
Computer Science

CS 583– Computational Audio -- Fall, 2021

Lecture 09
Conclusions on Auto-Correlation for Pitch Detection
Discrete Sine Transform
Complex Numbers
If times: The Discrete Fourier Transform

Wayne Snyder
Computer Science Department

Boston University

Computer Science

2

Digital Audio Fundamentals: Multiplying/Squaring Signals

Define: For a signal X of length W samples (a “window”) a window frequency is one
whose period P is such that W = P * k for some integer k, i.e., an integral number of
periods exactly fit within the window; alternately, it begins and ends at same
instantaneous phase.

We will use these signals as probe waves to analyze a musical signal and assume that
all such probe waves (for now) start at phase 0.0.

Computer Science

Digital Audio Fundamentals: Multiplying Sine Waves

Recall that when we take the correlation of two sine waves, we get 1.0 if the
waves are the same frequency and phase, and close to 0.0 otherwise.

However, if we suppose both waves have amplitude 1.0, we can simplify:

and if one (the “probe wave”) has amplitude 1.0 and the other has amplitude
A, where both have the same frequency and phase, we have:

Computer Science

Digital Audio Fundamentals: Multiplying Sine Waves

Therefore we have a “detector” for finding the amplitude of a given signal X,
as long as we know the frequency and phase:

Computer Science

Digital Audio Fundamentals: Multiplying/Squaring Signals

Now, What happens when the signal is composite (not a simple sine wave)?

Computer Science

Digital Audio Fundamentals: Multiplying/Squaring Signals

Now, What happens when the signal is composite (not a simple sine wave)?

Computer Science

Digital Audio Fundamentals: Multiplying/Squaring Signals

Now, What happens when the signal is composite (not a simple sine wave)?

Computer Science

Digital Audio Fundamentals: Multiplying/Squaring Signals

Now, What happens when the signal is composite (not a simple sine wave)?

Punchline:

Window
frequencies
are
orthogonal,
and so the
probe wave
can detect
components
of waves just
as easily as
simple sine
waves!

Computer Science

9

Digital Audio Fundamentals: Discrete Sine Transform

Doing this consistently for all window frequencies gives us the Discrete Sine Transform:

X = makeSignal([(3.0,0.5,0.0), (5.0,0.3,0.0), (10,0.2,0.0)], 1.0)
S = DST(X)

S[0]: 0.0
S[1]: 7.89649143503e-12
S[2]: -7.39108746491e-12
S[3]: 0.499999999998
S[4]: 4.00080251115e-12
S[5]: 0.29999999999

……
S[10]: 0.20000000001
S[11]: -1.83215982068e-12

……
S[22049]: 2.55635210657e-12

Computer Science

10

Digital Audio Fundamentals: Discrete Sine Transform

Doing this consistently for all window frequencies gives us the Discrete Sine Transform:

Note:

The transform can ONLY detect window frequencies = k * f for f = 1 / W (in secs)
= k * SR / W (in samples)

So a window of 1.0 seconds can detect 0, 1, 2, …., 22049 ONLY
of 0.1 seconds can detect 0, 10, 20, 30, …., 22040
of 0.2 seconds can detect 0, 5, 10, …., 22040

Another problem is that this took 20minutes to run!

Double for loop with W = 44100… 44100 * 22050 = 972,405,000 executions of inner loop!

Computer Science

11

Digital Audio Fundamentals: Discrete Sine Transform

Doing this consistently for all window frequencies gives us the Discrete Sine Transform:

X = makeSignal([(30.0,0.5,0.0), (50.0,0.3,0.0), (100.0, 0.2,0.0)], 0.1)
S = DST(X)

Bin Amp Freq
S[0]: 0.0 0
S[1]: -3.93616764277e-12 10 ……
S[3]: 0.4999999999987 30
S[4]: 6.72379914407e-12 40
S[5]: 0.30000000001 50
……

S[10]: 0.29999999997 100
……

S[2204]: 4.73093370979e-13 22040

This took about
15 seconds to run

Computer Science

12

Digital Audio Fundamentals: Discrete Sine Transform

Doing this consistently for all window frequencies gives us the Discrete Sine Transform:

X = makeSignal([(30.0,0.5,0.0), (50.0,0.3,0.0), (100.0, 0.2,0.0)], 0.2)
S = DST(X)

