF/f8Uf44HWpit/8GQeuiars6wQSFs/Jr1675o1zsWKM66fuNY8Re1dIoHNtzDE+/TOUEh+sq5IyHnbz/QXdV3tDcymrbp0ZQMI026ALPuiYV9x/3Q5er5TbZDaVx6Asaz5yTv4dJtapz14g1iUSAHGW0qWOZTIg1k/YdjQLAkVeX5Y+C+0vy7raT8sgr8ZyjmdANaIO3VghrZV55ZJXNhvJ5WYVyVgXyhuCsSk/L+AwvkZfh24cLeBSQzS03Kf/DV7/6ZXf+6afcPMcrSa/6CUaL8dIqvn5g9BOXgw+uXrnqC/iJEyc8X1PhrFcGKnJPWULWyu+Odmye//KX5JrujNvQxPpF6V0Zn5EbR0JhbPmrKtv+bFAtuVuRo/9zjz/ujgumnzBU+n4C+OzIKyt3/aSvExceQgtHXl3SoRLYLuyrN9DizyChdUotizrBBMhpC5zswEkBZATCUwTwITTggw+8VULcj58hDLkyFIyVG8uupV1NZzSWdVJjyGUwjDYKBAaakxB8LY3ihUHPE5q4WNbmhyuf/2M3r/wdEf+2VdAnpsSHmhU6NEEPlQAFryxPIdph7jFYKIjhOakxQd7tM2TDIMnSGq41zbhzIsdx8Qpa+8FlMC6y9lWtsFu+98+40xhTKb4Eui+XwDd80FiKS/RS0Lc1lr3y8CfcjAz6Kfiu90qwD2avF+AAF/pSiq8XgJrfoe3YcZ3qI1yUAU7fSWmgjffoZmUZqMi79VSWX3rJbWlZ5Km3vM3drkl1jHZVxdouA9ui73hlGYAHLfVUr33sd93U8nV3UnZnV39ebiX6UJE9r4eUbQK8TFHmsCPYDfSCRgoGGvuKzErtSVVmg/ctGNBvsDRc7b5fGHXiG3zDYdeeaSl0YhY7kFaeecrNquW0eNttPtkkQq0QrOEjIvdmuDvwKe3x+1/vLn78/3OrmnxkdQGF38fdbz86koYPYa1am64QQM17MyAhDvJaSltNmFXRQlyel6q0mDkfBNfK2ef8ioCjr77Ho/N5rtBVjyuTVxkujAfhyB13yJ/HEbeipZLurW9z3XTBJ6j4AR/y83mq0KWKpH2/BpfRZPf23DewHgmAa7wkquHrkaz9OZMNvjO2tQYax0j0YAnmqKwdce8X+FNT7QqS+6rAZqPZ2+5wK88947Zl+Dj5SN1gAa5OUwYrxBHel8Ud9J3B5Wp/wEJfBgm1KLSCZwjsuWqFgMWLcTVcwArvu8G2NhHjz9d1WveSXFRyJFIvGMDvhsO+cSwWy+2uPf2Ubx2g2PatW77CbyGuftOGcHrdG+wQH2nsfa/0g3zPcWWCqIvL4lGxMv7MKoB5nVHnQ4khtPh8D+/bCfb/zmklyPx9r3XXte17Uz0rQp10ISSLb9e6vaYQRp17g29X0oT3dWAMGqdfPBafivCGHO1PyT3vQuav23+r6qVIP/K0JXHsG+uoF2XwaWyxZJawqzmcusHg2LVuukHiGY6qa78waxnoKqC0jlKHvlsLErSl4ZidrUuvuCMSLrU4TLNvg+TbqJ09fsLNa3Z5RcqIQxgfShSsFw7Li117xR/ke0rY3fIT4g3vu6WRgPznVZ1Jh6Ochbvv2VsF0DVhj4+ZcafltSTHV2vPqqBncy8ldr8HsMJnU4rC61F+7LtcZ3JjbPiGjqya0bwBZSQPVUwOeFemI/k7pT/6uvvdlk5kyX3h0OIeoMzleRqRm6EM9KGmUcJbfvZpN6Vj3Rc43ZmAQKuUpR2j+2+Wlhp96Z7XuPVzL7rcu133lAf3tX5D4+DyWMC8qvHnLbWUFl91t+/G+tbIEHLDDliLhpNYdra23crL5t0usBKFfBy6x4ayOmjPeOP6NZ0p+JxbUM9nesDdg/t4nhnhpTt0wOyxE25Zwxy01DHeJtN9aW6iFzedgTZ7tJXV5nM6m272WHt4I4bcTCkWNfaMl7QYbixTNgQGLWzD8sr4BJzwvhJuUHninH9Cu9DY6hslYNwzJs9rV2FLk5d0xf3kFQhSCiAKARkQU+6YMIeFJd5ZS3f1lVfc5ssvuaVX35v7u6kLvkpPjeTppSNuQb2flbPPB7tB7WtdLKMX76Yz0NbIoDZff/FFtyBDGq02D+RLQZ/Ukp9lJpwUhnFjOUTjMMhR+W1Vd9UKVXmquG/r4KKoEY+DYW+olcTmBOv5mExj5GpOXW8qbdxgbmnCaZRCHT42TY83kZkC45BsUstQFzUZS6BirpvnSj3NCGppVdCChhU3zr3gDwJuv+5PM6pwZCiiXurS3QvpTWegpRGe5rULF9yWZpMX1ArjiHffiotgCU0l5tQKm6dG1zAKlYEPo9IS66UVEb73raDZSot1yWxV69YX77nPTS8ttXMSQW6mF4xDL6qgr734vAPXOMThAOPPy9o9OK+hv9zrYMzyIB1Y0Gqs7evXXb5dH72IiSMOK9pQIjXuby4DHQiLCULmMOeD8ee+jUYXgXF8D9u+19RVXteidB8C/F2SNvvJapQi1kgKVAQ78HNmhFe1TGvryiV1k1/tQdUaHqmBFNnbcjsM9DYtdQ2ljMN+DgzS0lyTzNbU81nQssjce10m0/0Y+ngTGGFW9NBC55xDDLOXaR+gGo1aVe76zMTNZaAz4tmzzxgjJzKY9zpJtE/WVEQPlG5RNfqOTvpYVWvdh+BbRerD8zqSAkUhiMKWrYO9QTdZuzOtmxw1m1kFunDraX+yzrJWHPgwSnKLwvBIQDIjCbS1Cxf9xC7L66rWPQ+K1Uou3u1m1SNmjTwtdh8ymQ4K+7CnuykN9Lr8By/LC9qi1rzOZuuffXM6sjQYh2bN5w35HmDh/DDj0JGzNlLgrJW8zZZtzRsw/tyxTCsWNZkhZtKYNdYr8g8NTh9u8oIei4VVcFh5MymXAjZv0M/4cxXM4vsZJgrvvkdDYE+7dbll+FYIN6WBpkW7efFlv0zLxp9jDm/YuBdGZOb0bW5VE4VbN+TngzAiBd2MYjvTB/yb8YzNIyxdXHjVq1xLXdnYwXSAwxfm1RLbeOV8PuFkrbTYOGPCO1QyE2HGMyo5lr/NaLffnNwp+JCiHKiC5fCFTXmTzJdJUunWxFW1UiSmjAxWLFmVGmiA258hHIlr1kKiRTvZmslrcy/A7FsMOkwxWwvzMiZ365SVs24j25kWA34TMAYZZ0yWr0w2jOVvapPKvLzOTcofhA8R5cZEoR+H1nDKvHaDdkw4JSMuHmCrYOJBjAMJ/8+0auckt3xiNw5oD8WPNWdGGLlNLixp/qB9eLP/FhFXLFCxZFVqoAFuf7EynBxOJsAdeYhjh9+0BImD/RTBxkUnJqe8gca14ppNFKZAOAxMq00KMJpsTRRQdz4it8wIc/7gztqKW8j8ptRtGXUCrPfEhNNEaypfx24yrZf6YGI1JbO6eIxnGxpu2Dj/klvQob52IIbJNBqnsvLN6qlZnXHoh6dsmWT2LRquCICStqBx3/jyyy+7zY3NdlZNEhEyngxEVshZR8u5gXPabjqN16sUIcMFaDZT7G5vqaC3Tx72k12HSWEqZBerhi9jb7+wLT6HIODMaE5nR/pQkfcynP2+wy9H68Qp7/DKt6oDmXaDZXntFifGtzI8TfV6ynDvpymoWDVvgOOiBZ0fSMA41YOxH2rlm0w+DH3NqyJYkyuADTu+rIeeGN+i56kys7Q52pky3F2idv3UCocy8L702GOPuV/91V91Z8+edXfffbf78R//cXfPPfd4phskqx1w2WcZ8d9orZEvu/IyuA8FZzAsffhMDQ5hOEQBh7kGtDiALQa+kf91rUle0zbepQfe6Gtz3pMFWmPce4YFAvXvMmb6uIpDACfwCLwnFPPK9xk5FJ++5bQmt16Qz+FNN6k1154vWVqfMPvxOREo0gHT6LKrwQ/ThPdhXu198V34zD1/eNKye9LZveHj2e4N7iBXgwM9/PFMsPfFe/+8sy1vgPKzLZ8m3o+DVgFYxboj+U9MAKMtMINneTW4XO3Pw8z0h3tCmK6dI+cPb2AykvmDTe0IxZkWeTbY7ZR7eS/DZTiLaSxt8Wowiu/LnolresI9wfJnz7yrwl2GK3yHLprx6HgvXOAhhHj8i+DHp5EbX0V2N7SqYkrOw2az8z5xDev9OAfx7daXAT1MyqCHOmI4u9EjYv0OxTnN+1z53B+5DS0GoJcMe3aZpM/KseGyK3k1fBaHd56GQpqQL6QnDsHS+YfgpwjD4httOOqf0j97b1fghffeSAV2yVDI4+Kei0Gc8X/oQx/y/kz/xb/4F96h/M/+7M863hPP/vB3SuBq7/xVAuu4ksbeZXgsPsrHX9kzzOT9pNxV4sPV/LiG8S2dXflG2JQHOyen4Uc10cRyHw8nw+PTB/kJv3EPPUZb6E6SdCFuewbfvLpcR15zv1vT8jBODyeY+1HLm12hi7QE8IR0hfAtfvFaFqf4Lnzm3twchrQBtxiviGuQZ2B62qbbtBkOuxbx+mcZZ8KmCtu6JpqO6fSMmWyDSjtduY4YLI8vk5vl2fQnfw7k52EqUUsrDjgEmOPLNuRUnhDmM0xruOxqvLRni9vrWga/Kg1xCYbL7g0n37vBK/sWvgt5FL4v6mW3/Hl7okYJrdnFV93jFjIHSZxgU5mOMqA/AvoPPgJ5CPNRTO+/KR491KPaHTyhpbTr2bmgddKCoyW9NHzGx314Mttj7+vAtrhcDT60Ufas/BltIbzwPrSTHfBwGo8lBzCG+Cd+4ifcG97wBnerxuj+7J/9s+4XfuEX/GkVONe2kwiIR+AKklSBfDHcwh8EUyuR+aqA8K5LWRTLTcgpN3XfltLWXZcJHnCYM/1uuMibDWe0VIuvf/0rblljqEdlXLap0Kr4okxR8YAL3uOEfVBn3lV8CN8bPcjKanXw+fx34WUIo+49MFHI9bW2zNAX9KOb3BheaEm3ruN5UL2flk7PwJG+d9CvqwReiT7HJ14aPysjBx/AOSWc9Hy21HK/Jr/ei9pgsdVNbll6cIKLv5bGsMliigAedB65gYvA1Qp8CpyGA9zYg256SRz8Pa/KSLLE7uhDb3WcTzOJbumvUv+zjKMX0NNPGTC5TWg36K58teCz5eSbNQwrnfM4K3SFvMK3jfW23aJ88y5FgGecYARtyI6/Xrzslo/Wl76k42kUyPCSjMsDDzzgTwFgiOP973+/+zf/5t94QX3+85/3BY1joZ5++mn3la98xZ8akMpAYxwp2BxTw+kOENmVqYo/ofg3Pv85tynhffPsC651Q8dbiUGyEt14ICPAfx0oel2nr6jQLWpt85bGlbsZaA8QnIK9eu26X671jc991s3oiKLcCU8FVnjGEU0oZ6rTHQw1PEMhkRn85PQRM9QWJ9YVXN5ASzk5UQLa4GFXuQm55+HnPufWlf65i5fcOelkLx5anq2gQxen/NQKwsPyy00597mhFvxTn/1j95JW/dQtslfUS4M2aO1FW638VERC5xly5GQajoeCxlQ4vZzEgWWVASoGTkvqZqDJMg2fTW3Lv6Hdn6taZnrtG9/wQx4V5HS8Rm4c+waO2mUgk9uWTiq5oQn6ta8+4i5prslNa8WP4HSrzMG3rJVWlHMaRankRtniNKHzmk95UWPz1pLmmDmh7ju0XvOa1/hEZBgiAI5SvO9973N/5a/8FfeDP/iDvoDfe++9vrBB3G2aZScdhZA0qQJ5ojBQ8Lq1oH3epSzrivuU3FQef+AN7lVveqhdsyJUGYk6wc4krHXcj+BSoBlzvqEW8bOf+aQ7pjzcfs89XlGo7cvwGp/tTEKOM0JJCWXx/YchfkxhrKeE3MBHPmLjAyYGZFW7K1dUYO3IK/JQhgsewb8tFZznN9fdrJZp3fPmN7tpjWdyjl1ZmpAVxktaK1R44KsTPO3K586Z0+6ZL3/B7a6uuLtv16SyGii03LvhJS3nzYELWlMF8Ey3pr3+c2wScltRPqcm0+GEllplQHkTk3zFeu6F5922KhLK2zGdNLSt4cVerWfwwGM7kxBe9qoMSOPLlHCpK+9efO5pd+0rX3J3aNx7QUaa+Z8qucFLZAVtxKEhyrsUATqwkVRw4LpPw2hDtaAxEGGgpfUzP/Mz7qd+6qfcX/pLfyn/dDKbAKD5DkPJBH+pA4a5bstolcmerQ13QpXJCQ079BugDXz89RPwG3FBM9hzm8Jd4GcVHHhn3buqODHf3yJ+YChpraQO4KACoiDUCTuq5M+rgOEM51bN0GsMqE6yPA6FrR98eULtKLysdew3nnrCnVxa1ERXPbe0FPZjNePmuAa8odwhu6bKG2WAHhdGpU64qp7mvM65PKOGyax46PirGYYpA+uvvd+tfOYP3TGNKy/W7DlBG0aTa+qAzOj91z3ztSo/LQqt1TCcVvyBD3zAPfzww+6DH/yg++hHP+oV8V3vepcnirj8MbZIwMCgrClqIxgJLlpHpjQ8834/Plr/U+6K1j/jQnL2lvYyLX+Ya40WPjAJjBcBGwNNTUjvYD8uH9W3IJTB9oSgassZrT649tQ3/ZE8uLSsOuSU1MAFF3xESaErVSD/yAh8hod3lXQNmBGTC7QhM/6gzd6XgfVjijIEyxrH5JzAW777e9UracuCb92CwTV8JjvS1KWNtLNypnXpjx9217Ss9AQtd8ldAgLIPvSGE9pS6r4hJn/oCLQRUuKENgK0wT9r9ZGHMn7yfkPDLleeeEy6r/XP2p1J2JHB9hVsCf98hOyH9OCyFqfpZhin9F5wmYSfoecpHbny/PPe8yF5LMunwfD5zfiIPamNzwDUuMJD6IF3Vr55pvyBz/SnBqg8ij801giDYT/0Qz/k/uJf/IvucR1xzjj0W9/6VveOd7zDJzAh2hWiubfnHGqkG+DbHyANVxW+de1Cm1pcyt0d+vwJRt1g8Ilfh7bdDPaUxrwX7rzLXVeXa1PdKAw03byqfAKfb+Ag2NU/RP4x2Ya0hfeR0XlwnrbCbHgZnt3MKMCzXe1Gw7eJdY+BISaVJdv3rigrn3ZfrM4Xxpf506fdrno+G5fbHglzuVXg9rRlsuW+Dq5OzPWe2gNoezpPqiKd9SD1FwsctsqiEl9mfLfUY93QpPyp7/5T+Q5CNm95nlTwL8wN8M1Qcl8nWMWNP5Xpk5qc1zyCgLTLGwBK8JqsQxzhfR28deOYPgA/1A+7t+914fl+jCVibPknf/InfVqIsvehstQF3Fg8lEVCYQxqTbPJ0+pu7TlISpuL0HywYWVbqxBWddbdEbmz9LzL8pY2F4cUesicsiwG+sX5gBS8PdewSlBS0MrADPwuk82s9AXveavZEVi95GaFfWC8dRPSgO/Fw7qwEsVbkXHcUcW6oPF7AjJkuVgTgf0HnPS9+uJZ32v2J333QtwgT2PpSWW1ZcYZmtVO6EX6gX23jigTTeuaOZ1Rl3U6G2cNaUiSQRkRE4TtTFuRwuilR2d564U7i94r2kDfLX/FxFXvi/EGfQ7hh/cGz97tbGlrvoY3pjUsZUeTWYPA4qa4mm60W2LaUSjdsdZZXbmlyFc3mE3wBfw98WSVJz7XJ1S5zct9615oxla0NKzIbmEOF95QS75O6ElXHSANxyk10FZ4iteG81YPXWbdWMGBdzLvTEVjyD7vqVth5DDDP6Mu16z8f6zKicv2Rnvdaj0C0jYWzRAV85K60g3xhvfFfGxrzfSKeDZ3591uWsNTjYXMjkxrSeWcej940duwE1ZS1phDEJhaZpa1Onh8j1U8Yy35rMbuGwtZmWaJH8NTmxqawheIDz3Kex26YtHRTef7wVFqoA24XfsBeFBx17S8bnv5mrpbd7Sz0HAhYxx6lhpdXeWtlcN/1t1haU1w7BS7+eY1hs/mkeaCLLR0ZEITOvgYpiW2lu0otEq3ubzUw2QNpnqxE8XKytWWllKua0hxVn5TphfTr+YyarBJ1tPB4RWde07hyUOXct+kzseSVamBzokdgRubVOIkjimNS3V2txogIKu1p2am3Zy6etTo+HY47KHJ1sQ+XmAYM77hYnRHY/esZbVx52Y6yXTl24ETVjT93nnW3b5MH/wL49lB5sR4tqVllOvyuz7LMVRsFCH0aMG2I0X4zYzwnHadTi0ddavZEVi9IDep87FkNdIG2mqpHS2f4Th2nOfPS2g+NKQsGBOvtFq1MK9x1F0Nb1hLzAupS43eS6GSfm/KCpYQ0eZXOwNrWmLHrj6OM/IBfjWUN0PDsWis/lmzlhi6c1jlVsLPg3jFsML2jetqlMhtq4YbKIvGz6byw5CYnyg8qyOwtALtUAWryYbM1EgbaCtEnMSxocLFmtYp7YQkNKYsFGbNXhNYEcAa0DUt9+snpLQFVokV85O8uxcoaGUetGaW1RO4/ZzJJnbbyRqTnmfLNB4JVbGvaS00BZ2KNch+kXU3/XM33TDJULHS65iXR0AffMVqXxOzKGt8teY1QSnHScz7bGqX5c0YRttAZxJhwTxDC0wQ1nWMlEKYGJmWJgvXNFlp42QHXdAru3WJM9atkFvFyqaida0EYOx+xnaDpaytKoQ+vbioyv02jam+5Da1+8uHA8hHRfby11UVXR6hiZvMOOIgiV5HfnbkkPzqqi9FuqhAhW9CflTm1GulJb+erWPvNszSF44izj6fY+G6KQw0wmGzAcIieEXOFKlPvg4VnRUB+Bhe05hYfupwDYgps1qpKIkbOx0VQxFXRvAm45gq6HPq+aQ4g7An67N84A9kTptkNtQqzJdsDWlweuIeJEKRj4PAGCpNu1ZnBceN557zZxDmFeuQStyhLz3yGA4dsryVCn+NDSs9Qj84eoBq7PMIG2gpS6YUa5qsYFBjFmEdRMgKzpTWZs7rOB5OdLGCftBlqlIpE7egwzGmqjxsqLW6efEV3/PRNrm25IYs6IOKn8llNl2sy1OaDweUj0Hz30Q6q7OYBN+4cN4PKbayFRyxJsVq05HpL8tbp9Qw6ljJUQGksrFSEf8wvB5ZA42yeKXQ+O+6xp9bGl5gd9FBBAyQ73LJyLBdeevyRXnWazuBb1ciqa3hQVA9GE7PJ6tYNVa/qxNVwp5P4xVaZnVYgYOsDvVEYUNqVFWh0lIlMP68pX0HLGlla3eMHmvfxjNTFA53aB0/6ecPduUbyAerSdpPI/07sgY6WzvhneOvylH+tCaapjNPWo0XchBmSjGvVjyrEtqt+kw3ehSslPrUt+JHUmdfaI38MgJVsd7gcF9tdPDdVOISr+GWq4lmThO8jKlS2Zvzd/sWiSXDg2lIsSt1xipWLY3EGM6Zx8gy+fZJbWWl0AMOW7xZ6rdx4WW/5btH9JH7PBkWpDz3aKb+Sr/lkbp8r9DsEB73Vc/5+ywP+XOAW8du+Ce6yRsy0KzgaGnbKaECvcdXVL5S2B7GHpRinOJziJCz7VrHTrR9O2SKa5BIF6bdu+9874kIfshzMa195lsY9mB2kU+YQPdhmsKn+I8ZTzjpZlXnOM6c1gTh0RJH+1m8MAM+n53khp/z+yI9+XOXtGwdnpc/avK0la0IsIleAOcwciztm6r3hWj+sZ+4ZelN1MCxv9J4elmGq+NdwIvwfXjfATuQB6tdJvHgKF0PA2kr02cRwzhh3PB9CDO874ijyoLnlrzozar3wyouG1YMSKPkhCA67kP8+YdC9A6ceaS9m1IY2eeybyE8/z3DV5VPfybhHrrsjppafzauZFe+cm/PlR6hKmp6S1eEU3y2eDheAYfhsfc+fjZmyRK7TdWei5xTlvmwDeMR1wLvizV1GDfEZR69SBvGKXtWhNwL26yMTXtFwLn8jEJL7/ErLiHEFb73Hws/PtcB38PP3egBrvEuxEd6y1PxPoTd773BNFz2bFePK5Pbjhy7b2qIgyGhlnZhht/aD/uVyMMJXhtcrkanh5Px2MPRj8ULx8WL31ieuSDf0Gz5ZnUJoQwmsEJ8OWwD2OU6SFzDF+bH3nWDV/at410JHw2H0d0Zv003S0rxGjmjHgfncRJssxjxO9L4r50/YRzTEw+jz7QhHJb67Wglx4aGXQyWYaV8WJ7AZ/fFeBa/qCMhnjxOcBPC47XxzmizZ4sXwvPvMjmQz7LQ4sQSS9wRQZYdq843LL3Fwc+pHb/DKRb4Os0DtUE5Hh8lhONrD6ILPiF8tnhcyR8uCfHR3OFTVd/YGnzxmafdFu4itZvpuvLjzwMEpr4LuIdtPx6HXoXMMFzE4cQFDpZcUlcXP65leaNCNr4YXK60tqggODh2R+lXn3/WXWQJmVaW2OkgHr/iIjR4iH9fgrlcNHz+ZfGnAu++aIGswMcfp+Rc1eQXeOwUi5Du8L4Ir59n4KAPnLSDbhCgyeBzJUxJlsta6bLG0si5eXeVpW3iiedhoA9FfhgcD0Q/PMNL3OQaPr6VxQvzYenDuBiZLeVlQ7saL2qFwjFNPKFL6FCYFthWZqC1iKsMtr3rFtfi2JW4+BXG6fuMdHv1llXPV8Np8ShvoT7b+zJcHe8QRVY8wvfoCQ77i6cK+Tiil+OmrquXMSkdX96UP3hcxaL7yE159mAzGVpewitwCB1lQK+2NRdBKMrcv7QfxQvLHkNRVKyb2sW7ubHpLmrDSkueJLe1yiSEA074RvkmULZ552nqklfiWn7r8hnY+EFHR8CHj33zrW16BFy7D/PJ+2LQ4ca9TxcICYGxGEvSkRmeUwXwoiz87TPQQsqhlZtyVdlaWHJHObJIz1QXvYiuyq+dJME1NNBV8cP3xiOM9KImT1bkG3pXhsPzSTyyPBEPnoGDq/ERWBYnhDvMPbiMh8Y/o83yOwz8YlpgUhDgHZWP0RhWrNDIWvUdGZ4JFcpFjR/OcmhBVln1wwPwwUOum/KKB75+A2kJVBpLcrd7QXnCbSz8msoKb5gn4oOHP28sZTLKDGS/+SjGBw958H8yQKYn4EwZjDauYRnACNMgWmYzz5VLbuktb9cp3u0DDryd72HoinmGp+DwZWG2E1cxbtWzN9CCsaQW9LTmfjaVt5Yyw4ntUgoKlE8KL+Eb+AhcTe7+RcQfeAZ8/pAd19BA94tKQ2/zfaUBGS0yGEwtmzrQYgcPgtwXxAynrg2rAI75rrIEIIYMGjAqMJXCMEygsrioVn1LNfms4AnoPnAoCPiGxbUPcMULO7kFhUkdKAzoBzirwsbxqRQAAEAASURBVJSGOIh3VJuL5sjTEPlCJwn96nIxb0c1ljkt3w4TcgTULU8c3opOhoa7CCvWMzTBR/S/7hFiw+C2irVKL9do6WpY8eidd7m5IctJrDIwrbK/cMddbkdDL3PavDJRkS+zV9ivVAGavO5r+SFyM5yD4mvVrUm8MtLFUAasS05tUWo4B81NkA584AGH4bG8Uptz7M3atatylPKS98ExmY1jWpwAVM9bK2iGhwTW6uuZOIhg+WJ8DoNzQ5swTn7bm3y3z9foWVzwGV28GiTPAdqut8BGRtBjckuF03AZbeADd04fysuzZLqiSZ3JpSNaw2pHJWlISd/6DcZLcOV4+gWi+MCZ0oQTBz6ssNFIPlXwUOgPkS3ky+ijYhgGZ69skifoAh+BK5VaCpzgAq7RBj5w857AN2R5Q1vzOdZqRi1WQhjHv6j5A9wQ10A0KU/KlJuQwWWRwLWvfNmtyibg/IqyqMznuTF89mIgfJa44goO+IGMOMUb+ni28me8rEhe+rpVJ1FOzB69Hhhp66QvxVzjpcEPcfj7jPFbjONqvfGR+x9wk1kLLIxbA0VHFMPHy/C+I1KNBxz/+LWZMtB+yZYEFipLEf4wea6RndIoSXFKT0L+Ga72YIIKuxQXT2jTOhpsOjPQYfzSDJe8NL00+HYtidr9FQVdYXpBKxNU0DcuXXDbq2rhy0AX8wXO8N3AOLvnqMMIG47itQeIvj8bXSEefw/NVFK64ru7dUwThNmuXUvTNzIlCNMazn7hmDzYaHRZ7oY3NTzldC/gHj7wcj1pDyR7FIPiq5u/kDbSFJ/rwum/yVIXcgPx1jUIv63ulilLAyi7o8gqDowOTlxWnnt2b8t3ZgS6A0jw1axiAbQpbeF1nMcKnAZ8S0MEG6wEOHnLwWzxtoxkV8vulCYJ5+STY1PbhtmGfthCewoufa6KumF4cV+wJt/dMzLOdvpNoc2WPnMhBspbVq5mT53yrWbc11YFo6Pqe8z3RR4OCnv0DDQCyQzhOg7W9TgrT2SHImT5oqDT5eKEl01tH+4VUtruJpUypDNU0PCeOFta4QFvvPdBGy/MeBfCOIh7Vt1sXbvi1tVVPnTBapKmM5Yp6KaXm7bma44F/yUxw7B6ykYjzpZc054IQuoWckzau8EaPQNtzNfYzrr8OExq/Al/vj6ktHTduJh9ozVhxojdcaz1XbMa/YCaGlUrDKre1yBzgCht4q3QrMsAslKCVg+VLTw7IPZ4WkLcc7TENMHLEWrtj/p6wHplDDf+2XNz1zaH2AiypYprTqsmcq+RkSrWYfVxWvMZLW2cwWkSzpx8KMhtWBx98TtUqr4SdkYeLQOdFWZIwG8vtSXLa6bNVWUnbc0/oayZUpjjpnX85vpQLbFIOl5ObxXaqvflUPp+GxoTT19QWNgGz3LEuRMn2nD5lpQJPbIv3Fax0nWf8gVdLTHlCzoOquHaI9fJPlcZMj98oOWMs4ekQeQZkOlNi/kD9aSxCRxEfNChiof95mu0DDTUZQV9U0uh1rRgngM//brHfilPFT/L37ScuPhTOjTWehiDGaSDyBuex6bU4sl9cBxEJipw4tN7Vku2Vs8+f/DzB4U8HojMgspzXU7AqEhns4r1MFRc1s7AzQMGelN53NTiAUIxf8MOoxTE0fUxlqxGy0AHyrKhHU2bap3On7ndO+7uyq0mP2Y1+ozWybZ02jGrFVi10C1kNr1blIG/VSlKrBq+MmNB6QjzwPK1dW0omNZhowfiA7oyw+0P5GlOOrX+yrnDd0qHWaMeNAz7OTRkiNH3hrT+eV2bwjgDcFobww5NoIdDAdIqEw7swMtePjyVsmD1YECs8jVaBhqmZAZwTcqys77qfTn04NWBfMaJC2tFcQJvvh2s9X8gGSogDQth4VPSR1YCeOdWmozjyKLDFhhbxUsbyzetJXZo8hhUeo3lKTNy29pKzdCUXxqpxgchZn0xlD5mecRlLDYBFwIHHYaiJ8j8aBloCcLGNjeuXtFmlVank/7MeAf0NX+b5aGlpXasCGBNLScgdwsps238KuKPVcMX4ebPFaWX5WtbVy/7yqvx06DzzO2/CbPLadEcRNzhvP8AW2OW2ypZ2veUVzz8bUqXZ0+fzs/9tMZSDLwx9HFW/uDpteJtj3CQ/IpVe42Wgc40gSEDHKu3NBY2bVvVD0EBMqWwXUzsKGS1Ag54CAfRAKpCGquG94TV+clqIdzDcoacH8fM3oXGsQ6oJHGUFxuKQW74eaFLT6CgH4jsCoQ2LjOPv035hipWfC7jqTH2ErsCmf0/Zno0c0zDL3Lej09v31vl/UHZhUgKM1IG2goQy2hYHeE3OmQGOhI/+leOLilYssVSu3W19g8sVFi/g2pdMHdAmcknmnjICtiB8aiAmJYYk5g0AvJTOgpxDuIxRiuzTr478bQVaENDPjtqRcd00l8nL3XimIr7YcWs14obYkLbLrRjdNJVB/LgcWKVr5Ey0MYuusmc4j2j0zjYjnvoQlZrc+LxxPSsPyLosOXRKrum87WubvIkTtbVFfXhoFo4pYS3izNLtqb9kq3zbZejxD0E+WxcZkHluar1xRNyezovvhy6kFXwU9r05IcVZRs6TmfPLHiTPZBYsqrtLKlMKGQiVkaK8H23MoNfxEHtuIWBfvPbch8cpC/GK8Ksei6r7QaF5fOhH3SCMxJnNLO8oiVbuNOk2wxcj0+2wHDYtSp/w7zP8ZUAiY03xMV9+Ax61qfSKp3SEkRbu97OA8woyWDNV20Ye/ysmWx/NPIgwVHQZ7TKZOXZZ9yWekDMJ/jsiSaC0Wb3/mXCH6PPUBSf7f0w147ylgkDPOaDgwnCqcUjbiarWEN+DII3xEf6GDQBc0aNoh3ZB9xAcGaipwG5ZUbc8Nh1kLxXpfHlOvgY4gjvgyg9b2s5SwqhkAm8MxHw2pQygAcchgcPdoQtCWBn9Ya8Vt2aoy8yJ//Qx43hI4nR2EfyPKrtspo7ecIv2do4f97tanmZHMO2jTPwp0TbbpueGHnPkRduDHaRHntfiD7Uo8E0mRlOe++2tFRLvGAZ2+xie6mWyXSYSRXwgSvHMygVWSFm8nLxzjvdtS9+zuGQyzEmnek8oI0+7ofGCZAuAbym/3ZNhRO4IW1GM8N0HCk1py3es6pcCTHyAC4zXDHgka8FzklUY8g7TdJzrl+6N/4RLxY+YIXBeGZ8tGe7hnHr3LfwbdsrwEQjCBd6loZTLAZF3Asn38ELDtw64qfZu/LT9for8jam0xx25MFuQ8Lwzt6DWrIO7LI4nASCP1xo4mo0l8Xt+i7Iy4QUev2bj7lr6iIu3jnXdmMpeqDL/EHD04Fxdc1I2x0k/m+hDf5tavwefKFMe4Co/RmYKKadqILvaXjpXS6KZsbiV8+/5I489Fa3jl9h7QZlQnVQ2g0f+gjOKh/GdQkwntDTcapANq9fdctqOc6oJWandBBndaWNa6qlCrbdqK6LonY88KDzRpvHKxpTljcyZ3oJnk2tZGEDyKrcFazKSdKcTitBbpOZ3CS42vQUIyJzcKGLyI0TVYYZI4Y/HLqwrSHPbeV9WW5Rjyv/wCegl+Cze+KnCODDDzS4rBxgv3g/iJ63OC6oV4AYAw4iCjmKQ9qUCgNeHPaDB7+8yoXTC++TdkIbCpz+1vim/HhVGUJh4IHHI4MxDEM9L5VvxE/t3VKXi9p8mZNftE6TLeqTogW6jI8YMILx2D9E+gE2cMHHPTQiw1CmkVB5mBQEcNgfZzvu7MonrnBfl5/lLflzmFI3eUP+cnfWN4aSGzSgf4aL61Ahkxsnh0xonNypsF976UW38JrXtu2waECu62y2Ea6prcxAD26nKrMLbcgLuVkZoMzB39gBbTXjCC5wUwa2qMylO+jupvynLB59yG2oYURPaJiKlfyjk/AQXbTrMPrvdUGwJmQcJzUUc0O6tqLeD71ZvplegpuGA+9SBOgxXCY33vE3CH2tY/I90CtAjAGnVueUAFpl0zqKZ2oyvsJYfsBLzXqMk7JRTAkVAzchhy3zt93uTuiIolnlJcyfpa19RU5BAYM+asChYAqkV2AZjw11lS9J2Wek7EeAq1Un8HKKForeHdXWYnARjMf+IcIPBW9Xp59jxI7IXwkF3k7lGJa+suwZTDvmB92CJnu/qq7ylGg9+ep73FH1LMjPMBW8waUgYFDq6HJZvsN3JrfWHXe485oQm9Rw2lF8vWR0EJeeD7