2D Motion Analysis using Optical Flow

Margrit Betke, CS 585, Spring 2024

Some slides adapted from E. Learned-Miller, S. Lazebnik, S. Seitz,
R. Szeliski, and M. Pollefeys

Motion

Goal: Understand motion in 3D world of

- rigid objects: translations and rotations
- non-rigid objects: deformations

Motion Field
assigns velocity vector to each object pixel in image

1. Translation

Motion \& Optical Flow Fields

2. Rotation
$E\left(x, y, t_{0}\right)$
$E\left(x, y, t_{1}\right)$
Motion Field

Optical Flow
= apparent motion of brightness pattern How does $\mathrm{E}(\mathrm{x}, \mathrm{y}, \mathrm{t})$ change? Hope: Brightness changes due to object motion.

Optical Flow Field Examples

Motion along y axis

Citation
Brian J. Thelen, John R. Valenzuela, Joel W. LeBlanc, "Theoretical performance assessment and empirical analysis of super-resolution under unknown affine sensor motion," J. Opt. Soc. Am. A 33, 519-526 (2016);
https://www.osapublishing.org/iosaa/abstract.cfm?uri=josaa-33-4-519
Image © 2016 Optical Society of America and may be used for noncommercial purposes only. Report a copyright concern regarding this image.

Motion along z axis

Optical Flow and Motion Fields

- Definition: Optical flow is the apparent motion of brightness patterns in the image
- Ideal case: optical flow = motion field
- Warning: Apparent motion can be caused by lighting changes without any actual motion
- rotating sphere under fixed lighting (zero optical flow but non-zero motion field)
- stationary sphere under moving illumination (nonzero optical flow but zero motion)

Motion \& Optical Flow Fields

Examples:

1. Sphere rotating under constant illumination

Motion Field Optical Flow Field
 zero
2. Fixed Sphere, light source moving

Motion Field Optical Flow Fields zero not zero

Estimating optical flow

Task: Given two subsequent frames, estimate the apparent motion field $u(x, y)$ and $v(x, y)$ between them

Key assumptions:

- Brightness constancy: projection of the same point looks the same in every frame (same gray value)
- Small motion: points do not move very far
- Spatial coherence: points move like their neighbors

Constant Brightness Assumption (CBA) in 1D

$$
E(x+\delta x, t+\delta t)=E(x, t)
$$

\downarrow Taylor Series Expansion

$$
E(x, t)+\delta x E_{x}+\delta t E_{t} \quad=E(x, t)
$$

$$
E_{x}=\text { partial derivative of } E \text { with respect to } x
$$

Constant Brightness Assumption (CBA) in 1D

$$
\begin{gathered}
\mathrm{E}(\mathrm{x}+\delta \mathrm{x}, \mathrm{t}+\delta \mathrm{t}) \quad=\mathrm{E}(\mathrm{x}, \mathrm{t}) \\
\quad \downarrow \text { Taylor Series Expansion } \\
\mathrm{E}(\mathrm{x}, \mathrm{t})+\delta \mathrm{x} \mathrm{E}_{\mathrm{x}}+\delta \mathrm{t} \mathrm{E}_{\mathrm{t}} \quad=\mathrm{E}(\mathrm{x}, \mathrm{t}) \\
\mathrm{E}_{\mathrm{x}}=\text { partial derivative of } \mathrm{E} \text { with respect to } \mathrm{x} \\
\underbrace{}_{\underbrace{x} / \delta \mathrm{t}} \mathrm{E}_{\mathrm{x}}+\mathrm{E}_{\mathrm{t}}=0
\end{gathered}
$$

Horizontal velocity u at pixel x

$$
u E_{x}+E_{t}=0 \quad \text { or } \quad u=-E_{t} / E_{x}
$$

Constant Brightness Assumption (CBA) in 1D

$$
E(x+\delta x, t+\delta t)=E(x, t)
$$

\downarrow Taylor Series Expansion
$\mathrm{E}(\mathrm{x}, \mathrm{t})+\delta \mathrm{x} \mathrm{E}_{\mathrm{x}}+\delta \mathrm{t} \mathrm{E}_{\mathrm{t}} \quad=\mathrm{E}(\mathrm{x}, \mathrm{t})$

$$
E_{x}=\text { partial derivative of } E \text { with respect to } x
$$

$$
\delta x / \delta t E_{x}+E_{t}=0
$$

Horizontal velocity u at pixel x

Constant Brightness Assumption (CBA) in 1D

Approximation for $E_{x}: \frac{E(x+1, t)-E(x, t)}{\text { pixel width }}$

$$
E_{t}: \frac{E(x, t+\delta t)-E(x, t)}{\delta t}
$$

$\delta t=1 /$ frame rate
$u=-E_{t} / E_{x}$ (for E_{x} not zero)

