2D Motion Analysis using Optical Flow

Margrit Betke, CS 585, Spring 2024

Some slides adapted from E. Learned-Miller, S. Lazebnik, S. Seitz, R. Szeliski, and M. Pollefeys

Motion

Goal: Understand motion in 3D world of

- rigid objects: translations and rotations
- non-rigid objects: deformations

Motion Field

assigns velocity vector to each object pixel in image

1. Translation

Motion & Optical Flow Fields

2. Rotation

Optical Flow

= apparent motion of brightness patternHow does E(x,y,t) change?Hope: Brightness changes due to object motion.

Optical Flow Field Examples

Motion along y axis

350

Citation

Brian J. Thelen, John R. Valenzuela, Joel W. LeBlanc, "Theoretical performance assessment and empirical analysis of super-resolution under unknown affine sensor motion," J. Opt. Soc. Am. A **33**, 519-526 (2016); https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-33-4-519

OSA[®] The Optical Society

Motion along z axis

Optical Flow and Motion Fields

- Definition: Optical flow is the *apparent* motion of brightness patterns in the image
- Ideal case: optical flow = motion field
- Warning: Apparent motion can be caused by lighting changes without any actual motion
 - rotating sphere under fixed lighting (zero optical flow but non-zero motion field)
 - stationary sphere under moving illumination (nonzero optical flow but zero motion)

Motion & Optical Flow Fields

Examples:

1. Sphere rotating under constant illumination

Motion Field Optical Flow Field zero

2. Fixed Sphere, light source moving

Estimating optical flow

Task: Given two subsequent frames, estimate the apparent motion field u(x,y) and v(x,y) between them

Key assumptions:

- Brightness constancy: projection of the same point looks the same in every frame (same gray value)
- Small motion: points do not move very far
- **Spatial coherence:** points move like their neighbors

 $E(x + \delta x, t + \delta t) = E(x,t)$ Taylor Series Expansion horizontal motion only

 $E(x,t) + \delta x E_x + \delta t E_t = E(x,t)$

 E_x = partial derivative of E with respect to x

 $E(x + \delta x, t + \delta t) = E(x,t)$ Taylor Series Expansion

 $E(x,t) + \delta x E_x + \delta t E_t = E(x,t)$

 E_x = partial derivative of E with respect to x

$$\delta x / \delta t E_x + E_t = 0$$

Horizontal velocity u at pixel x

$$u E_x + E_t = 0$$
 or $u = -E_t / E_x$

 $E(x + \delta x, t + \delta t) = E(x,t)$ Taylor Series Expansion

 $E(x,t) + \delta x E_x + \delta t E_t = E(x,t)$

 E_x = partial derivative of E with respect to x

$$\delta x / \delta t E_x + E_t = 0$$

Horizontal velocity u at pixel x

Approximation for
$$E_x$$
: $E(x+1,t) - E(x,t)$
pixel width E_t : $E(x,t+\delta t) - E(x,t)$
 δt

 $\delta t = 1/$ frame rate

 $u = -E_t / E_x$ (for E_x not zero)

Approximation for
$$E_x$$
:
$$\frac{E(x+1,t) - E(x,t)}{pixel width}$$
$$E_t : \frac{E(x,t+\delta t) - E(x,t)}{\delta t}$$
$$\delta t = 1/ \text{ frame rate}$$
$$u = -E_t / E_x \text{ (for } E_x \text{ not zero)}$$

Example:	x-2	x-1	Х	x+1	x+2	
	135	145	155	165	175	frame 1
	155	165	175	185	195	frame 2

Velocity u at pixel x = ?