Bin Amp Freq
S[0]: 0.0 0
S[1]: 9.58745925935e-13 5

………
S[6]: 0.5 30

………
S[10]: 0.30000000001 50

………
S[20]: 0.29999999999 100

………
S[4409]: 7.23056298634e-12 22045

This took about 1
minute to run

Computer Science

Digital Audio Fundamentals: The Discrete Sine Transform

def dst(X):
W = len(X)
S = [0] * (W//2) # spectrum
for f in range(W//2): # for each probe wave f in [0..N//2]

for i in range(W): # S[f] = sum of product of X and probe
S[f] += X[i] * sin(2 * pi * f * i / N)

S[f] = S[f] / (W/2) # normalize to get actual amplitude
return S

Returns a spectrum of amplitudes (in range -1 .. 1)

S = [A0, A1, A2, …., AN//2 - 1] assuming w is even

for window frequencies

Wf = [0, 1, 2, …., N//1 – 1]

and actual frequencies

F = [0, 1R, 2R, …., R*(N//2 – 1)] for R = SampleRate / W

Computer Science

Digital Audio Fundamentals: The Discrete Sine Transform

Interpreting Outputs from the
Discrete Sine Transform:

88*SR/W = 880 Hz
Amp = 0.8

176*SR/W = 1760 Hz
Amp = 0.6

264*SR/W = 2640 Hz
Amp = 0.4

Spectrum: [(880, 0.8, 0), (1760, 0.6, 0), (2640, 0.4, 0)]

Computer Science

Digital Audio Fundamentals: The Discrete Sine Transform

Spectrum: [(880, 0.8, 0), (1760, 0.6, 0), (2640, 0.4, 0)] Interpreting Outputs from the
Discrete Sine Transform:

88*SR/W = 880 Hz
Amp = 0.8

176*SR/W = 1760 Hz
Amp = 0.6

264*SR/W = 2640 Hz
Amp = 0.4

Computer Science

Digital Audio Fundamentals: The Discrete Sine Transform

Spectrum: [(880, -0.8, 0), (1760, -0.6, 0), (2640, 0.4, 0)]
Interpreting Outputs from
the Discrete Sine
Transform:

Component sine waves may
have a negative amplitude.

Computer Science

Digital Audio Fundamentals: The Discrete Sine Transform

Component sine waves may
have a negative amplitude;
they will produce the
negative of a squared wave,
and report negative
amplitudes just as they
report positive amplitudes.

Computer Science

Digital Audio Fundamentals: The Discrete Sine Transform

The same effect can be
gotten by delaying the
phase by pi or by using a
negative frequency: all will
produce negative
amplitudes.

Computer Science

Digital Audio Fundamentals: The Discrete Sine Transform

Spectrum: [(880, 0.8, pi), (1760, 0.6, 0), (2640, 0.4, pi)]
Interpreting Outputs from the
Discrete Sine Transform:

Delaying a component by
phase pi produces negative
amplitudes.

Computer Science

Digital Audio Fundamentals: The Discrete Sine Transform

Spectrum: [(880, 0.8, 0), (-1760, 0.6, 0), (-2640, 0.4, 0)]
Interpreting Outputs from
the Discrete Sine
Transform:

Negative frequencies
produce negative
amplitudes.

Computer Science

Digital Audio Fundamentals: The Discrete Sine Transform

Spectrum: [(880, -0.8, 0), (-1760, -0.6, 0), (-2640, -0.4, pi)]
Interpreting Outputs from
the Discrete Sine
Transform:

Doing combinations of
these will flip the amplitude
back and forth:

Computer Science

22

Digital Audio Fundamentals: Discrete Sine Transform

There are three problems (so far):

(1) This is horribly inefficient: O(N2) for N = len(X)

Solution: There is a fast version of the transform, the Fast Fourier Transform (FFT),
based on a recursive algorithm, which runs in O(N log(N)).

(2) The resolution is limited to multiples of f = SR / W (in samples)

No solution, unfortunately, can try different window sizes, but stuck with this!

(3) All components and probe waves have to be at the same phase (e.g., 0.0)

Solution: If we do all the work with complex numbers, we can
avoid issues of phase

A brief summary of Complex Numbers on the board…..

✓

✗

✓

Computer Science

23

Digital Audio: The Discrete Fourier Transform

I have provided in the Intro Notebook an implementation of the FT which returns real results:

Computer Science

24

Digital Audio: The Discrete Fourier Transform

So, we have an efficient algorithm which does not care about phase, but problem 2 is still with us!

More on this
next time!

