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Motion
Goal: Understand motion in 3D world of

• rigid objects:  translations and rotations
• non-rigid objects: deformations

Motion Field
assigns velocity vector to each object pixel in image

1. Translation
E(x,y,t0)                  E(x,y,t1)                Motion Field
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Motion & Optical Flow Fields
2. Rotation
E(x,y,t0)                  E(x,y,t1)                Motion Field

Optical Flow
= apparent motion of brightness pattern

How does E(x,y,t) change?
Hope:  Brightness changes due to object motion.
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Optical Flow Field Examples



Motion along y axis

optical flow
for Scene 2

orientation
for Scene 2
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Motion along z axis

optical flow
for Scene 1

orientation
for Scene 1
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Optical Flow and Motion Fields

• Definition: Optical flow is the apparent motion 
of brightness patterns in the image

• Ideal case:  optical flow = motion field
• Warning:  Apparent motion can be caused by 

lighting changes without any actual motion
– rotating sphere under fixed lighting (zero optical 

flow but non-zero motion field)
– stationary sphere under moving illumination (non-

zero optical flow but zero motion)
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Motion & Optical Flow Fields
Examples:
1. Sphere rotating under constant illumination

2. Fixed Sphere, light source moving

Motion Field      Optical Flow Field
                                      zero

Motion Field   Optical Flow Fields
      zero                 not zero
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Estimating optical flow

Task: Given two subsequent frames, estimate the apparent 
motion field u(x,y) and v(x,y) between them

Key assumptions:
• Brightness constancy:  projection of the same point looks the 

same in every frame (same gray value)
• Small motion:  points do not move very far
• Spatial coherence: points move like their neighbors

E(x, y, t) E(x+δx, y+δy, t+δt)



Constant Brightness Assumption (CBA) in 1D

E(x + δx, t + δt)     =  E(x,t)                                horizontal motion only

E(x,t) + δx Ex + δt Et       = E(x,t)

Taylor Series Expansion

Ex =  partial derivative of E with respect to x
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Constant Brightness Assumption (CBA) in 1D

E(x + δx, t + δt)     =  E(x,t)

E(x,t) + δx Ex + δt Et       = E(x,t)

Taylor Series Expansion

Ex =  partial derivative of E with respect to x

δx /δt Ex + Et = 0 

Horizontal velocity u at pixel x 

u Ex + Et = 0    or     u =  -Et /Ex 
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Constant Brightness Assumption (CBA) in 1D

E(x + δx, t + δt)     =  E(x,t)

E(x,t) + δx Ex + δt Et       = E(x,t)

Taylor Series Expansion

Ex =  partial derivative of E with respect to x

δx /δt Ex + Et = 0 

Horizontal velocity u at pixel x 

u Ex + Et = 0    or     u =  -Et /Ex 

E

x
x x+ δx

E(x,t) E(x,t+ δt)

© Betke 



Constant Brightness Assumption (CBA) in 1D

Approximation for Ex :    E(x+1,t) – E(x,t)
pixel width

Et   :    E(x,t+δt) – E(x,t)
δt

u = - Et / Ex (for Ex not zero) 

δt = 1/ frame rate
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Constant Brightness Assumption (CBA) in 1D

Approximation for Ex :    E(x+1,t) – E(x,t)
pixel width

Et   :    E(x,t+δt) – E(x,t)
δt

u = - Et / Ex (for Ex not zero) 

Example:                            x-2    x-1     x     x+1   x+2
135   145  155  165  175           frame 1  
155   165  175  185  195           frame 2

δt = 1/ frame rate

Velocity u at pixel x =  ? 
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Constant Brightness Assumption (CBA) in 1D

Approximation for Ex :    E(x+1,t) – E(x,t)
pixel width

Et   :    E(x,t+δt) – E(x,t)
δt

u = - Et / Ex (for Ex not zero) 

Example:                            x-2    x-1     x     x+1   x+2
135   145  155  165 175           frame 1  
155   165  175 185  195           frame 2

u  = – = - 20/10 = -2  

δt = 1/ frame rate

175 - 155
165 - 155
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Constant Brightness Assumption (CBA) in 1D

Approximation for Ex :    E(x+1,t) – E(x,t)
pixel width

Et   :    E(x,t+δt) – E(x,t)
δt

u = - Et / Ex (for Ex not zero) 