Approximation for
$$E_x$$
: $\frac{E(x+1,t) - E(x,t)}{pixel width}$
 E_t : $\frac{E(x,t+\delta t) - E(x,t)}{\delta t}$ $\delta t = 1/$ frame rate

 $u = -E_t / E_x$ (for E_x not zero)

Example:

$$u = -\frac{175 - 155}{165 - 155} = -20/10 = -2$$

Approximation for
$$E_x$$
:
$$\frac{E(x+1,t) - E(x,t)}{pixel width}$$
$$E_t : \frac{E(x,t+\delta t) - E(x,t)}{\delta t}$$
$$\delta t = 1/ \text{ frame rate}$$
$$u = -E_t / E_x \text{ (for } E_x \text{ not zero)}$$

Example:x-2x-1xx+1x+2135145155165175frame 1155165175185195frame 2

 $u = -\frac{175 - 155}{165 - 155} = -20/10 = -2, which means that the object at pixel x moves$ 2 pixels to the left per frame© Betke

Constant Brightness Assumption (CBA) in 1D with Noisy Measurements

Rigid object motion, but brightness not everywhere constant Determine patch P = image region with same constant velocity u Use Least Squares Method to estimate u:

$$\min_{u} \sum_{i \in P} (uE_{x_i} + E_{t_i})^2$$

$$\frac{d}{du}\sum_{i\in P}(uE_{x_i}+E_{t_i})^2=0$$

$$u\sum_{i\in P} E_{x_i}^2 + \sum_{i\in P} E_{x_i} E_{t_i} = 0$$

$$u = -\frac{\sum_{i \in P} E_{x_i} E_{t_i}}{\sum_{i \in P} E_{x_i}^2}$$

© Betke

Revisiting our example:
$$u = -E_t / E_x = -2$$

x-1 x x+1 x+2
145 155 165 175 frame 1

165 175 185 195 frame 2

With noise:

$$u = -\frac{\sum_{i \in P} E_{x_i} E_{t_i}}{\sum_{i \in P} E_{x_i}^2}$$

Revisiting our example:
$$u = -E_t / E_x = -2$$

 $x-1 + x + 1 + 2$
 $145 + 155 + 165 + 175$ frame 1
 $165 + 175 + 185 + 195$ frame 2

x-1 x x+1 x+2 145 156 164 176 frame 1 165 173 184 193 frame 2

$$u = -\frac{\sum_{i \in P} E_{x_i} E_{t_i}}{\sum_{i \in P} E_{x_i}^2}$$

With noise:

 $E_{x1} = 11, E_{x2} = 8, E_{x3} = 12$ and $E_{t1} = 20, E_{t2} = 17, E_{t3} = 20$

Revisiting our example:
$$u = -E_t / E_x = -2$$

x-1 x x+1 x+2
145 155 165 175 frame 1
165 175 185 195 frame 2

With noise:x-1xx+1x+2
$$u = -\frac{\sum_{i \in P} E_{x_i} E_{t_i}}{\sum_{i \in P} E_{x_i}^2}$$
145156164176frame 1165173184193frame 2

 $E_{x1} = 11, E_{x2} = 8, E_{x3} = 12$ and $E_{t1} = 20, E_{t2} = 17, E_{t3} = 20$

$$u = -\frac{220 + 136 + 240}{121 + 64 + 144} = -594/329 \approx -1.8$$

Revisiting our example:
$$u = -E_t / E_x = -2$$

x-1 x x+1 x+2
145 155 165 175 frame 1
165 175 185 195 frame 2

With noise:x-1xx+1x+2145156164176frame 1165173184193frame 2
$$E_{x1} = 11, E_{x2} = 8, E_{x3} = 12$$
 and $E_{t1} = 20, E_{t2} = 17, E_{t3} = 20$

 $u = -\frac{220 + 136 + 240}{121 + 64 + 144} = -594/329 \approx -1.8$ which means that the object at pixel x moves almost 2 pixels to the left per frame © Betke

Optical Flow Field for u = 1.8

Velocity vector = $(u,v)^T = (-1.8, 0)^T$ Length of vectors = -1.8 Horizontal translation in negative direction

Optical Flow Field

Velocity vectors = $(u,v)^{T} = (0.5, -1)^{T}$

General Translation

 $E(x + \delta x, y + \delta y, t + \delta t) = E(x, y, t)$ Taylor Series Expansion

