
SETH�

A VLSI Chip for the

Real-time Information Dispersal and Retrieval

for Security and Fault-Tolerance

Azer Bestavros

azer@harvard.edu

Harvard University

Aiken Computation Lab.

Cambridge, MA 02138

September, 1989

� c1988 Harvard University. All rights reserved. No part of the SETH project may be reproduced, or

manufactured, in any form or by any means without the prior written permission of the designers: Azer
Bestavros, Steve Morss, and Adam Strassberg.

1

Abstract

In this paper, we describe SETH, a hardwired implementation of the recently pro-

posed \Information Dispersal Algorithm" (IDA)1 [Rabin:87]. SETH allows the real-time

dispersal of information into di�erent pieces as well as the retrieval of the original infor-

mation from the available pieces. SETH accepts a stream of data and a set of \keys"

so as to produce the required streams of dispersed data to be stored on (or communi-

cated with) the di�erent sinks. The chip might as well accept the streams of data from

the di�erent sinks along with the necessary controls and keys so as to reconstruct the

original information.

We begin this paper by introducing the Information Dispersal Algorithm and give

an overview of SETH operation. The di�erent functions are described and system block

diagrams of varying levels of details are presented. Next, we present an implementation

of SETH [Bestavros:89] using Scalable CMOS technology that has been fabricated us-

ing a MOSIS 3-micon process. We conclude the paper with potential applications and

extensions of SETH. In particular, we emphasize the promise of the Information Disper-

sal Algorithm in the design of I/O subsystems, Redundant Array of Inexpensive Disks

(RAID) systems, reliable communication and routing in distributed/parallel systems.

SETH demonstrates that using IDA in these applications is feasible.

Key words: Communication, Fault-tolerance, Security, VLSI, Finite �elds, Parallel

and distributed systems.

Acknowledgments

This project has been a collaboration involving many people. We would like to thank

them all. In particular, we would like to express our deepest gratitude to Prof. Michael

O. Rabin and Prof. James J. Clark for their great help and support during the course of

this work. The techniques used for computing using irreducible polynomial arithmetic

were developped by Azer Bestavros. The design and layout of SETH were done by Azer

Bestavros and Steve Morss. Logic and circuit level simulations were done by Adam

Strassberg. The design of fault-detection experiments and the actual testing of the

SETH chip were done by Azer Bestavros.

SETH was laid out using Berkeley MAGIC. Simulations were done using ESIM and

SPICE. The layout as well as the simulation results are available in the VLSI Lab,

Harvard University [BMS:88]. SETH was fabricated by MOSIS on a 3-micron SCMOS-

technology process. Twelve packages were returned and the functionality of the chip

was veri�ed.

1The IDA (Information Dispersal Algorithm) has been developped by Prof. Michael O. Rabin at Harvard

University (Patent pending for Harvard University). A special permission to use the IDA in SETH has been
obtained from Prof. Michael O. Rabin and Harvard University.

2

1 Introduction

The storage and transmission of data in computer systems raises signi�cant security and

reliability problems. In particular, data might be lost due to hardware failures, it might be

accidentally (or even maliciously) garbled or destroyed, and it might be read and interpreted

by unauthorized users.

The common solution to the a�orementioned security problems is to have users store

and communicate their data using some form of encryption, where only authorized users are

enabled to decrypt the information throught the use of appropriate Secret Keys [Shamir:79].

The proven di�culty of decrypting the information without knowing the secret key guar-

antees a high level of security. On the other hand, to protect against possible failures,

redundancy is often used as the only alternative to achieve fault-tolerance. This is usually

done by having the users replicate their (possibly encrypted) data into n di�erent machines

[Gibson:88]. The independency of the failure modes of these machines guarantees a high

level of reliability. The main disadvantages of this encryption and replication technique is

that it results in an n-fold blowup of the total storage required in the system. Moreover,

the existence of all the information (althought encrypted) in one site2 for long periods might

make it possible for adversaries to break the secret key.

Recently, Michael Rabin [Rabin:87] proposed the \Information Dispersal Algorithm

(IDA)" as a potential technique that would achieve the required security and reliability using

a much smaller level of redundancy and by keeping only partial information at a speci�c site.

The main idea is to use a secret key to disperse the information of a �le F into n pieces

which are transmitted and stored on n di�erent machines (or disks) such that the contents of

the original �le, F , can be reconstructed from any m of its pieces, where m � n. On the one

hand, the proposed technique guarantees the con�dentiality of the dispersed information.

As a matter of fact, it is hard to get any clue about the original information unless at least

m pieces from the dispersed �le are collected. This makes the task of the adversaries more

di�cult, since they have to control m of the sites and not only one. Even if this happens, it

is provably very di�cult to reconstruct the original �le unless the secret key is known. On

the other hand, the proposed technique guarantees a higher availability, since it tolerates up

to (n � m) failures. The salient feature of the \Information Dispersal Algorithm" is that

each of the dispersed pieces is of size jF j
m
, where j F j is the size of the original �le. Hence,

the added redundancy is (n
m
� 1) � 100%.

In this paper, we present a hardwired implementation of the \Information Dispersal

Algorithm" that would allow the execution of the algorithm in real-time. A chip, which

2whether stored in or communicated through that site

3

we called SETH3, has been designed in the VLSI Lab of Harvard University using Scalable

CMOS technology and has been fabricated by the MOSIS 3-micron process. SETH accepts

a stream of data and a set of vector-keys (see the description below) along with the neces-

sary controls so as to produce the required streams of encrypted data to be stored on (or

communicated with) the di�erent machines. The chip might as well accept the streams of

data from the di�erent machines along with the necessary controls and vector-keys so as to

reconstruct the original information.