Example:                            x-2    x-1     x     x+1   x+2
135   145  155  165 175           frame 1  
155   165  175 185  195           frame 2

u  = – = - 20/10 = -2,   which means that the
object at  pixel x moves

2 pixels to the left per frame

δt = 1/ frame rate

175 - 155
165 - 155
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Constant Brightness Assumption (CBA) in 1D
with Noisy Measurements

Rigid object motion, but brightness not everywhere constant
Determine patch P = image region with same constant velocity u
Use Least Squares Method to estimate u:   
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Constant Brightness Assumption (CBA) in 1D

Revisiting our example: u = - Et / Ex = -2 
x-1     x     x+1   x+2
145  155  165 175           frame 1  
165  175 185  195           frame 2

With noise:                                 x-1     x     x+1   x+2
145  156  164  176           frame 1  
165  173  184  193           frame 2
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Constant Brightness Assumption (CBA) in 1D

Revisiting our example: u = - Et / Ex = -2 
x-1     x     x+1   x+2
145  155  165 175           frame 1  
165  175 185  195           frame 2

With noise:                                 x-1     x     x+1   x+2
145  156  164  176           frame 1  
165  173  184  193           frame 2

Ex1  = 11, Ex2 = 8, Ex3  = 12   and   Et1  = 20,  Et2  = 17, Et3  = 20
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Constant Brightness Assumption (CBA) in 1D

Revisiting our example: u = - Et / Ex = -2 
x-1     x     x+1   x+2
145  155  165 175           frame 1  
165  175 185  195           frame 2

With noise:                                 x-1     x     x+1   x+2
145  156  164  176           frame 1  
165  173  184  193           frame 2

Ex1  = 11, Ex2 = 8, Ex3  = 12   and   Et1  = 20,  Et2  = 17, Et3  = 20

u = - =  - 594/329  ~  - 1.8   220 + 136 + 240
121 + 64 + 144 ~
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Constant Brightness Assumption (CBA) in 1D

Revisiting our example: u = - Et / Ex = -2 
x-1     x     x+1   x+2
145  155  165 175           frame 1  
165  175 185  195           frame 2

With noise:                                 x-1     x     x+1   x+2
145  156  164  176           frame 1  
165  173  184  193           frame 2

Ex1  = 11, Ex2 = 8, Ex3  = 12   and   Et1  = 20,  Et2  = 17, Et3  = 20

u = - =  - 594/329  ~  - 1.8    which means that the
object at  pixel x moves

almost 2 pixels to the left per frame

220 + 136 + 240
121 + 64 + 144 ~
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Optical Flow Field for u = 1.8

Velocity vector = (u,v)T = (-1.8, 0)T

Length of vectors = -1.8
Horizontal translation in negative direction
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Optical Flow Field

Velocity vectors = (u,v)T = (0.5, -1)T  

General Translation 
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Constant Brightness Assumption (CBA)
in 2D 

E(x + δx, y + δy, t + δt)     =  E(x,y,t)

E(x,y,t) + δx Ex + δy Ey + δt Et       = E(x,y,t)

Taylor Series Expansion

Ex =  partial derivative of E with respect to x
Ey   =  partial derivative of E with respect to y

© Betke 
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Constant Brightness Assumption (CBA)

E(x + δx, y + δy, t + δt)     =  E(x,y,t)

E(x,y,t) + δx Ex + δy Ey + δt Et       = E(x,y,t)
dx/dt Ex + dy/dt Ey + Et = 0 

u Ex + v Ey + Et = 0

Taylor Series Expansion

© Betke 



Constant Brightness Assumption (CBA)

E(x + δx, y + δy, t + δt)     =  E(x,y,t)

E(x,y,t) + δx Ex + δy Ey + δt Et       = E(x,y,t)
dx/dt Ex + dy/dt Ey + Et = 0 

u Ex + v Ey + Et = 0

Taylor Series Expansion

E

xx
x+ δx x+ δx

too far

Validity depends on
spatial frequency of 
image
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Constant brightness constraint

• How many equations and unknowns per pixel?
One equation, two unknowns  u, v

• Intuitively, what does this constraint mean?

• The component of the flow perpendicular to the intensity 
gradient (Ex,Ey)  (i.e., parallel to the edge) is unknown

u Ex +  v Ey + Et  = 0

(u,v)T (Ex,Ey) = - Et  

Infinite number of possible flows (u,v)T 

We don’t know where on straight line.