goiJaHEEaMe4OLvJCdL2/SzRQG2tc6JWWARhGNDPVz3KR4fPzOu/Z4jM6KJ8MEbMeWnP9Dn6eXgjggSOPXtnh0TnKbkNyW1DJvYR+kZ3YYBPpoZaBI9zC0WFoz0JTrpSNLnl/ouOXP4tW91lrFERoO7u3Zat26yAaJl+PIlGHHbxWWT1qtx5zRUijCgDJtZydIHNI2JNScR34lh1pinITs85rREeIK79uZivML73JZBXIL8xEHUxtKEVf4TAyWRk7iitVOgx4SeQ4/oHNIkDm/pnVoLKuE8FtNo4CA6HKcgRyHxVmWPsQT3pfFHfpdUAaAleOTYSH407JlTHHpmYeM/vx5kJsiPwv56Aek5ZneD2Pl7FYtuvq1ODncIfDlMAo3hoNrsfwVotZ6nGx3xsvj2jesvwXu7Tm/0lLz1ZHFal+L77o9ewgZHoMrRB6Xf86+rWujAz445jRBaLViR/wsHx5eIU8ef0aKv1c287TZ/d5zO6KHk+E26iwtz/674SS/wT3fp1WDt1SbrmmRf+4GkXQZbcTpuM/S874YDHa39x5WkAejJ8RB+vy9z/GefP23Qh564bXvOcyMNnv2MNWKWeVQTxXylnpf/l3GV9IbDP+h5CeMY3ENvv+WweqAa/CDbyWg29gLcSfVO5yRjq1rLDNfUys2gdP+OnAVeFb2zfJtedj3DGz+ZTgMRk6n5bEdy//qx4d9sOyDIdO1Ko7BJ2qImxppVz1Y3Crg1nfGnCSF+fNQs7KS5c9QhvjsPoRfeZ/lPU9TQksbh8XwGfd5J8/0rtlUw0oOAi1ofw3ybc/+mtEANJ+nAL9/x3MXPnekMRlluPi2Dxffsn/+Y/bDOwt2P4mVrwrdvpEmry3adcU+MMX03Z75lsOz2plaiL82Mg8f/wjbmrzhoFiE0f6U0eDjZu9K8uQhWdQ21BynB1TyQxrLl33OcuQf/fcAln2zNCzRYkPNmiY2QwNNYovjaTRaMliGK7wa7PAd9+F7D6skP/vSBPjC9EV4Zc8Gy9LZ1d6304RPmqxUFxlPY/gnCY+5ascFQiaYzmT5UzvGnmzzDyU3IV/5bM8lUf0rDzvjhyL7d6zkmJXctjSxyQEDBINj1453Jfm3eEabXT0w4BXSEN//s7xYxOwawstiAsSHfbDsQwCjKo7BJarPQ4Yf0DvywYG7AnboTWcrb3hvafJ8BO9060OIz+474Ad0drzP8p6nKaFlHwbPu/bbOcmNvZ/m6tcaciEOYhZp8LR4OG2m+mdB8vnowmcPt5DHIq52zhCX/mU4PFz7QH4CGHZfa4gjgHEgt3v1irrJ2tE0oe4WQwejEKY0C86JL94NosbFDkuwmj1ZfoLCBw62u29KdriEhCc+FOK0Xx7sb1YOfSbYTLPLTtBDcrqKtaqa5NC2KtY1LY1sn36T/kT4GLSxg3ciGFaURfRgQzsSA083GLHK10gYaOtf0FXBfeck44NM3Ch4RhzCgo5SkDdq7zncIMpBUFVBz3pB3eQ9et8KRNHz2dI2b7Z446zf8+ZQyi3TKXF8RmPlFOqNrKt80EKwVlXqfITGZUONCpwkzekIt8lW3GOuUtFBSx+ve/hSYav+Xks5FcYSuGFNX/K57qvRMNBZ1ed9cGjSBo9VjO36UDAEdQlvJF6WN4ZjdnXAgD9DsQTxgdipSApUQk77VYEovA/uaifhrE00HVq5iTFZ3mgEtOT/2E/wHtr8Vkogygd2EO7IuRXnEI5K8DtBNcHLrlWb4G0875Ga66NhoDPuemfvMtDtbvIh9MFRoQX+GKUjx9zquZcqYqR7XdktjqRAVTkPW2HE8U7UZeRsq3BVusP0fhqnSWpF02srzh8cRD6LPE2Xhz3lWJdLhV2tWccFqw9UVIXKN0Y+KvV0AOCs5GBY0fv0Dg5t3qNqAKAHlGS0DPTaej7RlDtJSt0SHEYwmSKzrKylyTEOtLQZZWulAf5mbJxZt9KzTwSuqWKdUiXFkVKjEjhQAJ8crOTAJ8e3TMgsGW596T1Mq9djPdZDbeSy8sYQ2qw2hTHB2zE8NYIF7fAb6KDG5lThbX+q8Gk/jtkuMIfXQlvOplj7qxodD3z4ESGEip6gQdJmjX47DGX+tvp9ECXCbZtKP9Gk3sO0/CTMatORDymJjpBzQEzhve3MGfkPeWnvVJxIsAcBUyXLQWB1TZMZMra341t5WkN0qY8niz2+zqHNO2srMtBXu5Ka6mMseg69gaaIm2JSG26ryzKrWVqCn2jyd4f0JzNCdLkYluH4K1tTGzabU1bsVd3imF3KMu5705zVQmwY2Lj4il9ix7JDglVeZWkP/J3k5vmmK0vttlWpdrTEDjyDaTOwm+ktJwGhs7O3njlcBzN3Iz8rTPRaaUmvXbrcLfah/3boDbTnYKYwdJMnOb3XWmFB6/rQcjrLI0fV72CotNGmyVBZk2fGM1VeMMBWOWxcu+4P85zX7k/GL+19KtzDwvUNAivo2aqTNe1M8+EA898I36QXVnmy8qa9Key0yl3aOZ/YDQaG0qYWjmhiXqfiyBeMD5lM2w9pf2PRc/gNtJhqLejV8+fkfOhkvsQuLYvjQmfdNqsY1q+2dzcB3fQlq3/iIsygVSqKlcIkWDuB0s2k5zOv8+zykJLoHMkQN4GBntKyTlYEEBpk2/7MN4IcC91GtLF8zTcqOALMQqosVDYkDHGfVzZDzWpH4Zpsxpa8DxIaqeD6zGev6IffQEOBFGZH/hDwSTuj8TD8JIxKsIYqa2rl6cax3MwHXwjsazpqKhU/NWoMXFbQmWiiBdbR80lHchzIWd5bcm41rfHMdU3wHoaVHHGIq4bi1cLkRmNCew/msi3e1akO3xeOv5qVm9h1eSPczHaCHr5c9s7R4TfQUhZa0Izdbmg2fVabPhjTHZVgLY4ZrWCYWlhyG5ooJNj20+R0WAaSIwoQSF4UdBsqoPU5qc0DMzU8JwZQDsVti4pF8wfrGkM/cAOdulKF40GP1R9PpsYQyw3bn/YqXf/iMP9IB1kayKKCg5oojMGeQ22gwy7JBuNhGk9i0weD/z5ICKMSZo5q04PGxfAPwOkqZrzIP3SGtMakKRXcrnmk9ZwVdHxwQPP0sROO1uioBZZz4j+EJVuMyRZD5RBSMeIIPU/Ih7ccGLs1nFuJdltil5KEFHrKlu/dLelfuBMU3RyhUMtA2xgwdHEfPqek1ePSVmnM8CZMltKYq0rLS0z8IW3RaMwqEU6mYG0m7iu3OBnDKhkREOKNSU/IoyKOaPQFGTaYIS7cw25oo8esltjZUq1YvYcyfEF2hrq1PNIY8C0xLfG0Y5RC+iqHkIbCnvU+BKMDVwMNEo9Px7H5ilXjt+jsjHxSE1I0h0IZeiTD/gQ8Yt4Hp1cbV9q9Vn/8VfB9WFRl6Yv0FJ/L0nR718LBdK9A7WaIcLJuabimqPksP2zqAMem9tOvMjQgY82EDXXgtt9jT8x4ahMecxXeW36GucI/Toq+9tUvu3UtX+JEmC2dTgH/drRTKyIZHdlEXhxCAD0mK5ObybQjwRAPwMehPLg4jYO58zVVrJvyQ3LkgQfdruTndYdWTISC0oFPOD3sIfJfTIr+tXCSL7/jrAnm6Kel+2gnbHsaOSTAeFpMO+wzcP2pJvBSfwSuSRz2B5kFB/Rts8nj4stebshxwuvpYKeCBODzW5zYGx+hFT2NFgSPBtCkemyTGp7hRHIOLN7We3xzgCuV3KCJAyuMj1yRI+8HKW+ty5d7rxOEmAk5JsUycgrIsrp617VcjDO3hjkRo5dAKCBXhWd7c8NdOauTsXWUzZpOCLl85YrO9tNxSRJyzABNMHMTYepYn0EYWpUfWmLbMsobMs4XnnvWTasbuab7SZ1rF1U5CxlAdpz5dk2GEjzIG2XxMo1gJEN0wMSAcDTTDenIpBT1+tmz3knUlgrLFfGX8yNj8TXExzmBsQP6h1+HdfFpR7p26YWzrqXjr67K6RMhtYGmYkUn7Zq6vEHTNdG2joF+8UXvO2ZbDaIr0h14IaWJUrGCB7uBHcGAEaKWAeyVyhuNhF3NfVyT3C7KI9+qss88wrZoQXdSBMoWJzKhI8iO8jaUgb6FU3B7hLAwUztwnAvH1HD0VUoDjdBawrcgI3ZVlcGClmnd+qpX+e3CKExsA01B4C/GkVcdLM0Ue+re+9xlKc6slPK41kWvywn6cc2Qh/ztSBfhAR4ioxPCwz1XQgqcBpMz5uZk2E4KF8WvJafvt9x9jzsFrRHlZvg48uqGKjujzRMY4YetzpxpNy+du4CDLjUUPA2S5wmtyknZmjXajgvPSekK5Q29TIkTA4z+z0ovl2XUpkX7qVfd7U4Jv88PPI1YqdNwwEBzfJjRG0FsOawd2acrt9/pVl88646polkU/7bVeDiScLIaA42MkBmNIuwr5W9Q+uo1QeONIvTFf9BihLflgyPfiSb/CCMXMv7hanNSy39YyeHdIIo2QqwWZRlfqmBXvS+DMdC7rCBzksyUPMLhMMqHiAV8oHz1kyjLa0uFe1abbNa1XX1LBTx2w6AsS2Vj28llpoxAm/ngmNTY80y2gsPnMaHsYtJm5ooe3KwWFbDZZkveJD2OhDSEcoxFTz0DnaY3ENJTeu/RiqGbclTD5Br+LEbFJ20HQRn/vBtEzSyvayxzi8NvVdOmDtTcZaHqfVncvt8JJwpKQWf8D/ewo+QkKac3K8ysYsBhvTfQ6snFKnw5npKbstUhSWWmPFh5Y0iRlTctrbyZXmxvzVcTsCSX8V7FpC3M6ZxasDur2sHLME1iGkJuxMJVz0CHmBu8t4KwqRl0/CHgAEWlw4+F2bcGszM0KvNTi3+DHVU6jbTEMiMzdOb7BEDlw7b2zYuveOOWr+DoE85BRqcl5guaeIjubWlnnV9Tm+ngQeYtFW7KFSs46OU16dY3ZnkOYeG3Zxd6cJqk4TVvP1IxLwHcQ22gPb1i6uq5c2ptarkTBlrBCo1/GKEff86dulxbOlORdd2NhLA50QjCtnw4lsxvLlLPZ047uuhu+nBAFcZApAeGmJbYriaY8GsdGoCB4A6ayPrug6bvkc6DF81bq+qxykBTKeVufXukPWyfrQWL90Tc3PqDByS/JnqtMXlxuA20lIVJpVXtIGTJDA6HfGiwqxKH2e2SRYsZpd/W+XyhdzRTpji4OqGUdZU7Y6R5wrata6kWDqLsFJWUdKahYg8q5xNOqJJpO7DX0lQIbDokr2xFk8qWd+urXitr1yc1aehDYnpT6ak/tFk+OVa15Zulkn5RwwjZj0NtoCkCLKdblycxfxq0JthGMgRl2TtNkqJ4nxwNKErZZBM8bKIVuKHWpjDlm4sCNoycGKc1YcaYLLqITh6EgU4us0xAbArbkf8KXK0SqFhTy65KT4dVFHavMsG7oclqfzp74orG8htLVofaQEOsN9BqQc9oR1NrLnN52BCTjdkxrzPHjmqN5rRbY/15AwY6eckqYQ49BdY704LGSVK+gqMk7qi8YqJwWkveWJXC0WuxCuBho58eK259GQrIJ3bR0xEtcywq4MDb9ukqV9vFYYRoOfwGenXFDwnMnjilccwRNtCZMZ7WrrQpLZ5njA8j1g7J+6777EDK4QYMNOtNOcuvpWVa5mxnXyZG6IX55NhkBY7GaA/CQKeUmTUW8iFF6WluoEdITmVZZaKQRQbrmijMS1rixlEsWR16A72l8dpdrXiY0RpiCn4T3a0yIcd6h59aegObF7T9lK4yIdea9mPM3ypFSdWlJO/IifXCrFaZlj+EaVVIPoxQy6WdYYhpd+79mlo1EjavXJaBXsk/N3qTepxBxDARiltfLzet/x7VELKKtdz0CFje6ldyNEBUrPI1Agb6up8ozE+DHtHultlgzifEQG9pLBNHQgcVUk3KQI830BrDxECzVCufaDooYofAS0vZKjl/Ko5ktqXlgwcSTIkSIt/Who4tGWjc+ra0o7CpEF0fQ7lpF+aU5q/WVbnSQyCkZmUseg6/gdaedpg7IyaPcrAaHePFhpudG1rbvXwjOUlVXfFYNXwZAeDcVCtzSwaanVzQPNIh6w77szC1+WZbKxwOIlTJMkpesp7CtoZvtuX9zW8Ka3BpZEp9bGn+oKWe3JZa0I359LYCP6RwDnXJobajS4k3McZu2yF13TckR2skn5eBdtqttbUSrIVONSZWwa5YNXwpuaJlUxOEu9tb8t/dXglQGm9UXmay4UQYGguczm5jtk2SkExmge5tUflIbna4wkgPKWZ0cQLTtFaksGmKTSuNhIpy1y/uWgY6ac3dJcf5MVcyaIzdtkOkqqkL3iSfshYKsFF+Jjw3M69oSVuYFexKKVNfscqImS/lJPxsEmgmO/wiT2t4akPDU2xjTxnK5JOslRnoCMM3rDIyA+1pDHQ3Jc3RYWf59jt42X+gxh42hRCQHB2th5/hHlZmLRtf65ZLX4sGQrI0XO2+W/q+vwkuRmtT42Hrr5x3c298SC2XeY/LV0xBjd837C4JQnpS0AVMFsrT5ZpUa2xVJ1ZwkKycDkf18haSiAc7vGsVaeO5zAiEafu9xzAzGUM3clPLCH3PJ3O2Qz6i48toMNq4pggGldbztA5QXZOnN5zvzKhXl4IuaIAW84JmdKXE1XYnrE0qMmKTogsHUT4fkpsy4u9j/qALJjfgpqDN8014wMUig235Jd9aa0/w7qA76Etg12LQF8qK+x2dKD6lf/a+XxytOoUmjMO9340jTFzDb/0ir4yfMW1TtTmOwxfUarEtmknwZRmBnpC2yvwN+MHyTsGeoculMVq82rFW07eiIysL2Syjh3xYXgYkpTyZ5V9d5C21oOfl6nE68z5o+ShPONhbo8HkZs+DQatOZXA5C3Nemx6ufONr/oQf5DgJzUZ3NYi+vxhOow0A3Nv7vgF2SWAwqVjXtc6bTWGzcilM8HJLQJ/B9vANDy8jBqMLkBx/NSG3t1vZvI/hjYjOgzK4XMEfPg+Cq++qEaTmkzZkwCDIe6Vh/HlCLcyjd97VK2qU7zjW5i91aMlD2NIdd7htnbHoNtSCJiQqBCajJmizoZoJjfPtaqJpSXJj1Urq0ARtRsPS7bc7p+3r27aSI5HcDF9ImxV2+xb7OskEqDapLKgSyk9gT0hfSFtsWorwjqiRN3f6dnkkfLH4Keqzychos/I3KJLWL/7iL9ZKa4iefPJJ9zu/8zvukmZEccw+qZNBOicvGN2xTmEt0IVISk/3Q62V6WeedFvPn3Vf/a3fcjNf+rJfo6mmZg/4/eM32la0NIzKZ07Li3yXSyNVnbQVsjrAI0aM47p2vvBZt3DpgnvkV3/FbWu4Y0Ktl92etIUI69OJE/YXXnjB03TnnXf666BdrjAHHfcUZLrDwjWpnsHU44+7L92Qflxd9q3Mevjq09QeRWwPA2yqklvX8jcOkED1YsvM41JXdUK0bTz5hJvVaSNP/affdJt3vdpPqHXwIeIDuvjUU0+5JY1933abtiur4sMAlPOyF+96fJdzqym55Zx65BG3qnXrn6JjLnr9WLtwUiZjBujghBjKGXLjmiIwjLGrRtcOq8GefsZN/+7vuv9+/oLbMX31o9H90FbNR+wIdHCoCfbxFbna/dKXvuRtyqD0tTh2piyAzBSBqxkxjrziSCOOc/EGGuHFDsLN0Mbc44+6xVO3um0pCqcTTDAxA2MTBRSGQsFZgdvqDhnNsdFxNt+CxjK3nntKx/HIcEpJJlFQCkFk+pAdBpoTR7hHboMqS1c+kHeFXfHPPf+cO8ZmDi1tWsZ/cqIJNeihoKOTGK8kdBnRwgVtc4zNqldw7Zln3OaR447mSaoAbcgNPURuZqBT4EMnJ3RI7BG2eaviWaEXpAZLqjIAXOwIMuMPWSYJyE206fRId0Q9g5Wzz7mVO+5ykzo+j9UqscsbtGCgsavIjity5P0gvGz9rb/1t0r5AkAAF8PHP/5x9973vtf9wA/8gGfqIEiLMMue2cTx+M//X25VOwnf9Nf/uibWst1oZZEjvaMQTLN3v4FTWy587avu8fPPu/t/+IfdLW97eyQKqsHQ86EQvPa1r62OFOnLi5/4uHv2/77q3vCjP+qOve7+SFCrwWCg6f1wdFLqwPb1R5avuJMPvsG95v0fUAHfX0Zi5uGLX/yiPzbpVTp2C/mlKm/k+eIjX3KPv/y8u086eebt74hJRiksZMbZn0eO2hLa0mhxXqoH9M3//Jvuyuf+yL3pr/5V71UyDuBOKCajC9KTp59+2r3jHcPxsVK7yoyzZSVZbWcIdN26seKdtkyppZn74Ai+J7tN10DvyPK0jMmufFzjmKaJgDxTFu6QhtWLF92EVt3gGKqJ0BRd0DKtDVMtbfn2J0VrU0fqAG1N0ceqoh1VOHOnsrXrqVq1IdMaKm9UpDOyJZvyxxG6+g2zEvMemXWzoXVx5cvszPIDmKb5FbmK5MBDDnYMm+fE45lgByTWRVYnHku1JtWVXNeCeRwKLd7/gB8v8mNJCVoQRrfRY0wNaa6T77pxjD7G2CflvnJF59zhsY8VAjsaCrCJtrrwesWDDoZtaK1Yxco1pLsXjDrfja4tDWlQ0Kc1NDWZTRAm46XoQF7oIX9GX5389hvH+IXcWvJqt675kTX17jjINYXcwAdt8M5Ovk5S3ihTwsOmInRxSjo5lS2xAx9lMXaQ9vm5K5Mb8FPqCPDh5YyG3HagU63bI/fc6/XF5EqcGAGamCBk+JfhDXp3DDEOSl/HMjuMM13hf/Wv/pWfCHzf+97nfvInf9Ldzsx1EKxGh2i7Dz4PdyuYhE2cJGm33bQm0FAS8PjKVteYIcy/x5HBD+9j4pOmeHAcAdVSS8UffyUhYqBT4DT67r777rxitXd2jUJfxjd/XBJLtTTeN611w4QUdIV5NvhR6QkRZDTYK9bUrn75qpwmrfpXht++x7gaLRRsCjiBitbex8ABDCtNOxpqwEkSOmmn3yQp3x5nG6tVQOSD+xQBftF4IOCdb7I143cn8+zl1r7hN0owOjjV+/Wvf30uO49rANvluWK1CNb/l37pl9x9993nPv/5z/uJid/4jd/IM+7j5SLNXye5WcdfshjbkoEWJ/0EWqJphCT57wWUXXbTHH+llRwbqox8GECA3fBYK+yihhxYefPzP//z7tOf+nRem/M9duCYq00N2+CDY5SdJJXyJeMXh+Bua6ldLrfSyHFe3nXXXX4y7bd/+7f9RDlQMdqxAx76vPdBP6SYHU8WG8kBw+NUpgmtiOFAXNsJGrMEmB2FTFZNfeQjH3E/+7M/61566aV2xToAso5qi6Uhzz77rPv+7/9+P7zxl//yX3aPPvqou5ptSQYx3ZNkge5WZqQ4Wmhids77EzZ89s2eR/qq1tC0Witb4i2H4sYO1qVCdn/37/5d9/u///uOJXbf+V3f6T72sY95dPAzmpHOmmJUrNs6c3Famx1u1tDSGXcTGvpb01BOxsjopJpczpw5437lV37F/bk/9+f8MBWI7FtMpJx+w/FkLc2N2KawhtpiMcnoCmtKy2enjmp4Sg2IFE6TrMyxNPKHfuiHvJywpz+sSVdvQ307sz/72bErw5a9sEyEcCTzIMfyniYDtduaTlFhWy3HvnuSMCbKRGYHmsxOVFyWf4wjmwFWNbu8kVWAvgKilZZVUsMgtsqM2WRWblDZvvrVr3Yvy6j8wR/8gfu+7/u+YcB3pvUVa7uu51BVdkdOH0+/oqIzE809cbLK5OKSPytTpTBrHcWRW5GKP/iDj7l/8k/+ifuRH/mRfCy6GGeo50zXOIKNlVMtGbDcQI98aevkDIc20yjaePmc29ScDAbbymNnzP6fqDQZgiL83u/9njfKP/ETP+F7PW9+85sHll1HC5rxE8a7rHBHy31Ner0hVlyOFFrXeJg30JqwsO4IheFmCrhQnZSS+OGcjLBYFJoM7733XvczP/Mzjq7yBbUcPvWpT7kHH3wwKhutV4WcaJ1MagjAJppAFKsQRM30IMAyY4ZfmOnjJ92GaLVx6JitWmuJsUzr3//7D/vhKTZzmExj4jI2+NPKcZJEoyxCA8HgHoprRo/f/KaeHUNwm+otxAwmEyYFaS2fPXvWfehDH3J/7+/9PUcZPKWt5gSTYV3c+Rg0CVACZowvM/6rcFa7+FjF4Xdo+TeJfzIDjMHa0lbhuTO3+wkLIz4x9mbAZ8qCIaYwcCR8flJ05BzANxSCWWU24fzL//Nf+pll1rAT7PvQaLNahYqViaYpGa9wi/fuTVbgJ1vasCKH9ozZ4jTJh0iNB2RCQwl5/fN//s/dj/3Yj7m3vOUt7rHHHvNrhsHVbyFvZ7D775qGNxmjZRnhQZQ3q+S753K4r6xW4dAFGbn26SqAQzcjyc6DU3OETW6/+Zu/6feLvOc97/FroZ/RxiZCv7z1BtoEflxdt+/4ju9w/+7f/Tv3iU98wq/mePe73+2XEnnoDf2sqwbaunLVLWj1CNtNmSy86YKUgiPhGaulJbatY71SBGTLltN/9I/+ke+C/fqv/7qvzaMZ5yDTtCY3VLH6U1SyYTI+3zQtaNFCXYRzq9lbtcNVY+2by9lO3EhEWgH++te/7n7u537OfeMb33Af/vCH3Sc/+Un3kf/6EV/B0pWOOVHIeCyVDZOfuFS1PCC7pkK2Ris5ujmVt4kZHdqshkSKMDk16a5fu+7+9b/+1+5tb3ubYyXcj2rDFr2hQUJuoE0o73//+/345H/5L//F/Z2/83f8jkEDbIbcnlNd/QThpMZotW7RlqWlwnVQcOF3i5NiMNDyL8xBpDEDbg6RF92tn/6pn/YV7l/7a3/Nr8u8fElOqBK0ajHQnJ7MKcqTarVbyBrY9jjaV8mNMVoKOuf3cYxSO8Sx0CYX5gs+85nPuO/5nu/xy7XAca+6yvRoCRbPPwz6k7Uct7Vmd0OrifCwyI7dfEhxULiHLJ3xijLHCfNTqojYIGbL72JkFxzAp/fzhje8wX30ox/18z0ssvgP/+E/eF8qg+DJS5EhOKE1nkwofeADH8gHvUFsRA6CpHaazGisa1kYkzAzGnKJ2VKonY8mIiJM9Q5mVdAvq9XZPog0zsoHL6+s3cqM8i/84i+4D37wg+6Xf/mX/QTG3/7bf9tPOkHm0LIVHVIOzzF2aO1ouRY0sXYdwxzHbHnwh+dH9LIWGgJpTPgADwJeDJpZK4dsEuOPwDLJv/E3/ob77u/+bj9HxDAkw1bDBpOPXxrJprD7XqdGg/yuH0CPlSGOVK1ooxNdp9c6c8tpt65FCJw8z3OMgNxs7oBhja985Svun/2zf+aee+453wO6//7BXB50SNmQUAvQjYIg/nhOHcxQ+IkmueGcVi3HMVdrKEtmAFLnoUn4tvNuVitVtrUOmlllQgxSw8qUFRwYaVboULBZ8sMiegthXHvX79VgrKv1vLuz67cK+5UAEQxWv3lpKj6+oKfUgFhXbwTDDA+8DkfIALAo7JQ7hjhoNDFEZa1nWy0QAZUH4ZdGaqknx5NNyKsd9DQdUhln6MgbCeIpB+HSa12WIzYaRbEMNHiQFzpw+vRp9w//4T90TzzxhJtXhUcZ9PaUSqjPAt5hoEMkZjANab+AgdVfaNdzW2wA0IQFY7MssVtdb3aJX395Hjy2568ESpeLI4baPjleL4BxWmLkDBwsleSPVhjBZpP9Q4Qfa51QqGlNsgttRnMZ0laPH73JC0gEfIcBBJXrtHp4LElj08OOKj6/KQfD1mcBrKLHyhsVKxvIcDeKPAn2rSptv+99xaqltHMaV+dkld3tm2vOx3SUxgPzB3NqoFylUSSXFrnfkX6ZVhHf7CY9HFZOYawJVuFWJKt8Xdo0RgEwzLEVoTIXfGjrnmfaplrQjD/7lQAqDDdbAfd8UGGD5FkZsykZ6VX5QTAmZKzw0Yb5QX42RMRE4blz5zw4lMgK+zDwM2DtC2vXhYOdnxzSicG+aYNo8y2xU1pqx0oOtcRSBeRkvjhMlrFwWflmwmxSlfgsu3ZvxpDp4i7zMhoZ8L1WyWzDNohFqlRhnZUrfBk9Lp/oJjvjdb/szZ0l9ZvQMmMZGiR9mAY4GGKYxrH2jGNCFO/Doh4LX4jbmOdxZchS4DGcOV2ijUmZ6eOn/K60bTmexycHxi2k2dINc6VGp9IlhPiHgUla8onccPjEcUnIjXHMDVWsZqRT8tLnQfwKr/4h4Y9vDWmybubW29z1Jx5Xo2LFbzrydGZ5iYne9NNgxuIncFnB0d4URo9V26BV0Zp7pFh4LN/htaiDKXEZXlrQUn759znqDzSm90Pw2hNBbqGcGNII95QMSl+HsyQjpNuVTFhBjzkWZruXttTt2NFqgHn5ciCAy/CEDOiWx0G/gWdKy2QIRuOgsHqlAxenOtASm7vtdh1E+rx3DiVv3967WK/0db8bz4r02Pu6cKriGZwtfHBo4uXk6x90MzLQW5y2IxoJFqcKxrDv4SX0pcZj+ZzKdHJRq1VeUVd5y7fEtGY/o9fixbhCl8kuRTnAIRlnY85qBcesWtGbkhv0EQxvDDrKYECPGa4mZDel4ZspNVQWtJuQjVQb2X4P30NXWYwRTEZc7Q+4g/KyxUklvQJMBAFXdsrgRo/t37iwHBRxESewYd7ls8+7beFaF4HXBf+alonxbRiXfUVcVc+sX2xNt/yYH12TVEoDz5Z1OMAWrUwVih0ZtFUttbt0/rxbuE0uJsVjavoYAd4xuYScafnhSpYxzWhB8Bl3virnMOuiYVutsKvCcUP0MeHrV3MoTorgdUZ6wjgtuphKXh15Fy0sXaSns4Gu6Pnic8+6qbte5XfATkR04E+vh0MkcL2A+0o2r0Qtb1pFtHruvFvVkrNFrWy4pormmnoD0+LptnQleRmQHTEcsYdvQpmZnmBLpsTHaZWvnflFd0225qrmZvCrosIRJhn4nrKFC1p0BNkx1IEceT+IftZqQQM4BG7Pdh2Ymjwhs5v4pNVW4QsXNDu+5NeZ4gPacHD2oc4XShJy2mQTDZ9dUyDMYctusRGHYQHfkpEwJ267I2oLmvwbPrtaZRuFNlU2yAlnOwTG9yZ1EAGBnVvgTBVyeqQbdp8KVw43KwtQNS+f1xN+q76W2qmAT7ICIh/0yVMMfGM0dVzVCowx/kX+kQ+T8qwiYrJsSr4qJnZ1xFYmN8M7MAFdEhrs8Nol+lCfwIHOQ5ef4NX+gzk5oVqVgaYxNK0GEkY8RvB4AnsZPpOPfkPLHCLVTUhLlq3fXGMfMbRLt1gKM6/a/ORtZ3RI54zbUkv9qCbRIDR1QEjQxaGxqQP0bIo2luEc147JCxLejJyJLy6kOQUbOdNKoXZPEVqbaplobO+EZq1ndITRhGg5qucmAj2EKW2/7leXB80bcjuqHXc60c7r6pRatktzaoVlFdOgcMvScWAsdNGKNidmZfEGfbemRtGUdO+YTpmnXNPSg5+2pG9QuHXSUQZoQTfqSkK0UgaO3HGnW3/iMbcgvZlNUCbQfeQ2bBmoPUlo1h8jZt0RhDm04RTDrCvMCRVrOhZ96X4581FrBFx0tQxPrFquqDxGG3RtZ0uMuLf3xfjDPgO3jas91MBE4YQc+K9oNl1E0+SNVqPDM2QEPv4sROGlYNMqoRWyquGZaR0FhSMh5MUf+MAdBZdlvHCFl4aLlmX86dUCQj2ikzvwdVZG89bTbk2Hra5fX/YrcmKerlLUE+gMx23356y/N8BneAP5sO+AwInz2+qSE5AfcVIEkxs0EVLqCPA9PvRftBJm1WPY1kqOZa1swnd5DPxGEzKCLtNLK3+D8LLWEIenqOQHhIMgLQHlX7EucUsD9/PqfjBpCNOKOGLiK8uH6WMRb1ncYd+Z6k+r5cLytHWt/6YLBu3+m2VmWEQl6WPw0TqF7MjyW4VlrFjBQcsy5F8MXCUk5IUqhy+mNbHq2uSG+0o2PTDBu6UxcJZMhnSX5XmQd0Zf8ToIrHYaJCcqVL5YyTC1dNRvCuNbmP/wvp0u7m8I32iLi6ENzYwvOChfhPb65/bafZ5j40cPQ5jch8/grBNqjRsYgXUADhQnM0TeQKlrzDimD1ltNxDMEUqETw5cq3qnSeo+E8z4DU1GBaCYMt1kTala//hy4JCFmLCHpj8yAKPNrvjk2NZkF9ulYwaDH8Isexd+r3tvxcrmfKa1U5FNYRYqVMY+J7k20fMJMz6toSNz3h++j3Ufi55aBjpWpkvhoC1moPFroC6xd5JUGvkme5nR3dL4Jd7RNrSO2PwLWyttaIorAA1SmxfzYjDw6Lat05JntXHDB7MAxQQ3w7PxM6ORxgQTvPnxV16maUyc8TsWG33FqjLHadeckelDppOxcNSF00TPJ6SP8zKntRmOTTocmHtYw4EbaFQZxduVD1XWJbaOHPUuD2FYGjU/RKLICgNbvWe1IoD1qByW60OkglLV6qp6X5s7gRHGQO/IXar1fHw3Msj//9/em8ZYdlx3npGZL/dashaySBZZXEVSpCSKlKidssft7oFku43xWPbMGP3dgL8ahj8ODBj+4O/+MJAbA8wYUNOQPBi7bbc8NGRKLVELJVFcxH0tFtfac99q/r+4cW7Gu3nve/e+d+/L7UXVy4gbyzkRJyJO7Of0jat0pgYQMWmwKSLkC1N/pnTBt+WGGm5tdAx1R57XNCmYvvG0f7hBofz4E9VtWtCGHXXNOLtmM7TLlg7j2Z5aEw3YnvJmB8rdLb87zqDZB8Ns6hUd8ihY6rOPedAMS2Wd0LglXTOs0xTNTOqcjS1LVCVbG5PhoMnq1MpRJy6DueN2aLeoLRvVbMwrItUBmzcNdfS66biqVQ8yrblyhuEptK1mvccA/xS107qzYAsgxEggt3ztsgYpTTAwdY6rddXVzjPoUAMb0kyxxnJLRENXGMaIGaLsOyuuxGkkiU1MiUEHRaS7vLRpY9ahC8pT0QzDIRmGmV5ctl1elL6y52Vy6BYAKtp47r6XDGc+IxN6sq7rYInZ7z1OpYxWdpPa4tjQ2QEDVe0m7SD9Qd41DJobHAhJQtj7mBqNNwegvVj1IQcBhZYrYnYoXfWmjplYAQ3rWi6va2tjWYKeJsSkOOw8aGaMO8O6vbKqekPlV231lkPIeupMnCMwqWW9ohuT2NRJbStirKmYnZOF/eEV+pU/P9CgulLiNXXVgte1ZbNrGPSK9l45aGJfaMvs+6aSFnVcl+W5U4sgceRY1GWKOnVdS0oONVfeOeumdfHfC3pSxrOz56I81FXGnYTjpaOp3ta1VEZVmzfRLK3WvNXQHeBN1M8mB5tSFIHyW240xKamyV8Mcle6/bVIPUyz84M6M1lX/9pZBp20Fk8XL/hcu0BT2oM+iMbPxNgTQ7tKzRqH8+jZ7whvTBgtKusaWKfEpLxMZJCJAbR38ho4S14hdtIvYsLoztxYuLpdu0rd+Wsnam/Qw+wRoWSrOu9gSzEVWh+VqTfgvafqtz1WwhzKOa6VA3LnWQFy5dC36UCfSvByItdVnh1l0LQ36+jLusEwMq7lYtjHzCnzvvXybULXC5HJsa6VxKqErNRl6hrJi/KTKBoYUb1JBVRkYpa8g/0+ylFzTso+omfeNhOjTdfBS7flOCbqtsBqHqvzurutWf/kCakn04ObdlMjonbAhV9Nt9M8xCjLGNfdfcSt2vZUI/WWh7yk344yaDvt39TeHbKEJ7T/zKu6A2c4PZdJ7tRKw3J6aDH4jlKK9tEsA/2R/qBJjf2gGm4dcfvIyxcOL9Wsbe9Wmvi765Jel6dRZJe2utpJyYqPlR+r1jWbFEVtuy+ENRFxZxl0oMD6ovYxtcyYlCS3g3jQZA1hck5XtnToBNPzpo5KLoBhKxfD3YvNspCL/rxEm4gFzuz3KXOGWEhDYyaGdpUN7e02ZeqcZXo1V5Khwj3uA2kCI56ScK913R6rc9UKPeuqq9LCkvIqkcOffg6ASAv/WNVVlzWJqzx87/3pPqbBNtvw94PPYGRtY1YxribwGN4YH35e/oa2OMa5UztzKH3dxLK533yQ3vAZfo8zNNDYr4qbeku0qMCgj0tIUnSDI7QLw91vGbrly+Cb3S1+v+GGBxvajnJVTbdYlt95W3dqF9wYz91B0ieNLZ8xPr+32c86PAyebE0xGbBXux4HWzPUXdigMbyWjzpt6OZxBRo1icvyHePATR7YVqSeVoK43L7qLZoMxWUDf4zb8lPGriwsyTfIIJQcKU1892piLSrXlhbcTFAzDzzgelzCMRq0nPSDq0we69CAUAYPcaAdP++WcCTMpE7TubK1IuloEpkm8ZVbe/Q+Qg9/jGaGy0CYv333Ym/q7vq6loeH7rnPTURbU1Y2w1kHrk75o97A1TQey4OVz/BxwDut7bn555523OfHWNktTa82cCgfxpeRKU3vXS7JhrZhVrVKQ+ntNAxKxspiZcOvrjIAK8/EZTP8efHq8jM6Ag8pjJhprf78Q6PzkiQp02+ZLT22/fqB20JDSpY4ntvTCDScEGajDYgQQbi2Lo0fMmhViQvtPTv8ieF4HBq5uJq1yNJQd39H1MnRUMHSGUMc8re2Inw6x+hX/KHHn2ngcZ4oD9/I3UVOrREbOlwbYbaf9AxmGOa2fGZp6AuQ8wf4wAUXZaNMvuyIV9VvTK/xFl5+0S1pf5A9aTRGWx0ArhueuDy4rTxWNr4Rg5iN1w1uW1EEY0QiKRc16+B5/phm/htqJ8yoW2Im4LLyWd4Nfoy3DWb46BROWFJ9oR70bbQEH3Vmpq2OmBYpSZvfVkQfxqfhNjvPjzDqDXzW9unso7rHjtqvRdFj+vTN2upI+oiVO4aFu5sBD7LJjZbEN5yEpUblitui+cdlSP1U734LTfW2+M45N65BhXpTg6DwPhplw9AHaCdx/n1Apz+Bzp2iWBhwwUWd+T5AHmS64cutQwNaYEML6gr6YZB1jVhYNAFd08WEEW1RLUnh8ZqkMtKuY9qltC5JZ2gGfHBZO4k1qnjYSSP2eOL2nJf9FuqryhgjHARF9Q6/3lVe0Vs0Q1TDHtF1nyvnzrlrWiau60d+YqaEiiY64fjqeMKgVSIqqU5jZQMXxMRQzkR9Ub24gE15wEUF0glpoN5fjWhEh22rOl2/8NZb7rAaz2YYDH2EHv7QIFBAQF2BB/oag+4BXJpkVHS6pHpb04zxmhr4gtrDuhp4S3IpluQHPsoGbdNGnqbu3wFToh1AS9RBGT6aRt3tw3JrZaHuKBudnrJBiw0JvNpQXV3RjYCJq7ep3mA4xrF6a0O0xUWdz4CP8tHnDKflqbRNPYh5tNSu56WabOncWTf3hUfckhjJNf3UI72hfZhigA3KYAGlEZWLSL1ZW6Sc1gfKpa4eC7qBD0M9gm9E7RW1c6OaFM3rDOyK9qLR5sRDMa99JQxaZbEBl77Fz+oMnC1tVW5I1lAvpoXEfwC3maiRW0ewOBATjQRoAsEdNxg/ksN7VTDie5saDuCTb2EiDAJRMYxaEleJyvfjUp46heYPFZD0EJHCmkYJT1SDKxsDTDOWR/9tfcMCZcf5MbcfkSNYdDy0WMCgaUTW4W2WYp3fcBl+X15Ftnig9Tii/Fpc4PKDQUN/ygU9WsK9cvud7pI6TEs3W44ePqROTyexWkgalxXJ5/1awqh8fuJ6C3h7q3gkAABAAElEQVTBST1RJvBAS48vqiPgWXlwZ/Pt/ULZfBkEG8Wil/WKkBnzsdM3uyNa/awp/+OalYxPJMzL2pbBi2lpdPfwIvw+rqho4eDGpPGiMPygIwyadmjaK1IYYdVj3x5QaIve7QEHl/x9vKi+fHBEJ1/H+rZ6s7aPPaK2+74696iY6GEOTJUvf7dWtgBTdG860dnHsnYrG7iHDs36OqPPxYNCAJe0t2yZCAwIUzoqD5uaFDGArsKAdJh5VHoUj+paq/U3khFnQtfuaC/0vbRdRStIDz7QBTcG2mGMB/gP/Wmjaag7wnwf0FbpuuTPoJkJXBijsdneM/L3cawNyE5NqD8fTh3qn+81IV/Q0oz1Aa9sQgPr+etvcAuvv+qmRZtp+mNg0G31Bq4IncGCzla75JlyUE/ggIa0Sfqf0dLoZOmNXkYn8zdb/Wsr4+bZyYawlgbEvgI7JSgKU2EwSLHbuKT7mDpkYR8TX4NvuAyP+fuEDfwBPqMdBpxNGnBZpfhyoWtOhj0xDtzWLyc6/lDlVIcBB/TEmN0vXGSntDT7mAp3141m2Px8ufpFUiI9eMBXV7m6oTR8cduHBhNS1bbG4RtMgfZdQxsCl9GRMsY4u+UzG66e671oW7Q2znzi/kYg7R88GMPrPxr4Q9s25tY0rrg80NDwccDL+cHVZ55y17TyS+kR+FPVYlv9WPvvl5alb3EYYpiKjQLMxHrtFMwY0fi8qhkHF8UP3/PRrRscCvOjm2xw8IOghrcq0brFT8u2mcwyiA9O8++Wvmo4cCkLODCepsKtLWh/zbClvedFqeJJxmY1mTAL8JEr/gE2dRTjAwTfvRryj4jGRWmz9lcjwxU7X0/ChW0/w90rrm7pyIvhimcz3dL1E274aJN+LxMmKulo4xIZuySVbataEU7olRrx+mlD2XYCvJ77AfXNAC0YqLkanZEWn9lESBJtweMSAa1s0Kff/HeisdXbNbV7TD/tsRMeCzN89u3xUW7RBFnsvIZd0sA1e8uZpNzQqqIxHL5dZPoAKxM/W64Is9QtjiLikSF+PZmQblXyC5BjMHXqBq/qycMKYQY/xhG7e8LbKVFUFMPdKXq/YVYWb4cGwbNbr11FgqM2lrV0NwW2vdK5IJOGuyC42Dswdhg0CgaOfPyTblydHRMP1jH9esZVnAsfYu0yha/666UTdEHTFgzOFJ9CzD2mWSd3ahdfeVHaVRY8gybMwtuAlPiwshHVYGTtEmDSKD7f+mL5viIGjZD+WIsKEaFdnOfYnQKq0eHLE/qcla1G8Ckoo2WMA7f5T+o2yygyvXVQiIFpx3FTQFUctMWozxptq4AgbvVhoiqGvPh08pD5ZYk83NTp94z28MxEfNK8Dozdmp5K5NQiTF03OTC9z3WLZybWOHslLBpEENU4pafCVpcxrBh+7I7j7Au3dUJ1apbK69quS1+l1VxA2w7oB+y6lvFcsWM7JtWikgG4r+srLmuou8ljYtDaK+YmB8Yz1jARiaNXcvfTaSNEO8KgybuNLrxEY7mVyuCImHeUz33vZFCiY/A4xcvkuKIrbDWIQTQ6ZwnIiN6P4Tn6NR1kplpUMvUW443d/eDcjWmt3sjbhPbjOfiOZXKoUmvLdr91RkYQkoTmHmb73N/OM3XgyYO72/ysByDqF32aK7oLvREkSfZba3W1+R1h0NZoWW4tvSdZwjpFNRkc/RJmtzWC0vlhNA+dmee311Ykp9bEV/bTyQsI2vNszFY+H2ofc0oiUsWUvMnkMZ6FZYJKk2RPRIzqbUKzMB49eAFSodAF5N+xovGkmS1FDuVt5WOMyjLVc9swAHvM9pIktcW6quuH6ZPvPhttXTTcGQYdKnA9aIOeFHGKllt7rK5rye6kbnJQwchL8CYwxZ6AZ3tfANLPLInrY+xjcmcUiWB5Jp5B9JP9PNi71Q+Z3txqQTt7v/fXay0jzMYGVm2d6e5muvLJw9NP28iDt2v9Ak140YzQJAYuHhvVYeqi4c4w6EAYlvBr2uJItKhkRR7WQaa9CYM74S39ljWiM6v2zK7PET1LiZ5G+JAHhL2j4snrjww3OLLwD+I3B7qTJyS+UrRpQv1VvCqpQl9m8TZgrmiPfET3nA/6lmJKv9Cm/aRI7xLSSVEaoTdHr3WVxTZ4Bg3DCbnwB01actGo/RWgbO4O2ncYuNg2aEnTxYoY9KYaTROmnxHehCRN6B4tgoEwxgCayOtegdlCca72dpl0pJqia8x8zzS2gVUPoJZ1DXBCUiMnpOoKs9u2YGokVyVQyYA1kgpNshVHJSBR5J7rKoKBc/AMGqyBEa1cZAm/2Sbs3Zg30Q6asbKjiJRDHJbKqcbh0Mlqo4khqwDQOrPXoqLtl0nd+021qFSAs++i2lLZX7W7QXdqtw546+qoddCMLcXlc2+7qRtP6w50cjWyDrj7AQba2cf08m9VKwxbtfY1C7bO0idxBs6gt/KtPVa9RONQZfJoorTSEyQ09j7LtaeSp7yXsvMhGx1/a7pnjK5Gb9JI1YpW1Mh62uIIqP3VyMV5XSu7PsmaLuXboJvmbquiVaToI42wfxwwYSsjN3C43YKGoNTskvKvShTqGq929TAD+SFFpp+2UQRzt/tzwNvS4yJksdtNDt8XdzjjA2fQVujN1TX/gpDXV+OHEgZtYTtMkx1Fb6xsStd+NnXlJ90T63HgKtzKMEQ9lNbfUhhNrgP65DkM6MB18kADnnyPavtgSa9jzfRBagMRyNwfJLYUN6XvciqIGG0DvsMfO91eOD8YP3ZCShc+lNCvRGRsPySpqzyDZ9CB0UAE5B6jydqu2PVDkP2WlkOLUTWa5fd1UIiBbjmMMAks/ltXQ0mykOyLLGqZPK56m9Ssw5seB4/iXO/dEGZiEydP6cn3u/WfH/SwLUWbsW0Wv3xXXcX6I3sB2UTtFE4kmkAWwwxtl5eEbCsiS+Vgz6ADcbhvuPreOTd9401b+5i7pbXEFTgAdx5/g/m1Dusmh2ZiXvyhIvUyf7LOmS1GkX82XvodBod1yU5hYEWxwHg4aNq2vaFEMfzYncLbpw70E06dvtmtvP1Wen5QV7PuhYn5NkMD0zbUsl7K+S1FDf7eUKc5ja8XPPuhOrkbvq6bZSumEzSHNmXLWVeb72sGbftuZTMdzwAhAgJKpvVIBZP0/+1N2ePohTOVztTORTT6mR3nBIl2Xo2SbnJsSKynN4FJxvG6ufNgk6bIvwiexV/V4eCa5ITAoDnMLDIWn/DYXRR/r/qnZQudGQ3ZXBvlgJctBYxvvj3UXZYmKa5sQKfvgJdZIdc2uRrJyzlMUbeqc9XVKWtxBnoqW0fg1QOnebwj6ZoMZN5Qpz3WG+XpMWlbxksx6KLRoMi/DUPmw9KwdB/TE+8pG81VWxYWJ/F+gW/nhcdx95rbymM2+Te3v8mhBzxr2hND+E6vxuBl0xf5Z+Ol34EBwaA30AYdXqLRELOw+I79YncKb486smWx78ROWN4UL0G5Kx703PmwQL+yxTa4cfw8vzi8k3tdB5cr72vlowmRDazbp0MJhH7wdMrDtrAoA03iLAt7CvGrEj/qtbMrs2XTbStXSEuV97saqSxuNM5MMkoUjcNxzOAOnZmXaEtaJqPeaVyCrTGIH43vQkMcg4/t49QxJHlI7X/yKsJwtses58vwGQ6zY+j+dZMY9IUffNc/+UYQj49XkQakMXwx/Dyccfg2N3hVJ0sSbkX9pdqg5W8twHBh28/qcRu8Gj08rpAL3E0bKxt42vAJ94jkenuZHJpJL2twNdMWzzy72FnaGQyzuyT3wVADPsjVyFXdzz768QfSLcUYjuHCz/zNLoOnahzDZ42nSVzkLcUXMprFRzgHhdztZwa9oQFtTMzai1wtKXoUGGaAbz+YdBafxetmtz6UTIUyxpCja+uyZERc1R4yanhiEZNd4SjT3JtdlxqYy2+96a7p9sYVqfRZ0vNT/yAjKqAnqGTFXmJJnVEN1RVPxQhWtitqxGhDWEYVDloVovxUBNkxOjRDJc762rrXtEAjaDPQSYJsVpQX5GV/8PprbkMz1iyN2tIUfNAw0JF2ERoLDzbaHXppMIhhPP/G625dAp0QbX5eM8RNtQcYNwaYCCg3dWhog4Fh9YKroDjbvKGlqbzalKLdJnH5jiaOcgEJjKLlNtnM8kMA/JLou6l7xhdef91NaiIyogMoPwHZlvvOHtDykmgMnjndDulV5RV97rLywivCNa1az+v9waaee8fG2vog+4CpvEKryrY+EGeuBveYhK1fCVtO8LAsPi9/Xv1+U+c+V94+6z545103jqYXbQ155dZq290MNKRvoW2KNkLdfaitLpMP3S19XnjruJZjZQzIafymzgWVLui6q8yg6cCqkBHtPx+++1538oZTuq0wnaiZiRgi+DwR1fdRG4OetCxRy+S7TBxrnBByXJ3pkFRNNc2gUSuE8t1j2uLZVi7RmXuq47fe5s7r8vyoBsLjxFPlVzXGNFErBB7DV4mR0TjFCK/pauQHGljYq7vuzBn/XJgDzDwGzaAAU6F9VMJVsYDAZ0CdmJxwx+bC4VdFGFWjGx1hoHHZYMJjDKrSFHLx1I2+jR8VQ2ypr7DqqGpoj9QbdKQP0PGr9jcYD/WzgHoy9aHrbrvdzR0/5hUVW72RL+vfwKevmdo36xtV894tPnjgJfQza5Pd0vQTDj7TTnT4iOojKAowmNDpmvjS1VtudZee/JGbVR0eEt1R/utpaBG72DBo6MfkFQYNf6UeTeVVl+TbgiurvKLCQIjBrtRgAvoNdfLNhatefq4JSUK7StxgiGq4wGPuAKIRCzxWiYazEUQCCh6vZSGiZxYX6q8mjp3UgZMOLcTMxzR4iCNso1M2XfxtDCQuT+U6CzjXtOxbU154QTitxuuNmFTWeDqKlqbuJxte9zd4UNUE3kEY8IBzGx3VyTETkk/CQeHV557RXvRa8ly3x7wZLYGLextOAoqMtRUxjWVu3mjQmA7SBz2t1PayJsbXdP35PCgDg+jblBN84BqVLsSg/au9+Opf09riOD+fyDqHOp4GOXRqT7j1BXwMuKgrw9kTLVV/pQ4JrZNbNuzbbPPvZMdxl7XU2tDSfRJh7zKEFS0gfLoQGMPohKvXMJ8PGvUATIxrW7lCHhi8ps/c6p/nrlwONwI0S6tiDHaMj/TmXwaWLc+Xtd3EFTteOaKfK1trBtNwxd9l8FSNE8M3d1UYVeMbHrPjhkvL4efPD7TKQGfjiildqNiuDD527K6SX0u3xhNvaa2e0pVWNPZgLCwPnoWZnRenFj8Ry3CYXQvcDJAYduxOo0V1g6YZBlVey2J8nUbhaZoCh8HHJln8XZBku3fA59WpbQ8t72OjRZkU8VjNc0oEm8eyhItgef84cRlkeySOldnsNNthFIZGUxJsw6zVrmylcUo6tsEO6Yr8c8GG/HArYUP7eNM3JFcjY+aUTRfDj93ZeHv+O2qbvpxhAOXRQ3JlK3loVAcNKsMI9ZZIjXxfauVu1MFXkBoZwvLo3+/NgzyYuX5Z2uVGGoBnRAtulXG7bDmczVWmecgu6SKw1QoR6MK2WKkZdDXo+bEZibzR6MApKeI005doFja0t1Fg+kT7iF651lPCt4O2kb3dN+eL0Ty0tCXNwka1D8oycGgKKBBmP1OS0DiiM5rFd94piFjdu3SdAVr5MOaC4gcG1knqLWzDdMKeXRl1iltX2E7gjPNutEXZ77hWPzzV7+dFocGLcZR2hz67qS3FgTFoGyy507v4lrRBn75FL9GSC/OlM34AI6JSilP4FT0O8QZmGZhAKXIY4TORrfNmvLd90laIy2i+/MF7Gljn0qfCBaC3wTiIHhNq22gKWpbGIH+QChGq1FsO0crWmUcVpUcoGWbrzYHqNArfDc6Bzdq7FBYpf2iqX3nnbYf0v15NlbrK4rA5FQPrwBi0ZQJddstvve5mtbfa0ms5b3peCxjUvW3n9tvgiZxatHSgcZhrdp5Z5ibIp0HRSF7kvw1KwMUTb1Y+yE7hOXM3E8OP3d3S7fnw0Jb9k2/dY1+WTI51ewnaZ+F6ouM1PfHmqpdmhral6OHssj630zNoqxpuT83oqf6qHvUso32mR9NTXRmu0OdQYjs4Bh0axLJG800JSmIJiKEgu200NzoNyu7UV3iWOy5a8UwXJlnVFM1Mqo7w65KChiCZKTGdMvuYcT6r4orT7jW3lRVFBtx2QTa0vSi0mVGvZTLYVdJvSLclg8S4tHgjyMmbCgN8FVz9xC1qp/3ArJI25kGzN94oqX86WDWRsXTQijTrpa4sv5Z2QULJBsOgo8It6Yk3956NQfuCd+JQlusDasMMp7RU5pluuuSK6NmNLEUzkyL/InjJAeFlf30MzePdzE53uG75ayxcbdluvfB0eFPLZNtiiJlAY/gzgNfEaFakRWVS1/7SFWsmzvBTFKDeQr9iW5EVx/J7EhkrPxhm1cHVYFWmLXkAn+5kL71zbkAMOuSSvTg/mmtmgd69oSlBAR3qTGvWuqErbpzGe6MKLGtsNM7GH7lWEkbA5Vc+elUF08F0bYAlwWfztZ++6egcyjEp8aZCvdVFhzUpQYVBT2tWmArp75KPAzu4BqJzUDihPrekGWyvgsqK+l23erWBwN+8UZ8fzAw65AoZ0F4nmk5JhweEXaoq6kTTpySHQ8J3liRLwRvCKsyiczGVYaDMHsIGFPuYyKeeGtBrvdw87zHPKTFoDlWRO9N3fVUpe5j1kWRZV1q51zutLQ7McEvRk6Hjn9bUpBcqtaJD8TWJohioCf2aCdG6bt4MlEFzg4OlutfirafA3pRhFAOl0C5CFioLyXEjOlD1wvtD57ORtmtuiyIW+UcA/SxZ9YO8Da7Yjc+d0D5msvIZVltEqAKnF97PTQ4tVVMtHaFOC5J09K66LQUwlCuwXJ8Kj8L8QBEN/nkIe8GTB2ev+iEylrv+nLmshYdGVcvSdYXZBeDyeQklU7/LZdAAt18XOOWCQ4Pg2si6pu1IZuO1FThshlYO0MGMNS7mPHXTLb6zVb6b2Q8nDcyEeluSkKSZO+/cWvl06eQHs6aSUvvlrQZAXu3R0ZmU2PZUiXGxkHRl+4rh8APrubO67ndq64CwEPpWQFk8Wyn2hyvtKmrbyKnnMsNKuMnh5XFUGFx73eJg/xnDtVoGylwGDXD71Un6Zb9Ev5bIEgYwBR529K4kbk1PuZlbzmgv8e20o3dNZBGst9p3sEvNkkKL9VLQPnxP149uSSR7ZWANPzMUUJu+puttmBk9i1/XcpUrU95U6ORJgq2/pepsK7qftXMPe+qGG11Lt0rKmqp4ysLd9fF8vSUdxq84dH7g9W+GjBd0pdxi9TSDVtuA73JWx7XaUdVZyqBjgK9LNOEPf/hD99Zbb3nkPY8Gmawvaqk3JhGjbcutTJzh53YKcGsC1WB09LarP9ujbvdJpwXtQeXqNEmc7H1rViFt0GVMOdhlIO2+OFXLNqPDJp7smxLZsunz4pWd2Vpa7vGu6arYtB5ejGlf1ZsSEyJLv/uo31uOKpUnDKBsT6FEFp7FjYqqxnCWrTPg28DIlVav/UZ58Pel/FZDqLh/+Id/cH/6p3/qvvzlL7vvfe977q/+6q/cl770JZ8/E4tpzByRfddGuowrjAoaibjDu/D6q25S4vxascqdDjMK8NjPF6BDXJ/BPv8MCheVF+OCrlahbUUI5SWM2xOMrEvaF0OoJlTnOlduuggIsJGoFeMzd6e0xCEcHDCXMdWZv5Ug2EX5tTSE+7YRYBTFj7LZk9PwWXmwmzYxLo8PlDmDIGF4T0hcaOu6U27hzTeSh0Z6FVqm3kiPNDTDR7nK0NHjVb1Rd8iTYJk+6QdWie/Va1BfpwArMKQHDwZ3U8bnQ/ANR5my9ZoXcBgtDYbhtW+z8afeuJI4rsEVIVNrSxJnq5eh/vqk6qSTMbiUBzcSKyUjMy1nx7SSZz7SknzzK1f9zZu5hx52LQAhqxTZrAjhh0H/xV/8hfut3/ot9+ijj7qvf/3r7sEHH3SzegJJISEsHR5jojk7IVUCH7zBQwd19BOff8QXFk8vYrRDYsNl+MDfpEEkoIkFHAQuq8xCXIF2lHmWmy+6FcDIihklLAr3njl/jHaUyzoedOXXyVi434fTLGJar6tmguzwovxaGnDRNiye2Z3w9RIW4wOnffcCq2wacEBTayd5zBlYXsi77GndepnV1tCq2v4mMpnVz8rIF7aygCuuw275tHTE80/zZw65Q9qDxnTrb8SJy9ZUvYEHY+XC3SQuo0laZ8JnfuCOjdUbL0GP3nmXe+9f/smt6fUzDLoM/QwHdlx3ZcrHSguzqsdNG8J55NbbXYuElhgm/Md//Mfu9GmJk5TBH4HhZhCuDVPBxqDpxNJanDybgs3r0jdT97EgR7ibQHwICEMBB79BCOwHDwZh8z5/0gbip6p5herDD5pZufwoG2YsRSChH4J3Wroqtfi29qF1soxG7U3qoQujBT6NBXzGoLFtcMjFKZjI3oCZLEqCHbKEZ+64y21KxKgSJjOJTEKrL8MFvg0UM0j2bkdcGThVP6ElGjKsfE3ioozAR9EC+OiA+fgY/DT7DHXDS9CrL73gFrXlcET1tkG9Kd/QspMBPu0w7m/FOLcgwWQ2dWd9QZpBRjWoI+AKs64805by8mwMi3LhTvtAKMMW9Hpc1geYHJIfa5v1QN8OBbrRTigbikaY2Xbq28RHaNKaLjUs6B47ZwndFGYA2ya70NHqjj7h+UkJWo6OjbqrbC0rzbgmRC3U6KCRAoLBBE9qKQ3A73//++5rX/uae/zxx712gOeff94XDnVXr732mnv22Wd9OqvY7STZ8qHBLP/i525BeM7qXuaHTz/tr5BYA96KueUCLstk1NQwcJCnvIa1laJ3l5UBFTzgmdHpe1mC9oIVWqNxARxoyujYONV4oR8M86rosfnyC275xz92Y+r03G/tREPyBs3obK+++qrHg3qorgw6SSgFmtL68ubrbkHLvPkbT7sF1blnPQWMBVw0bHDQriibr8eC+L3QLpsGWoKPNnxE18k0fGSj1P6NpgzK1pVZqtzMihb1WIR7rc8/+RM3LnVTZeqNTNMWX3zxRfe+GARtkzJ2xal0nkFrBjb/y+fcNclOee6VV93oW2d9GypqL1ZP4GE1PaMlPqqorG/UTUTqDbVvMLSufaAG5IYPUPTvjryEehMNVqT2anFkzL38syfd22r5Pk2HtgytKA8DwHuakJ57+5ynJXWGOrai1ZYvHnBFkxGln//FU25Vk6GXJQmx9Z3vfMd99atfdb/+67/u/vzP/9w99NBD7lvf+pb7/d//ffeP//iP7pFHHvGEvOUWneArAyC/TntaZ6TyqJROQkYNIX3rhwtuRFdXbrnvfkmL0lt3RjNlqJOBIHQG1GvRaLyaGjhEQ4YtHjrFINT90BFg0Kgz6sag6VTMfC5eetCde/YpNydaHBP9Y32ARSSBhjBo6go39Ugj6mhoLDK8PPvg7JtuZWPN3fLAJ93h225LZu0FiYFPY4SRgI/VFx0D/yZMjI8BIV7tNYHPYDJhAFe3SQN7lhzOLYh+bz7x392M6vuGm24qTQ/gf6DT/BPHT/j+RhmhZzdDvV1+UTP2yxfc9b/679zJu++WElT1NxLSH3MN/poQ6bUqEzXK2PQkpXQfyM1vBU94HzNT9W8M/btTmyQMCZJrM9PurZ+dcWPqqzdep4mrBi0vmbCQhsk5AarJ6AfQj/6Gmz7XabDzbUV059xgWVsch++6291010dc6/7773ePPfaYZ7x33XWX+7FmZ3/5l3/pfvSjH7mHH37YF4jK4ocB+Qldeodp8itlNNM7r5dw09qLO619HbWAUsmIBL7SeEpDzY9IxTEQ0DGaNswaWAYxmpc1k6LdRdHjiBrbCVM5VTLxDbqPy0BQVgelgV1Sv13Qazgay4SEmZcxNHBmR9BzUAZ81kabxsmAR/2VNexlXtByeXZzw69Qy6Yj3vUS/M+ECHxVcDIDPK9rWqeEm0lAWTPoPgATo48PwhgfYQAqZTQIXz1zm1v78H13SjQc0UF5WUNfY6JC/VUxK5Ld8r620E6ov12vwbzFTJgf5ry2H77whS9495NPPum++c1vunvvvdf93u/9nmckIOXHXg4G4nYc0RmJNHpc0RL56huvueOf020QEQcYyQZQ0WiuYAUxY2b5SofwM+iGZmKUBQNBGelopN1GvCRFb3+hGbigHww6oUcxLJspjmlAHNMq5MJLL7rjD33ajYkuaGdmn7fIWFrb2iBeV3yqnzENUquaOVx44Xk3wf1nCbjyaZl9F8wgYlzgo+MNagZt+HwmG/5D3VG2bjNoTdOSw0IxynEd1F1+7RV/j31czJYtqyI6WvahHX0NfJiu/U1xmKUxG7vw6stuRK8+W2EgYd+704qVKqV7gYv2QdkG1QegZbc26QnQxx/rc4DoyksghGgPLSd1vfXik0+4y9qymLvjUNd8QjPg0x75odmeA/NutLS+c/FNrVi1743+SEzLq1/Xfge3AkZ0KMa2Bg2BhsF2xh133JHOKCkkxqbqfJufD8j88ddS5LeKqiTtXc+evtnHgC2PcODUxVwbTa7HgMNwmt0laU/BcXlinD0B65Ioi6tTdHv0MKERHH2AqxrwNtWRWmLQKMDs1PGoeAx0M9qBu5NJUoghaO90TYJ25j79WcdrRoxPS2/OMSkutSMrX4w3J0lfXoYPXODpVq6+kEWJq5atpX40e9vt7oPHvi3RoxeTV33UR4d6sL30uFyGN8pKrpPXpitqI5MazCfDIb+nUQd8AKJaYxw+DZ4NmSyuhtAkc0EBBx+me5tUD6ATqOwzmgGjzX4F0aN33Blg+EAPK/snbpOeflw0kOlIyzAgEI/HfIiqNa1Frc2VNT1JTQ7gjuvE9ytf+QrxajEQArPw9ltexOhMuO5TC/B9BIT66dwPEjqOTUjrsEb0hRef9zc5uGPb8eBBNKLBWD3EJCvy99OokBlev62LoXBNTCNBnLyzm/YdBgYiFuLqDGVXhsblKpNBBldWONwC2JAm+0XNxA5LWUVXk8MDjGkXpg0NiVs+yP848vEHHIqHq5qqZawKf9DxoZuGwwpoORBM3hhMi0Ejy2ThrG5WfEpbvvSNnLrJAq9CQ+sfG7qzvuif5jOwJttSoyuXL2Zhb/uugixNHBqLv+6jpd2kZs/pS7TO3CgFcVAcpcmhVQeiRzeXt4SJ++2NiBlmaVatYYa2FzK0qFkYe5nTugmQmpKZjQeF2J3COTCOhDEwIxo7fNTLU6HoniYd6q0f8rBEZmC1V4zGAPqBeVDTwiinbj6jR3avbQm8qpsYoR2s6oHKkm5NzWimPnE42e8e5QqVNyESlRn/es2LMfUVnZwu67rIlK5ptaQtF1NlLOsV/15K162f0pltu8gzSzHqJWnJMMOAXpsJmUFhJZLQ0KuH2i2M1WkZXHHcbuUrA2+vxrG2PjV3XLeXbvIzJN4DMBOLaVSmfF0H2zB4LnlFtdf8rN3DpQJKDqxl8nEg4gR6sbXH9tSyGCcMtLSxii+TwOrtvFasFz5MtoLDudLo4ttnPQjbD4MZxL8y8DvFQZuEXyZriedxDBvLNnKF+tnmn+cxqZdpMM0FXX9DR2FXU9BQunX21avzbknKfae1HJ84UvK2TpQZP0MM31XKF4HYH85QeOSfz9x8s1dGaiqwmiigvy+vA8JxPS+3fUyNBJVQdWsblYDt0ch0Gz+Aat96hmvBWrUuItcbU6JBl6ZhxA8XmXRp8oXKLTOjXmuA9j4wVUd0A5Jrh0IgrBy4LM0xteLIRby/PScO6cqjXvUtvPySP3DqtbSF+5mh3lgmr7xzVkzlFt0JLXktqdfMHIR0ouvMTTcHgVeJlu2qxe7YdwITRoPKwmuvupnb7khld+uEqiqqYXz6QaDptK5Ijk7NuEUdmKcmhKXfGUfHuoriEo/JDG8aEMw0odfCJvMG/KMrEr6zqtd63nRBGsHt7AxIdSfFIx3T7CEdzTunHIYWUCCZkaoyW+PukPaoViV6dDGoUrKwgqS53vEMN41g9SaPRcmOuKbbALPamjITeLd9Du2yFAj9iltMzGXZ2/cmYgJlQOXWWUhoc2Rg+2WyHkjw2MIYQBn4wzj5FOAmDNrs2fLb1B3lMqZTXeWlR5nJsg4Ip7TTgKJoM6Mb7BHr/nOdxkaPNe21IcWL/edUE8ewl28jdalxUXTzLymVekaNZUwyHRhxzRTBsLqweGbn+ZsfWydXtUyeuOmW9IAwCSvYLzGgkW2w8IrdUZQD5+SQfEL6OBfe0vaUZkx04iq0KVz1RJRcOKc2Ibiz2u/2pqhhRGmyzjJ4smn28zdyb7gPvazt4HUx0sR07gtV6hV4yzrUXZHs7hkdSKIo2swo10kWJIDHm5qZ5xLPFt9+083errvU9mKuZhxWkL1sVyUJuu4mT+tkWQcXqVLLGgnAIdZiWCZPHg0v5ip29LY9uM5tucac725QzIxm9UJsUbea2ELypgpdbZqcU0zP7Fmxiom0jp90U0HyYE7UoVdJCtgAOqZ77Gz18f4AnpaYDpVREr5n4qHzsxW8qYdhs1LMEe9xjyK1nzt+vDH30/IqDaZLRhZYEkh+wGHth2GqjipdwB/YYH/gpIpceuM1t6oHQJgiHtjGKLtRLDSWZT0s4nnrjJbko9pS8abiKDKchUXEDrRDiNEh9YU1nda3KQCOonZ0FlVy6LNrWg1zpjSl2d6kPcuvWG8d8R+0QGinQQ9zSAwawf1Xtfrxpg66qt78ICC484Lb0k2fWYlk8IY6FY7RGZ3SI0gf7QuYfpko6bmtwWnyvGZhE8gg0Cno0BRTIPSv4ggWEhoFe4sz6oSrenVk9RaPuhYduzSjDI2FNFzhY8Ce4TQZnIQR0Kvpf7LRK+Zdl44bARzaLbIVIZPebOojp9ZneaW48t45P9sb0wMV3xfrYCR95G3PJw30m+W6qbYfrr78ot+e8uUq3XE7U2FVA+u84M5Ibop/fKbo1mVGj9zzUf+cd+GdsM2RA8vPrHP8c71Cple1hFvUVbDpW