We begin this paper by introducing the Information dispersal algorithm and presenting

an overview of the SETH design. Next, we describe how the di�erent operations are to be

done using \irreducible polynomial arithmetic". In particular, we outline general methods

for e�cient addition and multiplication in these systems. Next, functional units are de-

scribed and system block diagrams and schematics of varying levels of details are presented.

We conclude the paper by examining potential applications and extensions for SETH. In

particular, we consider the use of the Information Dispersal Algorithm in the design of I/O

subsystems, Redundant Array of Inexpensive Disks (RAID) systems, reliable communication

and routing in distributed/parallel systems. SETH demonstrates that using IDA in these

applications is feasible.

SETH was designed using MAGIC. The design was tested using ESIM and SPICE. The

MAGIC layout of the chip as well as the simulation results are available in the VLSI Lab,

Harvard University [BMS:88]. The chip was fabricated by MOSIS on a 3-micron SCMOS-

technology process. Twelve packages were returned and the functionality of the chip was

veri�ed.

2 Overview of SETH

SETH is an interface that allows the reliable and secure storage and communication of

information between the di�erent units of a computing system. Reliability is guaranteed

by using redundant communication and/or storage, while security can be achieved using

encryption. A major objective in SETH design was versatility and exibility. As a matter of

fact, SETH can be viewed as a basic building block; so that by using many of these blocks in

3According to an old Egyptian legend, SETH (an Egyptian prince) killed his brother OSIRIS and cut his
body into small pieces and \dispersed" it all around the Eastern Mediteranean. Later, his loving wife, ISIS,

\collected" all the pieces together, bringing OSIRIS to life again; and OSIRIS became the Evil God of the
Underworld.

4

di�erent con�gurations, one can achieve di�erent design objectives (namely di�erent levels

of fault-tolerance, recoverability, redundancy and security).

SETH can be operated in two modes; Write-mode (Disperse-mode or SETH-mode) or

Read-mode (Recombine-mode or ISIS-mode). In write-mode, the data given to SETH is

encrypted, dispersed and written to the di�erent redundant sinks. In read-mode, the data

from a number of intact sinks is read, decrypted and recombined to yield the originally

written information. The encrypt/decrypt and disperse/recombine functions are achieved

using a set of secret keys that must be supplied to SETH. Figure-1 below, shows the read

and write modes of SETH.

Keeping the a�orementioned versatility and exibility in mind, we decided to make

the SETH chip interface an 8-bit bus to four 4-bit buses { using four 8-bit keys. Hence, a

stream of 8 bits can be dispersed into four streams of 4 bits each, so that any two of these

four streams is su�cient to reconstruct the original 8-bit stream. Di�erent series/parallel

con�gurations using SETH are possible. For instance, two SETH chips in parallel can be

used to interface a 16-bit bus to eight 4-bit buses or to four 8-bit buses or to two 16-bit

buses. In any case the level of redundancy is 100% and the achievable fault-tolerance is 50%

(that is we tolerate the loss of 50% of the storage sinks or channels). These, however, are

still controllable. For instance by using only three of the four output buses, the redundancy

drops to 50%, wherea the level of fault-tolerance becomes 33%. In any of the above cases

security is guaranteed since the dispersed data is actually encrypted. Moreover, by using

exactly two of the output buses, SETH can be used just for encryption and dispersal (with

no added redundancy and no support for failures). Another degree of freedom (both in the

redundancy/fault-tolerance and security levels) can be achieved by using series con�guration

of SETH.

3 Dispersal and Retrieval of Information

In this section we explain how the Information Dispersal Algorithm works. We single out the

di�erent operations to be done and which must be implemented in real-time by SETH. We

refer the reader to the original paper on IDA, [Rabin:87], for a thorough presentation of the

algorithm. In the appendix, we use some examples to show data scattering and gathering

using IDA.

Let F be the original �le (information) we want to disperse. The main idea behind IDA

is to split this �le into n di�erent pieces so that recombining any m of these pieces, m � n,

5

Input Stream (Original Information)

?

�
8

'

&

$

%
�

Write

SETH write-mode-�
32

Secret keys

?

4
�

Sink-1
?

4
�

Sink-2
?

4
�

Sink-3
?

4
�

Sink-4

Input Stream (Original Information)
?

�
8

'

&

$

%
�

Read sinks 1 & 3

SETH read-mode-�
16

Inverse secret keys

?

�
4

Sink-1

?

�
4

XXXX

?

�
4

Sink-3

?

�
4

XXXX

Figure 1: The Read and Write modes of SETH

6

should be su�cient to reconstruct F , wherea any number of pieces less than m would not

be su�cient to reveal any information about the contents of any portion of F .

The original �le F can be viewed as a sequence (or stream) of data on the form F =

b1b2b3b4:::: : :etc:, where each bi in this stream can be viewed as an integer. In order to

disperse this stream, we choose a set of n vectors, secret keys (V1; V2; :::; Vn) each of length

m. Theses keys, of course, have to meet certain conditions (see Appendix-A for details).

Let Anm be the array whose rows are the selected vectors. A represents a mapping from

an m-dimensional space to an n-dimensional space, or in other words, from a sequence of

m elements to another sequence of n elements. To disperse the �le F , we simply map each

sequence of m elements from F into a new sequence of n elements using the transformation

A. Each element from the resulting sequence is sent to a di�erent site and kept there. So,

for each m elements of F we send one element to each of the n sites. Therefore, to disperse

the whole �le F we will need to send jF j
m

elements to each of the n sites.