.
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The aperture problem

Perceived motion
© Betke 



The aperture problem

Actual motion
© Betke 



The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion


The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion


The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
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Problems with Optical Flow

Aperture Problem
1) Flow perpendicular to brightness gradient

=>  Cannot compute u, v

MotionP no 
brightness 

change 
within P
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35

Problems with Optical Flow

Aperture Problem
2) Only a small portion of flow field is given

can both represent

rotation                         translation
or

© Betke 



Lukas & Kanade Optical Flow Algorithm

• How to get more equations for a pixel?
• Spatial coherence constraint: Pretend the pixel’s neighbors 

have the same (u,v)
• 5x5 window => 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial 
Intelligence, pp. 674–679, 1981.

u Ex +  v Ey + Et  = 0

Ex,1   Ey,1                                   Et,1  
Ex,2   Ey,2                                                    Et,2
…
Ex,25   Ey,25                                               Et,25

=

http://www.ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_1/lucas_bruce_d_1981_1.pdf
http://www.ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_1/lucas_bruce_d_1981_1.pdf


B. Lucas and T. Kanade. An iterative image registration technique with an 
application to stereo vision. In Proceedings of the International Joint 
Conference on Artificial Intelligence, pp. 674–679, 1981.

1.   When is this system solvable?

 2.   What if the window contains just a single  
straight edge?

Ex,1   Ey,1                                   Et,1  
Ex,2   Ey,2                                                    Et,2
…
Ex,25   Ey,25                                               Et,25

=

Lukas & Kanade Optical Flow Algorithm

25x2  2x1    25x1

http://www.ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_1/lucas_bruce_d_1981_1.pdf
http://www.ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_1/lucas_bruce_d_1981_1.pdf


Conditions for solvability
• “Bad” case: Single straight edge



Conditions for solvability
• “Good” case: Smooth change of brightness



Lucas-Kanade Optical Flow Algorithm
Linear least squares problem

The summations are over all pixels in the window.

Solution given by

25x2  2x1    25x1



Lucas-Kanade Optical Flow Algorithm

• M = ATA is the “second moment matrix”
• Unique solution for flow vector (u,v) ?
    = eigenvalues of the second moment matrix?

Eigenvectors and eigenvalues of M relate to edge direction and 
magnitude 
Eigenvector associated with the larger eigenvalue points in the 
direction of fastest intensity change, and the other eigenvector is 
orthogonal to it



Interpreting the Eigenvalues

λ1

λ2

“Corner”
λ1 and λ2 are large,
 λ1 ~ λ2

λ1 and λ2 are small “Edge” 
λ1 >> λ2

“Edge” 
λ2 >> λ1

“Flat” 
region

Classification of image points using eigenvalues 
of the second moment matrix:



Uniform region

– gradients have small magnitude
– small λ1, small λ2
– system is ill-conditioned



Edge

– gradients have one dominant direction
– large λ1, small λ2 
– system is ill-conditioned



High-texture or corner region

– gradients have different directions, large magnitudes
– large λ1, large λ2
– system is well-conditioned



Horn and Schunk’s Optical Flow Algorithm: 
CBA & SA

(SA)

Patch size:        Small                                    CBA okay, SA weak

                          Large                                    CBA may be violated, SA strong
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(SA)

© Betke 

Horn and Schunk’s Optical Flow Algorithm: 
CBA & SA



(SA)

© Betke 

Horn and Schunk’s Optical Flow Algorithm: 
CBA & SA



i, j+1
i-1, j     i,j i+1, j

i, j-1
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Horn and Schunk’s Optical Flow Algorithm: 
CBA & SA
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Problems with Optical Flow

“Aperture Problem(s)”
1) Flow perpendicular to brightness gradient

=>  Cannot compute u, v

MotionP no 
brightness 

change 
within P
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Problems with Optical Flow

“Aperture Problem(s)”
2) Only a small portion of flow field is given

can both represent

rotation                         translation
or

© Betke 



What to do when the Optical Flow Algorithm 
breaks down

• Apparent motion is large (larger than a pixel)
– Iterative refinement
– Coarse-to-fine estimation
– Exhaustive neighborhood search 

• A point does not move like its neighbors
– Motion segmentation

• Constant Brightness Assumption does not hold
– Exhaustive neighborhood search with normalized 

correlation



Learning Objectives:

• Difference between motion flow fields and 
optical flow fields

• Constand Brightness Assumption (CBA)
• Flow Smoothness Assumption
• Derivation of CBA using calculus
• 2 versions of the “Aperture Problem”
• Lucas-Kanade and Horn-Schunk algorithms
Be able to draw translational & rotational flow 
fields

Understand
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