25Ln5tWgpMLfH96lu1DfrQN9IVBwzzTqz+eNFatW3QqonnW31IyS5jX9boxyXHg9BrjGUDZTJJA3DyGH7sJ3sum37JMcU3yxEnPoL00QhHDGGwbXXJGxG6roQW9UtxgmUzbwPTIQPotY4J89/ztRreOOQ3tHsY5e/udblFnM2WuSZaiYYC9pMP+Fb22PnznR7T/nKgms+pvUZkjkukwLyHRJz/xSZ/XvAYDwqw/33l+AF/SweOqtBnPPfCgG9WmdzZeR6Io0PBlcVSF0w0P4Z6Y4lAxribwWF7isuFXBRcPVlgqowKLu66sUjY//8X0xN5wmA1sw2d+2Ntw0plVx5wmz6sR8noKvWxp3BKd3XAx/OO27224PNT+/8TwDV//ULtDiHFVKRv1MC6BV9O33qHzg9ek2uiyHwQ9jDz60pECLclVjHcrl4oQVqxXJAKgJeY/q+W4j+//KLyEsTYS46hSthIo2qLE+AhoEhfwYdIxjthNeCeDICeEvnEL58L3vuNvOPEEPA+G+WGbG9ix2+OivlVvmAUO+4UDcQCYNK7itA7pfvKMZrk8SmC/2LQv+JiZPxCVnwkdQc5p1sA8MGx6S56mO3rmNv9NuqoGPOAwPL3AKI1T2YtxWRlLp68YEVxWEVXKZfSd1kHh0Xvvc5ckTHxN1yQnJTM4T6qdwQZfLDHM/NNsh/rhRs+KtrxOfu1/S6/70DjLGINpdDQamn8ZGFXiGFzDZ99VYPQS1/CRtipOJBDO3X2vu/LjH7hlzZz8HdsO9EWOMfgwZvuP9E/Sr1bF7Be0TD7ykXv8LR+Cjf5p1C4OyhKXrWr6LuC3BYOrlz6wDVBJj5h+VerN4h7RdvCYXhYuarZ74mMfT7anMrhNVLHR0Whodhrd+KG2EtlpmNId+UNed2R7m2oti0uP6trW/PPPuos6AZ699Ta9OV/ehtwyiaQ7BIcjPi8W2E+4n93pJcy1jTV3SW/XN7UPtqGT6yXdp/XqmchdmBWkGc36hXDgwVAQ6k3hEOHHt8fD6BPBafMzwDZxiOBZY4jTevSBWMgUNgKbaMc0jcE128ONMuEBhcBr+GMsE3JGUSmPCSsHX8o4ozg+vofRDsZ7UWdalYxpcF3R09APX37ZHX9AohBVN9748gg3/xUXqYSUDbcXgai68+USPptZQEP2Q8+/9GKiSUMMf1kDLJLRRPS2/Kd5o3ghz1ZflIf2QdvA3VY3ETmSfOqv9wN+CIzjBNgpEp8o+WNwoSVlAh9tBNNWZymMJJ2H1RGXxZNtaYNtOKk7cMUMxqfKxE8hmb88OD8Y0QHeuurgPCsV3XDapD3rNpUqgMynyaAf5aLu0G6ytLi0DSe3sFoTU+7iG29IEtr77shnP++WgsjQ3DxFeUkRyUHZMJQNecnQkD5g/oRZ+dvoQgDtHZpa1j0OQ2Q2EbeM9QH4SGtcfQCNIxiLXmQnsbb/9fEtUQiOPqkryoaxclgfSPMdkiVWSCy6cJ7GwLrO9oO2qC699JI79tlLblR+nucpKtUGXMqDNhpwUXfY1CP+adlAoAS0BaTXXX3tVS+OdoX01B39WO2aOC0l03L2FnfpB991V3jJojvLXmdaqLAkswly3DATKg5h8/yskZI5dHa1dCtk8cPz7soLv3RTUnrII5VVdSCTJaFSqC7bj66MYMA3t4enxme4DHccnnbElJY4EmPEhwF5RhU1IINhcfnGUB7SYecxaM/MQm16GFazUcMcUWP1ms7NLyCJcdI4rVzgMgYdx/H5DsVJyylYPg4NRjAmNbCOSpj+pReed4fuvsdXqm8w4FSZSMePOgIfeMBHY8E/wUdkNRbi6LDi0nPPugktwSd0TWt1ZTXRRB0aC0XqlC/gAxcc9rMymQ027xZOT0/yoX/QrO2bcOpFSFPN8RFNDR60NFzYGPJgxuLF38AUstx4Fj/FHfKxRa+EcYHLypvCBijGZ5uMh89QF3yNikbompv6yL3u0jNPu7lPfsorQtgUrVkdxXlvo6VEXubhBObGxqK7LGZPp2YmtiYcfn9b39bXPG3JkPLm26hlDgAyvryyjYYwac9UfGj4Q/EAEcpjaXyeQxgxY3+LGyCkltUbONZUtmwfsHRZ2wDE5UnzhCOTP6OntX3SU0b8+Rl8g7vdTgq2rknHiORWs/U3/8xTbl6SHjlE9+IWQv8AFuVZbSU6MsFjuPDP4kLEM7pal9563R351GfcNd2Yos+ZJD05JM9bDHRMnfu8RodRLZUPz0ruL78CQ8Uh0J5Z2aTU+UCorFmXVgCnq0TX/49fdXPSvtKXEcHRJAGTadrQaJgZUbamDXiovCpaMrJ5mr7tNnfxjjvdxgfvukMSRToWhFFl4/GNiiYaaSctJ0uqt2vvv+PmHvy0O3n65mQUd4mAqzyYRX7Qj3ZSRZNHEawy/gw+4BuUyis62zHNgulwPRntQ1/96P2SD/3PbkpaVg6hrYhfjqFM0BGh9tA1D+c1PXo5p5nYjCZX199+u7amiuHloGjzAj60HEQfsJmlaTppy0gDH/RvyldFi1E2G8vaVpx/4ruuJdGxRw59JBucMn3q7KJuxtFOOpkrklU0LsZ83T33SKfmdpk3fpd6Sqf10+rol559Jj2hNA22TEZsFAKRjTy402UJ/ur83ijBRWkwRuHoYS3fMJamCE4cx9zYMBT7xf64u5kYl8W1fBR9x7hwm4nTxe443Nyd7DhtjCv2z0tv4dgY+27x8EEny0tvvO7mg3Q7i2PxrBwxPgszO4Gq5a2koK2pwRzSLIHZmOEhXhljuA2XfZsNjNidB9PCzY7j4Bf7m5t2aOU0HBYWf8d+Bhc/88/aljZrW/nM39IZTLOz/nwbrQ9pP5Pto6tn3/LR8Y/jmzvGZWVMwzRQYBb1eGJBM+gZtYWWXr1hLI7/CH9iP3Njm5toMb7YP4ZT5M7CysazcIObxWX+2XT2nU1v8c22eFnbwnmJazQkjvnH8bN+fFM3xg9n9YS+dfS4u/jL5wDgw+I0Bt/KZt8Wx9dz4C3ITbmgM6Tpuz8q0bDJVeSUj4ZMeQbNS5m5j3/SLb36UnKiqEAbqTtNEixOXMBVKZ1c0EupWV0ZQfIahnkGceP4nb4tnsWxbw+s5J+8NAbPQGS/zR87Th/Hi90WP45rfnl2Nq2ly/pn01p4HF8tzUejo2+uLPuL7njEczqfrs0nCznUDd7aTrqqekM4+ezpIH9DDdBwbk/Z2SdOV+TOg2BxzY7j4Jfnny1iNp5956W1MPBYuNnd/Cw8jo+fmay//xZNMTN6kDCuF3/zr+usRqJdfb2FMEtfZBtcsxckw2FdGj+OStGof4NQUG8WH7jmxjZ37F+Eu5N/FlY2roUbPrN9PBGg7TubWN9F6bulS0HFnSPAS8OCIwvL41QYs28Mh7qzH7nbLbzyktfUngHp49ifLCz8iW/+KMRYfvNVx1Xn8YKX1glWJTqi2S5Sy9iwZmSwigZoFbP4wXteduphjQp+qVUl8TBueQqEkfOQFEtOnbndXf7ls1sHenFH79SCImxclr/89FNuRp0cNT9D0ywFJnXPfEZ9jiuN0L6UieqSGZnvo9reufT8c7pyeb07fOutHkwUrRTYbKS8bctsnLq/dwJnpTKov0FzDguPqI+sSpjYvPQHehP3NwNaUAl+Jh367lUNzrDsw7fdBtf28I15GxjWsd6NIBdesvBShlmwN3mILWVke6RhhEGux6b2Mj1SixMyZJ9Du38KWEXypPewzhAWXn4hfT6c1GhJHNZYdAtg5e033dxHP+aGr9BK0q6HaNZvuQEwd9/H3Mobr6TPh2G41h+7gg59c0HXWed1SHz43vslfyOc9/TZ37Y2Yrrm4kBGYCAc0ZnPFc9gw4w4yyu7dEK2t65IZPDEDafTa5F5dZ/OoJHYdFhTbV7KpHICypJfmaPhIemJmdzUrXemr5k88y4LZxivPAUYcf02x4g7ooGVU/srr77i0xsT8B9dGkoSR+cGur0xfuykO3Lb7UkegN1nR08ADf+2UYB6C52ZVev4yVP+5owpX7CwtjThI51lRsxgXnvY65e0vaG+a3fk89IO/fqngPUrJAVOa9U6r7M2LwsnqlPDYhMo+87ayzrrWXjxl+6QtktM/2A2Dt8pg+bjiATBozngikSEYqpuc8xLUMvVp3/ujn3yoVS8qAc0/NORAlF/6xivKBAlpKhT4trWhq4DecYagHacDYU4yHCY1wyc7Y2pkzXNwqJCdWI6RWXa3/7JqInEuSMPPOSuPPv01qSow6BodMSmb/pB+ZWX3djRY9qiDANrRPe9RMOO7XS3FCQw4jHdqJn72Cfcks5s7JA3m0WrqzZ/6i3U7yVdQ16/csnN6VbIiO5J++uxYRciTsO9k3REP6TDodl7P+YuPvnj9DaHn3Z3aTSeketEmfu4PKCY05I7McnMOkY4dG+nQAfybo8c+Vhls7Q9oiXuvEZklryY3AYSpY2dPPNf1R14ZuItXbJPGIDNF+KYvbktn72l3n+pbCbMmc9RzaDWdSWVOsB4WhUx2dBQrG6XdDB4VQ/MDum8J93e2KPkMprslewfvesjbkTXjC9px4CHLNntqU59ek2PVy789Cdu5p77HK8TOxk/g7auiLza4w992i2+/Ly7+ubrSTowFTUYYoQwnppefu5pN6ML+NOnTvm0PqhTThMMw7+9UkC09dscsufuu18S6NaS6z/AC3TvSH7Sq3Gd16pnVHcwj+iqpTdJxSXuHv8OmXIHwkF3u4WjR2LjumLFQR+3OTBFu1K+n6pu7On9pRdf8ILOTnzywa3tjY4V3iFPw6BSFDBeicb0Ix97wF1+9hduSQeGGBs4E7fF9EHJn1A3CKZb0lby3H0fT6XXWX+NYntnssVBgwmMdk4jOtd/Lmq5vKmN7E4jejLTSkBc1TPxJS2Tj2nqbypbcrKYxT/87pcCodKPSD70LK/TfvEzt6IL8tSb7VHnogj1Pa96u6wV01EttQ9Jqak3AWZuuqFnrRTg2havCS//6Adu3kSQ+hOdfDTWT9n7vPjzn2pb6t6tc4NQp/kpy/vutdls+ZLVEJO+ITpzm+O4+gwrz0vaZvIm6jcjehmba5SWO9QIqDuqFSvGb29EaeN0bXvQBNBgjkoC3aWf/UQX4D+I4253hwbBM8gPfviEl642d8+9Pp5vSAVItwMa+vRKAc+IVQ+t2Vl37OMPuGU9G70kqWapKWgnNmJf0P4netZOqs5HkKOimd1w9ptSrzGH3xaE1mNj7sQDDzgJbHAfPvkT0T/IbMjB7CdEoU9d1TnRgpbXxz/98PC8J4dWg/A6euedblJP6y/+4ilJgZyPJkWeh+dmgQsYF574vpu9+z4vHS83UuSZMmg/21VHR4DHcT1a2bh43l3QLBrj91fyFl5pY3ld0rm+705+8VeGd2gj4g7KaSuV46xepPPuvF4nrUtQi2cCCOHJGtUzTHhZe5gXtRc2e9c97hCqdjDDQTWhwwD/HlInPypZDBd/8oSWy+8XY2ZCpPrhxseFp38hbRszbk63N7wJYcWJy4fsiQO78sWpP2boIzzEO/G5L7qrTz3pLr8cZtFdsH2gvrkm3nrdZz6r8x4pVWCQzjkcNDApg6bibfnEifDcF37Fvf+v33Zc40mMsQFLqisgGv2vqbF8+NMn9QLtqDt2/8fg5oIznIVtUWkArtBguMt+4rNqMNrmuKT77JiiCTRhH/78Z37GfeLTn3Go0YpnaIQPTbMUGBlNtqF4yXv8459w67p6dV6zMUzuKibUM4KRLnz3X92JR/4HXWcNT4SbzeoQepYCDIgyJ1Rv4ydOug9+9IRb1+HfmCa4mGz9+QnR+Q/d+R/8d3dYe9dzujFVxmwx6ACUTspJ/vUSW7gh4UkfaIaV7GUqgo3SIXOw7Es0lscfc8c1khw+HfYwO3GFMrkaxqlOgVAn133q05IVMOfe+97jenB0uV3IlI2x6uiLUoD5/uP/6m/tmKKG6kiHKfqjgFWIc8ckx/nIpz/n3v1v/zWaFLVDZ0K0oZXRu999XFfr5tz12t7w21Kq+yxDaE9Z7Wu4B12eXig8OamB8rJ2EC5qUmQ1apPdGNL7P/6RW3n3nDuhixh+QtRl9kzaNgbNLNozYQUcvesud+wLX5bErf8m+afJbIzwkSCghcTLUmt19p/+QbJMb3TXf+4LHe/zEX9oGqRAmF1xunzq33/FXfn5TzS4PpkiZJC9ZjJ3VYfvfv97bk0ab274lV8bzp5TKg3eYXvRnCHc8KVH/B70ue/8q7/j7HMj5ptOkOTx4bPPuMs//J677lf/nZsNGjgGn+shxphXXv/wZ9zk6TPuncf+ZeuaK/2N7cUwcbqsR2TvaUeCe+8nP6EzB4xx8+Qr9+8onD7+gRgJTGOS63zDl74s3XRz7o1vPeoFSwNhTVC564w5+/9pC0RX60792r93hzR7tlEjhterG/hxWr4xsV9d7gRy+9+6YOfBMUyEYfLi9OoHvOu1ZXHovk+4c//09+68XghiOIwa1UEU5r2f/Ni99y//5I59/svu+H33ez/+9IrTl0NF8XaAZrD6hWtw8uyAagtvyENe3Lr8rDwx7v5gGyRNiiRg7MSXftWd/7fH3Ds6SMLwiMHqjYnSW9/6L25Gd96pY2PuxOsvD1tLXg8nbIz1C7NTesszNqZT3H7DEgxbOGrDFwBzseKmr/6WDm2fdmfFpIXJtbRtBQdm1bN26ZJ78//9O02Q1t1N4pVIoUyk3G1JjCwqYytvaWR+PPs989v/s3v9//7P7rVvPurO/MZ/dNOSFY0WgA+1hP7gn//enfoPv+Fu/MznfFZ9ujCTC3nvy0KCFD+TBW356gtoh8SGjygmvapD9L6CYlx1lwtdgrf/T7/rXv7P/4d785v/xU1N/iddmZRQdDWQ85pVn/1//tYd1pL61q/+pr8uREHqyMMoGkFkrGxGwzpge8AFf2gfHpdmJINYnqf4lJ9aymZ00/7lLerAa+pfb4sRT+gq1vq6lCuoPpelku6Nv/2GG5Ps4NvUJ2EKmE4HTD5CxT9x2az+KoIoHR1cMCZMLXTsghl8ZurGd+rBh9zyb/+ue/vvHnXv6h3I2ulb/ASZa6zvimlzBfnM//Kf0kd8W7TtPI0eWV5e3ho+LfeyIRz7W5trK+7cd//NvacRgH2Tf3vhJXezmPQdh2fd5IMPq7H8jmSZnvKS1OpsLHS0TS0RLmn0QaA3Au6tMqNs1uakwi7rbil4EGqPEPi6K9EyS+WgCgeB/Qj0NpmxFl6HTV18qAOnN7/xf7kxXaNbPnG96nLVTX7wvhvXrYEzv/v7Oqj4SKJep6ZBlfqhE6hNeTVNCC2nrM3Vm24dqY2CD/VCg1IQcF56G8GFwPk6y8ZWBvdrr7z2qnvj7/7WrbzwnFuQfJRZSapr6XHDuuh789f+V3f9px5OmgjMraa6o61TFvqAKeVoug9clRQ/lB9Ayyb6QNyPaIdXJASOctK/66w3AdMqR+qrLp53b/zXv/cC/dclM3pVFycOzV92GzoLOqFtxzP/4St+94HHYWXrbURS/3MZNIWjwbC8uiZmNa9351d0teef/8+/dnfqAPGhr/yGm9JJ5ATElaCeOpmzERYixgyaSmyKaYKTChwIg9aMaV73JukAjTTO0HGh1eLZt9yC3v2fe+rnfuF6WoeIRyRFbVJ71dRr2YZiddLJpr6MQcMw0QbSJIPO4hsEgwbnhQsXGmHQ0JZ9S56Ar2gWPf/L59zrOvVvaWC9QY9ZDt13vxQ86zokzLShvmB9YHZ21jPPpvobq62r84Nh0NZOGBAwtTNo6g1eqckdNzkW9MLz3Z/+2F187VV3WnKJkFqIDGnCEfxfhaatjmqC1BA0tLFmdXMS7LKpe7b/+99+093z+S+5W37115xC3Ajhqsy6DYWAIfNDLVSTM2gjGDZ4UInT5GAAnrGW9qaCyisaUK2Gegswj3L1Ub9NvTKkTHfxKEKm9vKBUhorYMiTmgUyuzw6Jwatjlh7+SJiQUvwUW8w6CZx+TWrqsoG1niJHmWpf6fqbuS22931+l2cO+6OiY53fPS+rSuT9DnR2eq4f4Tw/K2lNjPoQfQBNJYzg6Z/N1pvIhDlszKyIm8En+rtmmbnJ3T1ceKOO9yG7kbf+/nPaz9a952pJF9vdJTyNZa7B92W3BqCCogM2yUh29QI7w2jQbSv05auhg86uyes7otijMA1gM4FEVciuJs0Ma5GyhU6HIyYsoypUfrBlEKpgTRRPu71YqxstifdSPk8puSPtRPDHQXV71QRG8enuoOBQDceo4zrSh2G2ZffR7W2Geq4zkLGZWuijcR5BT7tE9N0GwFHXJ5G8Kk+vGos8UQOAltSygBz9ob6TOst8Srz19/iyEakcbT9QgT8JiCoGgrGBgIfl2+Fe3+zFcP8Yn9zZ8Ps22wqDzczM0vTZoccKIb/58PMj3TB7RPrj4dleSM8/PLCreFYHGyMfadpwGJhhjuyfS4sPMIXw8m6DbbZFm54zB/bh0XljOO0ubVM5lGRNwzi5CnkJ3EnQfzdRrcI/lasrXiGJ7Zxx98ebuRncDx9IvjZNG3x4vwqII5r7hiP+WHbz+CZHfvH8eNwg2m2tUv7jmFYOgvzdiifwbc42+hs+bQIstmG8hq6Yz+LF2yC8mBFSbwzxm95NtviFpXN0hoes0ln7iws8/dxcvKch8vitsGN6BfjSPMk2BbfcMZh5o7xteEhb/YvuFN4Ub7ND9uMwTbb/HntyW9DB/OxrqpoegAAEFZJREFUIZ7/gS+4CTc/i0t+MLkz6OzoQmIM/n68CyO3xTNbEdJ4Pj5rwsSrzd+Hhbg+QH9SGJEbP/tZPGyLayf2ZvuwgNDi5KWLYcThsdvSm21h276jMlo+srbRYFvaDL2K8pVNZ3nJix/Hjd0avkW4ZLYSp4uqJwVr+TeP7HfWvw1PCIz9zG22pcfOwrY4ZltcHy8vsxYhsrelzbS1KGralvCzdGZ384vDcWeNwbEy2rfFM//0O8pn0uMUQh8IMy9Lb7alw+4Ey+LF6WK3hXs44LMGC9woTz48hLXFMb+CuAYXOzYx7Dy34UjtLPzwbWktHjhSP8WJ+Vcefovrw6I25uFF3x5uRBv/ncmDwafO/G9k6+ZIHN/Hi2C35UGBVpZm1/GW26G9cxRIe/rOZWGIuR4K2KyqHmjFUAaFpzgH+yAkTGpZX/Rjhgy6H+rthbTRKB1n12YVsd/QvbspYLOqpnM5KDxNl2Mn4ffHlrdyPmTQW7TYn666Wsr+pM6eKtWgBtWdmEHvBM69UPlDBr0XaqmfPBbMoIezpH6IujNps/uUTeViJ9rGTuBsin7Arauuhgy6yVraxbCHM5ZdXDkFWRvUDLoA/dC7AgXqqqshg65A9D0ZdbjFsSer7aBlejhhyK/xIYPOp8vQd0iBXUeBupbN3Qq2E8xyv21xZG7jdSN5YfiQQReSZn8E7ERn85SLZu47lof9UYVpKepaNqcAh47mKBC1/36QDBl0P9SrKW16ZbImeLsBTBtTrqmx7oZy7WgeCg58dzRPQ+SNUmDIoBslbzngmQdS5RKVjFW0dGx6uRzjbRpXSVLs+WgxTfd8YfZ5Aepq80MGvRsaSoMzzLaZbFTWppfLMd6mcUXF2tfO/UzHuL3sh0qsq65yhSUZgboh6RZucMyO41Mhnb59GjEu4sTxDFY3O6/CPazM08u8eIbbcGTTZdNUyV8c19zAM7fhjG0L7xTH4sdxYreF59ll4+WlrerXDVencMJ62Q4qmwY6Y8z27i6JO+Y329a6wPLIS/xJ6AAtikf2vLDYr8hdAn1hlA7ZyU8TZz9258f2vnHdWLQ8PwvrZOely/pBp5hWWXidwrJx+Y7hJe68WFt+ucKSLNim6Wbjj9u+Y/F9lqaTbek8HI45oz01v3yLvn0cia8Eh+GJ03fCk8LPRMpLHy8bCbc4JjrTw8rsQcRp8sIzaNs+U/iCWbZcebRpAxp9GHy8su7styWL/c2vF9vgYNsPOOafdefhiONmw7Nh9o1t7myaBGee73Y/q1ezk7TtjdJwGT6zt0OjeW9Pmxcvz8/gGj6fl0ica16a2M/SF/nF4Vm3fZsdw+jkznSTTlF9GH1sZDOhUVlcWZoCKM8vRm6wzbawvHRZv2waS2t2Nty+se1H3Ni/KK35x3YL9T2WOA1gNBPd4PCEmU34ysqK1zyysLDglpaWUibj04Z03h3+MCJZoWM4uDGGO/tNGH5oVEGwPQLZERdo8QmvajwOlcvyQ3r8DGaRNok4DpMiX6aoNbaFd8kUcWHM0I9yIbCccmEsH7kgcvAWxaPuMODiNyUFltKc492oNAJnnOfYnaTs7S9wkFdMu0CjitVXDD9252FJw/PakuDHNCIutKRNGr48mH4iS3vWv7ju07hZXNG35Se20ahC2Uxgf5ynFKYcWXwGI45T5CYuSg9o/+BBNRp0NZyWrixu4sf4i9xFfcDwdbQjunWMp0Dyjdo3a//YRWUxWOQZk42XpbPFN5t00I2yYValAQq/mAYWN2sX4bR4WdyUY3p62l24eMHXHfyVerTyxfBi/Fk4Br+FNoNuBkB0BGzTOIJKHBDbLLAbjF7CwYf2CtNJaB2+F1hl0gCf8oGvaX1sNDJwQH/wNmWAjcYR1Pzgpmw0FmNadeKlvugItAtscNE+NiXPOxrPakNp+NBJCB7wNW3ASQcHF+XkuwkDXNoi/Yy648d3k/2NctBGJqSQ49Dh5vVyWh+Alk32AWsnVlfgM3fddUffYkJ0+NBhNzszm7YTY9BV8bWo9CqGBkLDxKAaJzuaVYFVJi44+NHhmzbgsU6Au0kDfGhJuQZRNspFJwBn052csjH4NE1Dqx/w2CrL/Jq0wcevaTpSBurN+ig4B9Hf9nMfgH7Gv5poI9aXfb1NjKc80vyr4ix1iyMebXDbd5OjHgUBDzgMj+GtWsiy8eOyNYXL4GLH5TL/snktG68IRxP4DKaVLf4um98q8WL45q6Svpe44LEf6ZvCa3BjXFaXveS7UxrDRRxw2LfZndL2EzYoXFYObHP3k+9OaQ2+4Yq/O6UrCkumwkWhXfybHs1BD45B4OlS1NqC47KY2+zakESAmoQdodnmjPHG7m0R97jHfihbXAbcufv0DdRTFm8DKPY8yFIz6D1fyoNcgGa2SA8yRXeu7OHwt+kMcGA1NLuDAkMGvTvqoblcFHTqePbSHPIh5DopMLCZrV0DqjPzuwDWoOhHUevqX0MGvQsazjALQwoMKTCkQB4Fhgw6jyoHwM8OLw5AUfdNEQe19TAoPIOumEGWqy5cQwY96FYyaHwF24l1LcGKijMcAIoo07v/IJfovedy96YcJP3qwjVk0Lu3Pe3pnDU9AOxp4gwzv/8pUDAxqlrwIYOuSrF9En84w90nFTksRmkK1LXtUBphDRGHDLoGIu5qEAW3OPbpQf2uroph5naWAnVtO5QqRVG/K5V4K9KQQW/R4kC5BtpYDxRl935hh21j99ThkEHvnrpoJicFe2HDLY5myN0k1EEt0QeFp0la5cEeZLnq6l+lGPTwwCevuveIX8FSq9E6LcC5RyjWMZuN0i3GnEPDQc1sB4UnLu4g3IMsV13tZJssDgSYIKXrxRdfdD/96U/db/7mb3pRh4wIWaT41TVSZCsIXAY/xhG7s2l6/c6WCzhN4LH8JWXbwtEkLmAPqnwpLs3acds3dpMmhQ/eATxT9vhCkVLcTRQww6QNl9l1omzrb4GGTeCxPBs+q64mcRlO3zYarLe4n1GeuEyx2/JTxvYMmsQAR2YpYvGQr/tnf/Zn7m/+5m+8oHcAGXJsc8PIzV0GWdU4wLdfnIeqcMrGz5atbLpe4o0GbTGkbZKGBjsuW1M4Y1yDrLe0HYqhDWKW5PFV0G7SS/uwNHG9mZYfo7PFqcsGbkLLZGGNu0kD/M3REsoqaspEGy1V1iaM1c0WLRM8vdLS1wDAmDnDnGHW3/rWtzxz/pM/+RMv1zdbkDgT2bC6v8Fl+OqGnYW3X3FRzoGXbYDXRAZZth2hZWAmoyPNMsytsuFq3uzHeqNMmKzdKzVbNms2Dv/EE0+45557zn372992Tz75pFezc/bsWT+TRgg1amPeeOMN9+qrr25XedVrLgrSMViAD60S4GYQsYIXJOnLGxU8CPOemZlJVdT0BbAgMWVARRNC7Y8ePZrKhS6I3pc3NETQ+yuvvOLxQEPqvAkDLluBoZ4JbTG0K/ybMMAFPhpODF8TeGKY4EQNFWVrUqMKOKEl9YaKLdR6meaYOD91u69ever72qD6wMb6hjtytFmtQtCIdkL/xsBPmmqT9C80qrz77rsOvgkdaSc9a1R56qmn3BM/eMKdvO6ku/HGG91f//Vfuz/4gz9wp0+fdo8++qjXnUdjBBGF5EeHJxPWQXypoz/0xzCQRL7JvqQxWCNQ+s1mlE+3pQORODRMcFVl0KQ12JaJbn5o5YCY4IsJyt5VvHTOg2M4utmkhYY2MKKOikrFZPObhZWHt4jWpCU+P3BQZ7itbDGs2J3FWeUbODAVjOGiTDF8RcltG1XwWFzgQktwWMcw3L6+MqvYOB8GI4lfnCdLE9vQEzrairNbvRkug2HfnWzi0hapN8NHfMprcMzOg5NH56L4sf/q2qpXeWXtpGzZ8vJQ5Ac+6wMbrQ1fvn76QBEe8wcfdUX/xlA2/OJyb8Xd3hby4hXFp18D3/qcbyetMbe5kUwugYXZ3i+28yvitRgxv/Nv33H333+/e+mll9xjjz3m5ubm/Ozu61//uvf/oz/6o1TtzuEjh93NN9/sbrrpJtI3bhj10Mc2CMMsjA5hTKZJnMyeaTAomByEoQPwO3PmzCDQ+YGdmcqgzMLigtcBNwh8rOqYtAzCgOvkyZPuhhtuGAQ6vxIZVB+g/dMPBtUHWGlhKF/TBp4FH7nzzjv7QtV65JFH3Be/+EU/otEYfvs//rZrjbfcM888429xPPzww+moDfdnJLCCQlxGwiaMzYpY1kFQfjbK1o3PZgnM1sEBY4ln0HXjg2aUyxh0U+Ui39QZDcXKZn42ktdZNsNF2fgxe7AZX514YlhGy5XlFTc9NZjBjrLBVJre4qBsfmtjZdkXmf5GXTZRdzajo2yD7AP0M2jZZB+AeNZOcDfFS6Ah5aFdQEfqjm/qrFd+0iLj/DDMnPlhGAF+53d+xz3wwAMeAQS0eMbQ4rQ+Uc1/DH6M13DXjMqDA7bBB6e5m8Jl5TK7CTzXpFEbE5fNymV2XXiNcQCXMhkN68Zj+TV8hqdJOsY4B1k2T8twOIjbfpafOm2PK2r3Rtc6ccSwgG+MmRsqflsqjlCT29pJTLum2go4MHXRskXmIZIBBjiZP3XqlPvDP/zDdPnRVIHANzQNUiCzD9sgpiHofUKBphhlJ/LsBM5O+dktYS0YM1Pw2MC0vdpw3ZzA8B0z8Dju0N0/BURe0bd/OHkQdqruwGtmp/Jg+PeN3VAbydKHQ/Gh2R0UyN1AhhnTqeJOtjuyuz9z0RRzhlpFM5OmB9wYb9O49mer2F6qmKbbQ4c+3SgwSPrV1eZzGTQFBUFdSLoRbhg+eAo0PvgOaLY3eMrtHMbG62zniqY5e/Oz9kHgMBLWVVeFDNoQDe3mKRDtBtSObJCNMs583EBjdxxn6K5Ggf08YRrk7LYa1XuLXVd5hgy6N/rXmmontjhqLUAOsJiZxO6cqEOvkhQY1GBbF3MpWax9Ga2uuqrMoLnNMexwe6hNFWw1DOtwD9VhyOqQcfZXZ4OkX139qzKD5hJ2Xcj7I/f+Sd3kFoDBps7iejP/QVBxkLgGUZ5B4ojrbADbtL5odc3+BkmnUrgKJiul0vYSqQZ8lRn0448/7gX9kN9BdDzuaA8Cj5VnUI2TMqWX9Jvc4wgNi1do/AZlrGyDwActB9VGKM8gy7a6uuZfoYF3EG1zkGWL620Q9UfZBoHH2sia6q5fs01gfx7AeBT/xje+4WVxEG8Qj1d4dm33tON85OWzXz+enA6iTOST56asRpo2RrPrrruuDZX5t3nW9DEm4TAI1zLTFC6DCx0HJc8BnLyyNdxWxrptg3/rrWfSsg2ibUJH6291lykLL+4DVt5snDq+DTaiB5o2JrObNnL77bf33U5GNKL0dL+FZFbwpgs9hN8fBYZ11R/9dkPqQdchXGEAC7vdQNra81BnXVVm0JvX9Cycf8Paq71imwRIo8EM661JKtcP23d29Tf+D83eokAdjLoyg2YfDAY9NEMKDCkwpMCQAs1SoPIh4ZA5N1shQ+hDCgwpMKSAUaAyg7aEQ3tIgSEFhhQYUqBZCgwZdLP0HUIfUmBIgSEFeqbA/w9T1Wv+fshsMwAAAABJRU5ErkJggg==" } }, "cell_type": "markdown", "metadata": {}, "source": [ "### Problem 1\n", "\n", " Consider the following signal, created by the formula $y = A \\cdot sin(\\,2\\cdot \\pi\\,\\cdot f\\,\\cdot t + \\phi\\,)$, for some values of the parameters $A$, $f$, and $\\phi$:\n", "\n", "\n", "\n", "
Give values for each of the parameters A, f, and φ under the conditions stated:
\n", " \n", "(a) A > 0, f > 0, and 0 ≤ φ ≤ 2π.
\n", "Solution: A = 3, f = 0.5, and φ = 3π/2.
\n", "(b) A > 0, f > 0, and -π ≤ φ ≤ 0.
\n", "Solution: A = 3, f = 0.5, and φ = -π/2.
\n", "(c) A < 0, f < 0 and -π ≤ φ ≤ π.
\n", "Solution: A = -3, f = -0.5, and φ = -π/2.
\n", "(d) A < 0, f > 0 and -2π≤ φ ≤ 0.
\n", "Solution: A = -3, f = 0.5, and φ = -3π/2.
\n", "(e) A > 0, f < 0 and -2π ≤ φ ≤ -3π.
\n", "Solution: A = 3, f = -0.5, and φ = -5π/2.
\n", "\n", "Hint: You **could** use code from the IntroToAudioProgramming notebook to check your answers!" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[