Now suppose that we want to reconstruct the original �le F from the pieces dispersed

as described above. This is done by reading any m of these pieces (if less than m pieces are

available then the �le cannot be reconstructed, and if more than m pieces are available then

the use of any subset of m pieces will su�ce). Let the pieces be from sites s1; s2; s3; :::; sm.

Let Bmm be the array whose rows are (Vs1; Vs2; Vs3; :::; Vsm). Thus, B maps sequences of m

elements from F into sequences of m elements, which by virtue of the dispersion step above,

are kept at sites s1; s2; s3; :::; sm. Now, to reconstruct the �rst m elements of F we need

simply to collect the �rst element from each of m di�erent sites and use the appropriate

inverse transformation (T = B�1). Note that if the keys were appropriately chosen, such an

inverse is guaranteed to exist (see Appendix-A for details).

In SETH we decided to pick n = 4 and m = 2, so that F is encrypted and dispersed into

4 di�erent pieces and using no less than 2 of these pieces would be su�cient to reconstruct

F . Moreover, we decided to represent F as a stream of hexadecimal digits, nibbles, (integers

in the range [0::15]). Hence, each byte (8 bits) of F can be viewed as 2 nibbles and we use

the IDA described above to produce 4 nibbles that are dispersed to the 4 di�erent sites.

This is illustrated in Figure-2. It is to be noted, however, that the design techniques that

we present in this paper are independent of the choices above and can be easily applied to

any other choices.

7

Input Stream

-

-

'

&

$

%

'

&

$

%

SETH

�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
��

@
@
@
@
@R

B
B
B
B
B
B
B
B
B
B
B
B
B
B
BBN

Sink-1 stream

Sink-2 stream

Sink-3 stream

Sink-4 stream

Figure 2: Dispersing a stream of 2 nibbles (1 byte) to 4 streams of nibbles

8

3.1 The Disperse operation

The Disperse transformation is simply a 4� 2 matrix A,

A =

0
BBBB@

V T
0

V T
1

V T
2

V T
3

1
CCCCA =

0
BBBB@

a00 a01
a10 a11
a20 a21

a30 a31

1
CCCCA

where, Vi is the ith key-vector and each aij is a hexadecimal (4-bit) number. Let (b0b1)T

represent the two hexadecimal digits (a total of 8 bits) from the input stream. To disperse

this piece of information, we use the transformation A as follows:

0
BBBB@

c0
c1
c2

c3

1
CCCCA =

0
BBBB@

a00 a01
a10 a11
a20 a21

a30 a31

1
CCCCA�

0
BBBB@

b0

b1

1
CCCCA

where, ci is a hexadecimal digit (nibble) to be sent to the ith site.

3.2 The Reconstruct operation

Given that the dispersed data at sites s1 and s2 is intact, the Reconstruct transformation is

simply a 2� 2 matrix T ,

T =

V T
s1

V T
s2

!�1

=

t00 t01
t10 t11

!

Let (c0c1)
T represent the two hexadecimal digits (a total of 8 bits) from the two intact

sites. To reconstruct the original byte of information, we use the transformation T as follows:

b0
b1

!
=

t00 t01
t10 t11

!
�

c0
c1

!

9

3.3 The irreducible polynomial arithmetic

All operations (namely additions and multiplications) needed for the IDA have to be carried-

out using the irreducible polynomial arithmetic where integers are viewed as polynomials over

some �nite �eld Zp, p is a prime number (see Appendix-B for a more detailed discussion and

for a complete example). Taking p = 2 (an obvious choice for digital applications), integers

are represented as polynomials with binary coe�cients. For instance, the hexadecimal digits

from 0 to 15 are represented as follows:-

0
BBBBBBBBBBBBBB@

0000

0001

0010

0011

0100

0101

0110

0111

1
CCCCCCCCCCCCCCA
=

0
BBBBBBBBBBBBBB@

0

1

x

x+ 1

x2

x2 + 1

x2 + x

x2 + x+ 1

1
CCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBB@

1000

1001

1010

1011

1100

1101

1110

1111

1
CCCCCCCCCCCCCCA
=

0
BBBBBBBBBBBBBB@

x3

x3 + 1

x3 + x

x3 + x+ 1

x3 + x2

x3 + x2 + 1

x3 + x2 + x

x3 + x2 + x+ 1

1
CCCCCCCCCCCCCCA

In this system, all operations on hexadecimal digits should be done modulo an irre-

ducible 4th degree polynomial (a polynomial that cannot be divided by any polynomial of

3rd or lesser degree). For instance, it can be easily shown that the polynomial (x4 + x+ 1)

is indeed an irreducible 4th degree polynomial. This is the irreducible polynomial used in

SETH.

3.3.1 Addition

Addition is really straightforward. To add two integers, we add their corresponding polyno-

mials. This is done by adding (modulo-2) the coe�cients of the corresponding powers. The

following are examples of additions done in this system:

5 + 6 = (x2 + 1) + (x2 + x) = (x+ 1) = 3

6 + 7 = (x2 + x) + (x2 + x+ 1) = 1

It is obvious that addition is just the bitwise \exclusive-or" of the binary representation

of the integers. This makes the hardware implementation straightforward.

10

3.3.2 Multiplication

Multiplication is a little bit more complicated. To multiply two integers, we multiply their

corresponding polynomials. If the resulting polynomial is of degree less than 4 then we got

the polynomial representation of the result. Otherwise, the result is divided by the irreducible

polynomial (x4+x+1) to get the residue. Again, all additions and multiplications are done

(modulo-2). The following are examples of multiplications done in this system:

2 � 13 = (x)(x3 + x2 + 1) = (x4 + x3 + x)mod(x4 + x+ 1) = (x3 + 1) = 9

3 � 10 = (x+ 1)(x3 + x) = (x4 + x3 + x2 + x)mod(x4 + x+ 1) = (x3 + x2 + 1) = 13

Implementing multiplication in this system is no big deal !!.. The most straightforward

implementation would be using table lookup. However, a more elegant implementation can

be done using \shifts" and selective \exclusive-or's".