 $E(x,y,t) + \delta x E_x + \delta y E_y + \delta t E_t = E(x,y,t)$

 E_x = partial derivative of E with respect to x E_y = partial derivative of E with respect to y

 $E(x + \delta x, y + \delta y, t + \delta t) = E(x, y, t)$ Taylor Series Expansion

$$E(x,y,t) + \delta x E_x + \delta y E_y + \delta t E_t = E(x,y,t)$$

dx/dt E_x + dy/dt E_y + E_t = 0

$$u E_x + v E_y + E_t = 0$$

 $E(x + \delta x, y + \delta y, t + \delta t) = E(x, y, t)$ Taylor Series Expansion

$$E(x,y,t) + \delta x E_x + \delta y E_y + \delta t E_t = E(x,y,t)$$

dx/dt E_x + dy/dt E_y + E_t = 0

Constant brightness constraint

$$u E_x + v E_y + E_t = 0$$

- How many equations and unknowns per pixel?
 One equation, two unknowns u, v
- Intuitively, what does this constraint mean?

Infinite number of possible flows (u,v)^T We don't know where on straight line.

The component of the flow perpendicular to the intensity gradient (E_x,E_y) (i.e., parallel to the edge) is unknown

The aperture problem

The aperture problem

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

Problems with Optical Flow

Aperture Problem

1) Flow perpendicular to brightness gradient

=> Cannot compute u, v

Problems with Optical Flow

Aperture Problem

2) Only a small portion of flow field is given

can both represent

Lukas & Kanade Optical Flow Algorithm

- How to get more equations for a pixel?
- Spatial coherence constraint: Pretend the pixel's neighbors have the same (u,v) $u E_x + v E_v + E_t = 0$
- 5x5 window => 25 equations per pixel

$$\begin{pmatrix} \mathsf{E}_{\mathsf{x},1} & \mathsf{E}_{\mathsf{y},1} \\ \mathsf{E}_{\mathsf{x},2} & \mathsf{E}_{\mathsf{y},2} \\ \dots \\ \mathsf{E}_{\mathsf{x},25} & \mathsf{E}_{\mathsf{y},25} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \mathsf{E}_{\mathsf{t},1} \\ \mathsf{E}_{\mathsf{t},2} \\ \mathsf{E}_{\mathsf{t},25} \end{pmatrix}$$

B. Lucas and T. Kanade. <u>An iterative image registration technique with an application to</u> <u>stereo vision.</u> In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

Lukas & Kanade Optical Flow Algorithm

$$\begin{pmatrix} \mathsf{E}_{\mathsf{x},1} & \mathsf{E}_{\mathsf{y},1} \\ \mathsf{E}_{\mathsf{x},2} & \mathsf{E}_{\mathsf{y},2} \\ \dots \\ \mathsf{E}_{\mathsf{x},25} & \mathsf{E}_{\mathsf{y},25} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \mathsf{E}_{\mathsf{t},1} \\ \mathsf{E}_{\mathsf{t},2} \\ \mathsf{E}_{\mathsf{t},25} \end{pmatrix}$$

1. When is this system solvable?

25x2 2x1 25x1

2. What if the window contains just a single straight edge?

B. Lucas and T. Kanade. <u>An iterative image registration technique with an</u> <u>application to stereo vision.</u> In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674–679, 1981.

Conditions for solvability

• "Bad" case: Single straight edge

Conditions for solvability

• "Good" case: Smooth change of brightness

Lucas-Kanade Optical Flow Algorithm

Linear least squares problem

$$A\begin{pmatrix}u\\v\end{pmatrix} = b$$

25x2 2x1 25x1

Solution given by

$$A^T A \begin{pmatrix} u \\ v \end{pmatrix} = A^T b$$

$$\begin{bmatrix} \sum E_x^2 & \sum E_x E_y \\ \sum E_x E_y & \sum E_y^2 \end{bmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = -\begin{pmatrix} \sum E_x E_t \\ \sum E_y E_t \end{pmatrix}$$

The summations are over all pixels in the window.