4 SETH functional units

Given the 2 hexadecimal digits from the input stream b0; b1, and given the 8 hexadecimal

digits which de�ne the transformation A = [aij]; 0 � i; j � 3 described above, SETH should

be able to compute 4 hexadecimal digits c0; c1; c2; c3 using the relation:0
BBBB@

c0
c1
c2

c3

1
CCCCA =

0
BBBB@

a00 a01
a10 a11
a20 a21

a30 a31

1
CCCCA�

0
BBBB@

b0

b1

1
CCCCA

Moreover, using the appropriate inverted transformation T = [tij]; 0 � i; j � 1, the data

c0; c1 returned from any two di�erent sinks can be recombined using the relation:

b0

b1

!
=

t00 t01

t10 t11

!
�

c0

c1

!

In the above matrix operations, all the additions and multiplications are to be done

using the \irreducible polynomial arithmetic" described in the previous section. It is obvi-

ous that the main functional units in SETH are the adder and multiplier (which themselves

might be realized using other basic building blocks). By using an array of eight multipliers

11

and by adding the approriate results together using 4 adders, a data path that implements

matrix multiplication can be realized. To be able to use the same data path for both the

read and write modes of SETH, some control logic needs to be added.

4.1 The Adder

Let X = x3x2x1x0 and Y = y3y2y1y0 be the binary representation of the two hexadecimal

digits X;Y to be added. As we have stated earlier, addition using the \irreducible poly-

nomial arithmetic" in the binary �eld Z2, reduces to the bitwise \exclusive-or". Thus, the

logical equations for the result Z = z3z2z1z0 is given by:

z3 = x3 � y3
z2 = x2 � y2

z1 = x1 � y1
z0 = x0 � y0

4.2 The Multiplier

Let X = x3x2x1x0 and Y = y3y2y1y0 be the binary representation of the two hexadecimal

digits to be multiplied, where the result is Z = z3z2z1z0.

First, we notice that multiplication of binary numbers actually reduces to successive

shifts and adds; in our case exactly four shift/add stages are required (one stage for each

bit of Y). In each of these stages, the accumulated value W = w3w2w1w0, initialy being

0000, is shifted left one bit and if the corresponding bit of Y is 1, X is added to the

accumulated value and the result is propagated to the next \lower" stage. Of course all

additions have to be done using the technique described above. Second we notice that

the resulting number (using the described four-stage shift/add) cannot be used directly

since the polynomial representation of this result might now be of the fourth degree (or

higher) and the residue of this result should be computed using the \irreducible polynomial

x4 + x + 1(� 10011). To compute this residue means that we need to perform successive

subtractions. Fortunately, subtraction (modulo-2) is just the same as addition (modulo-2).

Moreover, we note that these subtractions can be actually done within each stage of the above

shift/add steps (and hence need not be accumulated till the end of the multiplication. Finally,

we notice that at most one subtraction is needed within each stage of the multiplier since in

each such stage, the degree of the accumulated result cannot be increased by more than one,

12

and consequently, by subtracting the irreducible polynomial 10011 just once (whenever an

overow is detected) guarantees that the accumulated result will remain of the third degree

(or less).

An algorithm to implement the above technique is shown in �gure-3. In this algorithm,

each iteration corresponds to one stage of the multiplier. Several optimizations can be

applied to the algorithm. First, we notice that the test for whether yi is equal to 0 or not

and doing the shift-only or shift-and-add operation accordingly can be replaced by a shift

and add to the bitwise product (\and") of yi and X. Second, we notice that the test for

whether a subtraction is needed or not can be replaced by always doing an \exclusive-or"

of the result with w4 (since if w4 = 0 the \exclusive-or" won't change anything). Finally,

we notice that a � 0 = a. The optimized version of the algorithm is given in Figure-4. In

Figure-5 we illustrate the use of this optimized and systematic method in computing the

product of 1011 by 1100.

The above algorithm is the basis for our multiplier design. As a matter of fact the whole

multiplier is constructed using four identical stages stacked together. Each stage accepts the

accumulated value computed from the previous stage (stage #3 being fed with 0000). Also

each stage accepts the value of X and one of the bits of Y . The result of the multiplication

is the accumulated result from stage #0. The design of each of the multiplier stages requires

exactly four \and" gates and �ve \exclusive-or" gates. A multiplier stage is shown in Figure-6

and the block diagram representation for a multiplier is shown in Figure-7.

4.3 The matrix multiplication unit

The matrix multiplication unit can be simply built using 8 multipliers to multiply in parallel

the 2-element input vector with the corresponding elements of the transformation matrix,

yielding 8 di�erent products. Each couple of these products is added in parallel using a

separate adder to produce the required 4-element output. Figure-8 shows the matrix multi-

plication unit.

4.4 Data ow Control

SETH is a bidirectional interface between two data streams. These streams are fed to SETH

using two bidirectional ports B & C. Both the dispersal and retrieval modes of SETH involve

matrix multiplication. This suggests that the same matrix multiplication unit could be used

13

Begin

w4 = 0 ; Initialize result

w3 = 0 ;

w2 = 0 ;

w1 = 0 ;

w0 = 0 ;

for (i = 3; i � 0; i{ {) f For each stage

if (yi = 0) f Is yi = 0 ?

w4 = w3 ; If Yes then just shift left

w3 = w2 ;

w2 = w1 ;

w1 = w0 ;

w0 = 0 ;

g

else f

w4 = w3 � 0 ; If No then shift left and add

w3 = w2 � x3 ;

w3 = w1 � x2 ;

w3 = w0 � x1 ;

w3 = 0 � x0 ;

g

if (w4 = 1) f Is there a need to subtract ?

w4 = w3 � 1 ; If Yes then do it !!

w3 = w3 � 0 ;

w2 = w2 � 0 ;

w1 = w1 � 1 ;

w0 = w0 � 1 ;

g

g Done.

End

Figure 3: An algorithm for multiplication using irreducible polynomial arithmetic

14

Begin

w4 = 0 ; Initialize result

w3 = 0 ;

w2 = 0 ;

w1 = 0 ;

w0 = 0 ;

for (i = 3; i � 0; i{ {) f For each stage

w4 = w3 ; Add X if yi = 1 and add 0 otherwise

w3 = w2 � (x3:yi) ;

w3 = w1 � (x2:yi) ;

w3 = w0 � (x1:yi) ;

w3 = (x0:yi) ;

w1 = w1 � w4 ; Adjust result (if necessary)

w0 = w0 � w4 ;

g Done.

End

Figure 4: Optimized multiplication algorithm using irreducible polynomial arithmetic

15

0 0 0 0 ; Stage #3

1 0 1 1

1 0 1 1

0 0

1 0 1 1 ; Stage #2

1 0 1 1

1 1 0 1

1 1

1 1 1 0 ; Stage #1

0 0 0 0

1 1 0 0

1 1

1 1 1 1 ; Stage #0

0 0 0 0

1 1 1 0

1 1

1 1 0 1 ; Result

Figure 5: The multiplication of 1011 by 1100 using the irreducible polynomial arithmetic

16

"!"!"!"!

�

"!

�� �� �� �� �

!

��

"

!

�� �� � � �� �

!

��

"

�

"

� �� �

!

��

"

s

sss

??

?? ??

? ?? ???

?? ? ? ?? ? ?

??

w0 w1 w2 w3

yi

x3

x2

x1

x0

w0
0

w0
1

w0
2

w0
3

Figure 6: The mult-stage

17

0 0 0 0

????

Stage #3

-s
-s
-s
-s

�

????

Stage #2

-s
-s
-s
-s

�

????

Stage #1

-s
-s
-s
-s

�

????

Stage #0

-
-
-
-

�

????
z3z2z1z0

x3x2x1x0 y3y2y1y0

Figure 7: The multiplier functional unit

18

?

-

-

-

-

-

-

-

-

? ? ?? ? ? ?

6 6 6 66 6 6 6

-

-

-

- C3

C2

C1

C0

A01 A31A21A11

A20 A30A10A00

B1

B0

+

* * * *

* * * *

Figure 8: The matrix multiplication unit

19

for both modes with the appropriate control to forward the data in and out from the matrix

multiplication unit.

In write-mode (dispersal operation), SETH accepts 8-bit inputs (2 hexadecimal digits)

from its B-port. These inputs, as well as the 32-bit (8 hexadecimal digits) transformation

matrix are forwarded to the matrix multiplication unit to produce the 16-bit (4 hexadecimal

digits) output which is forwarded to SETH's C-port. In read-mode, SETH accepts 16-bit

inputs (4 hexadecimal digits) from its C-port. Depending on the control lines applied, only

2 hexadecimal digits from these 4 are forwarded to the matrix multiplication unit along with

the appropriate inverted secret keys provided to the chip. Finally 8 of the 16-bit output

produced are routed to SETH's B-port (since only half of the matrix multiplication unit is

used in this case).

5 Applications for SETH

There are basically two areas where SETH may be used; Data storage and retrieval, and

Data communication. In a storage system, SETH would be located between the storage

device and the data bus. In the case of a communication system, SETH would be placed

at each end of a SETH bus with the system bus at each of the remaining ends. A bene�cal

side e�ect of using IDA is improved load balancing in both storage and communication.

5.1 Data Storage and Retrieval using SETH

The integrety of stored information could be improved greatly by using SETH. Mechanical

storage devices are the weakest components in a computer system due to their intolerance

to shocks, vibration, dust, and their inherently unreliable moving parts.

Two SETH chips con�gured in parallel, and three disks will make a fault tolerant system

with two times the storage of a single disk. In addition the system is secure from information

thefts. During normal operation, data will be read from any two of the three drives on the

system, while data (encrypted and dispersed using SETH) will be written to all three disks

at one time. In the case of a drive failure (or even a bad track or sector on a single drive),

the SETH chips will read data from the remaining two good drives until the bad drive can be

replaced (or reformatted). When a new drive is installed, reading and writting all data back

to the three disks will result in an initialization of the newly installed disk. It is important

to realize that if the failure modes of the three disks is independent (which is normally the

case), then the probability that the SETH-based design will fail is extremely small. For

20

instance assume that the probability of loosing a speci�c track (or sector) is P (P is usually

in the order of 10�6). The SETH-based design will fail to read a speci�c track if and only if

the same track (or sector) in two or more of the disks will be lost. This probability can be

shown to be 3P 2(1 � P) (in the order of 10�12). A detailed analysis of the potential gains

are discussed in [BCW:89].

Data storage and retrieval using SETH is secure as well. When the system needs to

be secured, the three disks can be locked in three di�rent places (maybe under di�erent

machines { or at di�erent sites). An adversary will need to access at least two of the

disks (assuming that he knows what SETH is really doing !!) before he can retrieve any

\meaningful" information. In addition, to do that, the conversion matrix used for dispersal

needs to be known. This makes it more di�cult especially if such information is generated

randomly by the operating system or even the underlying hardware.