Lucas-Kanade Optical Flow Algorithm

- $M = A^T A$ is the "second moment matrix"
- Unique solution for flow vector (u,v) ?
 - = eigenvalues of the second moment matrix? Eigenvectors and eigenvalues of *M* relate to edge direction and magnitude

Eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change, and the other eigenvector is orthogonal to it

Interpreting the Eigenvalues

Classification of image points using eigenvalues of the second moment matrix:

 λ_1

Uniform region

- gradients have small magnitude
- small λ_1 , small λ_2
- system is ill-conditioned

Edge

- gradients have one dominant direction
- large λ_1 , small λ_2
- system is ill-conditioned

High-texture or corner region

- gradients have different directions, large magnitudes
- large λ_1 , large λ_2
- system is well-conditioned

Smoothness Assumption (SA)

Use spatial derivatives of flow: $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$, and $\frac{\partial v}{\partial y}$

Magnitude of the flow gradient = 0

$$(\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial y})^2 + (\frac{\partial v}{\partial x})^2 + (\frac{\partial v}{\partial y})^2$$

Patch size: Small 🔨

CBA okay, SA weak

Large

CBA may be violated, SA strong

Retrieve flow $(u, v)^T$ by reducing the error in CBA and Use regularization, weigh errors with a scalar α :

$$\min_{(u,v)} \sum_{patch} (\alpha \ \operatorname{error}_{CBA} + \operatorname{error}_{SA})$$

$$\min_{(u,v)} \sum_{patch} (\alpha \ (uE_x + vE_y + E_t)^2 + (\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial y})^2 + (\frac{\partial v}{\partial x})^2 + (\frac{\partial v}{\partial y})^2)$$

Retrieve flow $(u, v)^T$ by reducing the error in CBA and Use regularization, weigh errors with a scalar α :

$$\min_{(u,v)} \sum_{patch} (\alpha \ \text{error}_{CBA} + \text{error}_{SA})$$

 $\frac{1}{4}[(u_{i+1,j} - u_{i,j})^2 + (u_{i,j+1} - u_{i,j})^2 + (v_{i+1,j} - v_{i,j})^2 + (v_{i,j+1} - v_{i,j})^2]$

$$\bar{u} = u_{i-1,j} + u_{i+1,j} + u_{i,j+1} + u_{i,j-1}$$
$$\bar{v} = v_{i-1,j} + v_{i+1,j} + v_{i,j+1} + v_{i,j-1}$$

$$u_{i,j}^{(n+1)} = u_{i,j}^{(n)} - \alpha \frac{E_x \bar{u}_{i,j}^{(n)} + E_y \bar{v}_{i,j}^{(n)} + E_t}{1 + \alpha (E_x^2 + E_y^2)} E_x$$
$$v_{i,j}^{(n+1)} = v_{i,j}^{(n)} - \alpha \frac{E_x \bar{u}_{i,j}^{(n)} + E_y \bar{v}_{i,j}^{(n)} + E_t}{1 + \alpha (E_x^2 + E_y^2)} E_y$$

Problems with Optical Flow

"Aperture Problem(s)"

1) Flow perpendicular to brightness gradient

Problems with Optical Flow

"Aperture Problem(s)"

2) Only a small portion of flow field is given

can both represent

What to do when the Optical Flow Algorithm breaks down

- Apparent motion is large (larger than a pixel)
 - Iterative refinement
 - Coarse-to-fine estimation
 - Exhaustive neighborhood search
- A point does not move like its neighbors
 - Motion segmentation
- Constant Brightness Assumption does not hold
 - Exhaustive neighborhood search with normalized correlation

Learning Objectives:

Understand

- Difference between motion flow fields and optical flow fields
- Constand Brightness Assumption (CBA)
- Flow Smoothness Assumption
- Derivation of CBA using calculus
- 2 versions of the "Aperture Problem"
- Lucas-Kanade and Horn-Schunk algorithms
 Be able to draw translational & rotational flow fields