The use of the Information Dispersal Algorithm in the design of RAID systems (Redun-

dant Arrays of Inexpensive Disks) has been investigated in [BCW:89]. It has been demon-

strated that such an approach is superior to previously suggested techniques, namely shad-

owing and parity [Patterson:89].

5.2 Data communication using SETH

Placing SETH chips on both sides of an information bus will increase the reliability of the

bus and make it harder for information thieves to tap the information thereon. For example,

one SETH chip may interface with an 8-bit data bus and send 16 bits to the other end, where

another SETH chip would be used to recombine the data. The security of the bus results

from the di�culty to decipher the information. The coding matrices (\secret keys") used in

SETH can be changed at frequent intervals to make deciphering still more di�cult. The bus

is highly fault-tolerant since the original information may be reconstructed from any two of

the four groups of nibbles available on the bus.

In [Rabin:87], IDA has been used in routing packets on cube-based architectures. The

suggested technique is fully described in that paper. An obvious extension of this work

would be to consider network topologies other than the n-cube. Also, �ne tuning the routing

algorithms to the system parameters4 is another interesting problem.

4number of processors, size of packets, failure rates, : : : , etc.

21

6 Conclusion

In this paper, we have presented \SETH" { a hardwired implementation of the Information

Dispersal Algorithm. SETH allows the real-time dispersal of information into di�erent pieces

as well as the retrieval of the original information from the available pieces. SETH accepts a

stream of data and a set of \secret keys" so as to produce the required streams of dispersed

data to be stored on (or communicated with) the di�erent machines. SETH might as well

accept the streams of data from the di�erent machines along with the necessary controls

and keys so as to reconstruct the original information. The design of SETH involved �nding

e�cient techniques for computing using irreducible polynomial arithmetic. In particular, we

have outlined general methods for addition and multiplication in these systems. SETH was

designed using the Berkeley MAGIC layout software. The design was tested using ESIM and

SPICE simulators [BMS:88]. The chip was fabricated by MOSIS on a 3-micron SCMOS-

technology process. Twelve packages were returned and the functionality of the chip was

veri�ed.

The design of SETH can be extended in several ways. In our current implementation,

an outside mechanism is assumed to be responsible for providing the secret keys to be used

in the dispersal of the original information as well as providing the inverse keys to be used in

the retrieval of the dispersed information. The outside mechanism, however, can be relieved

from the burden of computing the inverse keys if the design is made so that the inverse keys

are computed on the y (given the original secret keys and the set of intact sinks). This

is quite feasible. Moreover, the possibility of \automatically" generating the secret keys for

each �le (or set of packets) is very attractive. In this case, information about these keys has

to be included in the dispersed data so as to be used later in the computation of the inverse

keys.

Our choices for n (the number of sinks), m (the minimum number of sinks required

to reconstruct F) and k (the character size) can also be changed. It can be shown that

the size of the chip scales linearly with n �m � k2 and that the propagation delay scales

linearly with k. Increasing n and m would result in a more exible design in terms of the

achievable levels of redundancy and fault-tolerance. On the other hand, increasing the value

of k would signi�cantly enhance the security of the dispersal algorithm at the expense of a

blowup in the size of the chip as well as an increase in the propagation delay. The increase

in the propagation delay is not a critical factor, since by using pipelining the overall delay

in communicating messages (especially long ones) can be downplayed. The number of pins

required for the chip is another crucial factor. In particular, if the chip is to be used for

parallel communication, then the number of pins required for data i/o is (n+m)�k. For large

22

values of n, m, and k, serial communication is likely to be used. Still, another alternative

would be to partition the computations so as more than one chip could be used in parallel.

The potential applications of IDA are numerous. In particular, the use of IDA in

I/O systems, RAID designs, distributed communication and routing is promising. SETH

demonstrates that using IDA in these applications is feasible.

References

[BMS:88] Azer Bestavros, Steve Morss, and Adam Strassberg, SETH: a chip for reliable and se-
cure communication using the Information Dispersal Algorithm Internal report, VLSI Lab.,
Harvard University - May 1988.

[Bestavros:89] Azer Bestavros, SETH: A VLSI chip for the real-time Information Dispersal and
retrieval for security and fault-tolerance Technical Report, TR-06-89, Harvard University -
January 1989.

[BCW:89] Azer Bestavros, Danny Chen, and Wing Wong, The reliability and performance of Re-
dundant Arrays of Inexpensive Disks Technical Memorundum, AT&T Bell Labs (Holmdel)
{ To appear.

[Gibson:88] Garth Gibson, Lisa Hellerstein, Richard Karp, Randy Katz and David Patterson, Cod-
ing Techniques for Handling Failures in Large Disk Arrays, Technical Report UCB/CSD
88/477, Computer Science Division, University of California, July 1988.

[Patterson:89] David A. Patterson, Peter Chen, Garth Gibson, and Randy H. Katz, Introduction to
Redundant Arrays of Inexpensive Disks (RAID), COMPCON-89, the Thirty-fourth IEEE
Computer Society International Conference, March 1989.

[Rabin:87] Michael O. Rabin, E�cient Dispersal of Information for Security, Load Balancing and
Fault Tolerance Technical Report, TR-02-87, Department of Computer Science, DAS, Har-
vard University - April 1987. Also appeared in the Journal of the Association for Computing
Machinery, Vol. 36, No. 2, April 1989, pp. 335-348. April 1989.

[Shamir:79] A. Shamir, How to share a secret ?, Communication of the ACM 22, 11 (Nov. 1979),
612-613. November 1979.

23

APPENDICES

A Splitting and Recombining Files using IDA

Let F be the �le we want to disperse. Let F = b1b2b3b4:::: : : etc:, where bi is an integer taken
from a certain range [0::(2r � 1)]. In particular, for the intended design bi is a hexadecimal
digit (r = 4) and the range is [0::15]. Let p be a prime number greater than any possible
bi. In our case p might be selected to be 17. We might view any bi as an element of the
�nite �eld Zp (Z17 in our case), where all operations (namely addition and multiplication)
are done in mod(p). Hence, for p = 17, 7+ 12 = 2 (since 7+ 12 = 19 which is 2 in Z17), and
7 � 3 = 4 (since 7 � 3 = 21 which is 4 in Z17).

In order to split F , we choose a set of n vectors (V1; V2; :::; Vn) each of length m and
whose elements are from Zp. Any subset ofm of these vectors should be linearly independent.
These vectors represent the \keys" that will be used to disperse F . Let An:m be the array
whose rows are the selected vectors. Hence A represents a mapping from an m-dimensional
space to an n-dimensional space, or in other words, from a sequence of m elements to an-
other sequence of n elements (all the elements are from Zp). To disperse the �le F , we
simply map each sequence of m elements from F into a new sequence of n elements using
the transformation A. Each element from the resulting sequence is sent to a di�erent site
and kept there. So, for each m elements of F we send one element to each of the n sites.
Therefore, to disperse the whole �le F we will need to send jF j

m
elements to each of the n sites.

Now suppose that we want to reconstruct the original �le F from the pieces dispersed
as described above. This is done by reading any m of these pieces (if less than m pieces are
available then the �le cannot be reconstructed, and if more than m pieces are available then
the use of any subset of m pieces will su�ce). Let the pieces be from sites s1; s2; s3; :::; sm.
Let Bm:m be the array whose rows are (Vs1; Vs2; Vs3; :::; Vsm). Thus, B maps sequences of m
elements from F into sequences of m elements, which by virtue of the dispersion step above,
are kept at sites s1; s2; s3; :::; sm. Now, to reconstruct the �rst m elements of F we need
simply to collect the �rst element from each of m di�erent sites and use the appropriate
inverse transformation (T = B�1). Note that such an inverse is guaranteed to exist since by
hypothesis, the subset of m key-vectors is necessarily independent.

24

� An example

We are going to use n = 4, m = 2, p = 17. Furthermore, let F = 2; 4; 1; 14; 6; 8; :::: : : etc:
and assume that we selected the secret key-vectors to be:-

V0 =

1
0

!

V1 =

1
1

!

V2 =

1
2

!

V3 =

1
3

!

Hence, the transformation A is:-

A =

0
BBB@

V T
0

V T
1

V T
2

V T
3

1
CCCA =

0
BBB@

1 0
1 1
1 2
1 3

1
CCCA

To disperse F we divide it into sequences of 2 elements as shown below:-

F = 2; 4|{z}; 1; 14| {z }; 6; 8|{z}; :::: : :etc::

Next, each of these sequences is transformed using A and we obtain the new sequences
shown below (note that all arithmetic is done (modulo 17):-

25

0
BBB@

1 0
1 1
1 2
1 3

1
CCCA �

2
4

!
=

0
BBB@

2
6
10
14

1
CCCA

0
BBB@

1 0
1 1
1 2
1 3

1
CCCA �

1
14

!
=

0
BBB@

1
15
14
9

1
CCCA

0
BBB@

1 0
1 1
1 2
1 3

1
CCCA �

6
8

!
=

0
BBB@

6
14
5
13

1
CCCA

Hence the resulting sequence will be:-

F 0 = 2; 6; 10; 14| {z }; 1; 15; 14; 9| {z }; 6; 14; 5; 13| {z }; :::: : :etc::

Hence the �rst site will be given the 1st element from each resulting sequence, i.e.
(2; 1; 6; :::: : : etc:) Similarily, the second site will be given the 2nd element from each resulting
sequence, i.e. (6; 15; 14; :::: : : etc:), ...: : :etc.

F 0
1

= 2; 1; 6; :::: : : etc:
F 0
2

= 6; 15; 14; :::: : : etc:
F 0
3

= 10; 14; 5; :::: : : etc:
F 0
4

= 14; 9; 13; :::: : : etc:

Now, suppose that the second and fourth sites fail (or an error has been detected in
their data) and we want to reconstruct the original �le F . This is done by �rst computing
the transformation B which consists of the key-vectors for the available sites (namely the

26

�rst and third) as shown below:-

A =

1 0
1 2

!

Second, we compute the inverse of this transformation T = B�1 as follows:- (remember
that all arithmetic is in (modulo 17) including the reciprocal)

T = B�1

1 0
8 9

!

Now, to reconstruct the �rst sequence of m elements from the original �le, we transform
the sequence consisting of the �rst element from the �rst and third sites, namely (2; 6), using
T as follows:-

1 0
8 9

!
�

2
6

!
=

2
4

!

Thus obtaining the �rst two elements (2; 4) of the original �le.

Similarily, to get the next two elements of F , we transform the sequence consisting of
the second element from the �rst and third sites, namely (6; 14), using T as follows:-

1 0
8 9

!
�

6
14

!
=

1
14

!

Thus obtaining the third and fourth elements of F , namely (1; 14) and the process con-
tinues for the rest of the �le.

27

B Using Irreducible Polynomials for IDA

In the previous section, we have assumed that the elements of the �le F might be considered
integers from a �nite range [0� (2r�1)]. Thus for r = 4, we have integers ranging from 0 to
15. The algorithm however, requires computations to be done in mod(p) where p > (2r � 1).
Thus for r = 4, the minimum p is 17. Obviously, 2r (for any r) is not prime. Thus, it is
possible during the intermediate computations (as well as the �nal result) to get integers
> (2r � 1) and thus requiring more than r bits to be represented and stored. In the case of
r = 4, the added bit will only be used to represent the integer 16 and obviously results in a
waisted space on each site. In particular, instead of increasing the redundancy by a factor
of (n

m
� 1) � 100%, we will actually increase it by a factor of 5

4
(n
m
� 1) � 100%.

To overcome this di�culty, instead of representing integers as residues in the �eld of the
prime p, we represent these integers as polynomials with binary coe�cients (i.e. polynomials
2 Z2[x]) and use an irreducible polynomial of a larger degree (instead of the prime p) to
perform the arithmetic. For instance, if a3a2a1a0 is the binary representation of a hexadec-
imal digit, we view it as a polynomial a3x3 + a2x

2 + a1x + a0. Now, in order to perform
any arithmetic on such polynomials, we must �nd a 4th degree polynomial that is irreducible
(analoguous to the prime number used before). An irreducible polynomial of degree r is
one that cannot be divided by any other polynomial of lesser degree. Once this is found,
we perform all the computations using the above polynomials in modulo-2 arithmetic, but
representing any results by their residue when divided by the irreducible polynomial. For
the case where r = 4, it is easy to show that the polynomial (x4 + x+ 1) is irreducible. We
have used this polynomial in our SETH implementation. This polynomial has the binary
representation 10011. The following is a list of the di�rent polynomial representation for the
digits [0::15]. These are actually all the possible polynomials of third degree (or less) that
have binary coe�cients.

0
BBBBBBBBBBBBB@

0000
0001
0010
0011
0100
0101
0110
0111

1
CCCCCCCCCCCCCA
=

0
BBBBBBBBBBBBB@

0
1
x

x+ 1
x2

x2 + 1
x2 + x

x2 + x+ 1

1
CCCCCCCCCCCCCA

0
BBBBBBBBBBBBB@

1000
1001
1010
1011
1100
1101
1110
1111

1
CCCCCCCCCCCCCA
=

0
BBBBBBBBBBBBB@

x3

x3 + 1
x3 + x

x3 + x+ 1
x3 + x2

x3 + x2 + 1
x3 + x2 + x

x3 + x2 + x+ 1

1
CCCCCCCCCCCCCA

28

� An example

We are going to use n = 3, m = 2, and the irreducible polynomial (x4 + x + 1). Let
F = 2; 4; 1; 14; 6; 8; :::: : : etc:: (as before) and assume that we selected the secret key-vectors
to be:-

V0 =

1
0

!

V1 =

1
1

!

V2 =

1
2

!

V3 =

1
3

!

Hence, the transformation A is:-

A =

0
BBB@

V T
0

V T
1

V T
2

V T
3

1
CCCA =

0
BBB@

1 0
1 1
1 2
1 3

1
CCCA

To disperse F we divide it into sequences of 2 elements as shown below:-

F = 2; 4|{z}; 1; 14| {z }; 6; 8|{z}; :::: : :etc::

Next each of these sequences is transformed using A and we obtain the new sequences
shown below (note that all arithmetic is done using the irreducible polynomial (x4+x+1):-

29

0
BBB@

1 0
1 1
1 2
1 3

1
CCCA �

2
4

!
=

0
BBB@

2
6
10
14

1
CCCA

0
BBB@

1 0
1 1
1 2
1 3

1
CCCA �

1
14

!
=

0
BBB@

1
15
14
0

1
CCCA

0
BBB@

1 0
1 1
1 2
1 3

1
CCCA �

6
8

!
=

0
BBB@

6
14
5
13

1
CCCA

Hence, the resulting sequence will be:-

F 0 = 2; 6; 10; 14| {z }; 1; 15; 14; 0| {z }; 6; 14; 5; 13| {z }; :::: : :etc::

Hence, the �rst site will be given the 1st element from each resulting sequence, i.e.
(2; 1; 6; :::: : : etc:) Similarily, the second site will be given the 2nd element from each resulting
sequence, i.e. (6; 15; 14; :::: : : etc:), ...: : :etc.

F 0
1
= 2; 1; 6; :::: : : etc:

F 0
2
= 6; 15; 14; :::: : : etc:

F 0
3
= 10; 14; 5; :::: : : etc:

F 0
4
= 14; 9; 13; :::: : : etc:

30

Now, suppose that the second and fourth site fail and we want to reconstruct the orig-
inal �le F . This is done by �rst computing the transformation B which consists of the
key-vectors for the available sites (namely the �rst and third) as shown below:-

B =

1 0
1 2

!

Second, we compute the inverse of this transformation T = B�1 as follows (this inverse
is w.r.t. the irreducible polynomial 10011):-

T = B�1 =

1 0
9 9

!

Now, to reconstruct the �rst sequence of m elements from the original �le, we transform
the sequence consisting of the �rst element from the �rst and third sites, namely (2; 6), using
T as follows:-

1 0
9 9

!
�

2
6

!
=

2
4

!

Thus obtaining the �rst two elements (2; 4) of the original �le. Similarily, to get the
next two elements of F , we transform the sequence consisting of the second element from
the �rst and third sites, namely (6; 14), using T as follows:-

1 0
9 9

!
�

6
14

!
=

1
14

!

Thus obtaining the third and fourth elements of F , namely (1; 14) and the process con-
tinues for the rest of the �le.

31