Constant Brightness Assumption (CBA) in 1D

Approximation for $E_{x}: \frac{E(x+1, t)-E(x, t)}{\text { pixel width }}$

$$
E_{t}: \frac{E(x, t+\delta t)-E(x, t)}{\delta t}
$$

$\delta t=1 /$ frame rate
$u=-E_{t} / E_{x}$ (for E_{x} not zero)

Example:

$x-2$	$x-1$	x	$x+1$	$x+2$	
135	145	155	165	175	frame 1
155	165	175	185	195	frame 2

Velocity u at pixel $x=$?

Constant Brightness Assumption (CBA) in 1D

Approximation for $E_{x}: \frac{E(x+1, t)-E(x, t)}{\text { pixel width }}$

$$
E_{t}: \frac{E(x, t+\delta t)-E(x, t)}{\delta t}
$$

$\delta t=1 /$ frame rate
$u=-E_{t} / E_{x}$ (for E_{x} not zero)

Example:

| $x-2$ | $x-1$ | x | $x+1$ | $x+2$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 135 | 145 | 155 | 165 | 175 | frame 1 |
| 155 | 165 | 175 | 185 | 195 | frame 2 |

$$
u=-\frac{175-155}{165-155}=-20 / 10=-2
$$

Constant Brightness Assumption (CBA) in 1D

Approximation for $E_{x}: \frac{E(x+1, t)-E(x, t)}{\text { pixel width }}$

$$
E_{t}: \frac{E(x, t+\delta t)-E(x, t)}{\delta t}
$$

$\delta t=1 /$ frame rate
$u=-E_{t} / E_{x}$ (for E_{x} not zero)

Example:

| $x-2$ | $x-1$ | x | $x+1$ | $x+2$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 135 | 145 | 155 | 165 | 175 | frame 1 |
| 155 | 165 | 175 | 185 | 195 | frame 2 |

$$
u=-\frac{175-155}{165-155}=-20 / 10=-2, \text { which means that the } \begin{aligned}
& \text { object at pixel } x \text { moves }
\end{aligned}
$$

2 pixels to the left per frame

Constant Brightness Assumption (CBA) in 1D with Noisy Measurements

Rigid object motion, but brightness not everywhere constant Determine patch $\mathrm{P}=$ image region with same constant velocity u Use Least Squares Method to estimate u:

$$
\begin{gathered}
\min _{u} \sum_{i \in P}\left(u E_{x_{i}}+E_{t_{i}}\right)^{2} \\
\frac{d}{d u} \sum_{i \in P}\left(u E_{x_{i}}+E_{t_{i}}\right)^{2}=0 \\
u \sum_{i \in P} E_{x_{i}}^{2}+\sum_{i \in P} E_{x_{i}} E_{t_{i}}=0 \\
u=-\frac{\sum_{i \in P} E_{x_{i}} E_{t_{i}}}{\sum_{i \in P} E_{x_{i}}^{2}}
\end{gathered}
$$

Constant Brightness Assumption (CBA) in 1D

Revisiting our example: $u=-E_{t} / E_{x}=-2$

$x-1$	x	$x+1$	$x+2$	
145	155	165	175	
165	175	185	195	frame 1
frame 2				

With noise:

$x-1$	x	$x+1$	$x+2$	
145	156	164	176	frame 1
165	173	184	193	frame 2

$u=-\frac{\sum_{i \in P} E_{x_{i}} E_{t_{i}}}{\sum_{i \in P} E_{x_{i}}^{2}}$

Constant Brightness Assumption (CBA) in 1D

Revisiting our example: $u=-E_{t} / E_{x}=-2$

$\mathrm{x}-1 \mathrm{x}$	$\mathrm{x}+1 \quad \mathrm{x}+2$	
145155	165175	frame 1
165175	185195	frame 2

With noise:

$x-1$	x	$x+1$	$x+2$		
145	156	164	176		
165	173	184	193	frame 1	
165	frame 2				

$u=-\frac{\sum_{i \in P} E_{x_{i}} E_{t_{i}}}{\sum_{i \in P} E_{x_{i}}^{2}}$
$E_{x 1}=11, E_{x 2}=8, E_{x 3}=12$ and $E_{t 1}=20, E_{t 2}=17, E_{t 3}=20$

Constant Brightness Assumption (CBA) in 1D

Revisiting our example: $u=-E_{t} / E_{x}=-2$

$x-1$	x	$x+1$	$x+2$		
145	155	165	175		frame 1
165	175	185	195		frame 2

With noise:

$$
\begin{aligned}
& u=-\frac{\sum_{i \in P} E_{x_{i}} E_{t_{i}}}{\sum_{i \in P} E_{x_{i}}^{2}} \quad 145156164176184193 \text { frar } \\
& \mathrm{E}_{\mathrm{x} 1}=11, \mathrm{E}_{\mathrm{x} 2}=8, \mathrm{E}_{\mathrm{x} 3}=12 \text { and } \mathrm{E}_{\mathrm{t} 1}=20, \mathrm{E}_{\mathrm{t} 2}=17, \mathrm{E}_{\mathrm{t} 3}=20 \\
& \mathrm{u}=-\frac{220+136+240}{121+64+144}=-594 / 329 \approx-1.8
\end{aligned}
$$

Constant Brightness Assumption (CBA) in 1D

Revisiting our example: $u=-E_{t} / E_{x}=-2$

$x-1$	x	$x+1$	$x+2$		
145	155	165	175		frame 1
165	175	185	195	frame 2	

With noise:
$x-1 \quad x \quad x+1 \quad x+2$
145156164176 frame 1
165173184193 frame 2
$E_{x 1}=11, E_{x 2}=8, E_{x 3}=12$ and $E_{t 1}=20, E_{t 2}=17, E_{t 3}=20$
$\mathrm{u}=-\frac{220+136+240}{121+64+144}=-594 / 329 \approx-1.8$ which means that the object at pixel x moves
almost 2 pixels to the left per frame

Optical Flow Field for $u=1.8$


```
~+\leftarrow+~+\leftarrow+~+~+~+~+\leftarrow+~+~+~+~+~+
```



```
~+\leftarrow+~+~+~+~+~++~++~+++~+~++~+
~+~+~+\leftarrow+~+~+~+~+~+~+~+~+~+~++
```



```
\square\leftarrow+&+\leftarrow+~+~+~+~+~+~+~+~+~+
```



```
~+~+~+~+~+~+~+~+~+~++~+~+\leftarrow+~+
```


Velocity vector $=(u, v)^{\top}=(-1.8,0)^{\top}$
Length of vectors $=-1.8$
Horizontal translation in negative direction

Optical Flow Field

Velocity vectors $=(u, v)^{\top}=(0.5,-1)^{\top}$
General Translation

Constant Brightness Assumption (CBA)

 in 2D$$
\begin{aligned}
& E(x+\delta x, y+\delta y, t+\delta t) \quad=E(x, y, t) \\
& \quad \quad \text { Taylor Series Expansion } \\
& E(x, y, t)+\delta x E_{x}+\delta y E_{y}+\delta t E_{t} \quad=E(x, y, t) \\
& E_{x}=\text { partial derivative of } E \text { with respect to } x \\
& E_{y}=\text { partial derivative of } E \text { with respect to } y
\end{aligned}
$$

Constant Brightness Assumption (CBA)

$$
E(x+\delta x, y+\delta y, t+\delta t) \quad=E(x, y, t)
$$

Taylor Series Expansion

$$
\begin{gathered}
E(x, y, t)+\delta x E_{x}+\delta y E_{y}+\delta t E_{t} \quad=E(x, y, t) \\
d x / d t E_{x}+d y / d t E_{y}+E_{t}=
\end{gathered}
$$

$$
u E_{x}+v E_{y}+E_{t}=0
$$

Constant Brightness Assumption (CBA)

$$
E(x+\delta x, y+\delta y, t+\delta t)=E(x, y, t)
$$

Taylor Series Expansion

$$
\begin{gathered}
E(x, y, t)+\delta x E_{x}+\delta y E_{y}+\delta t E_{t} \quad=E(x, y, t) \\
d x / d t E_{x}+d y / d t E_{y}+E_{t}=0
\end{gathered}
$$

$$
u E_{x}+v E_{y}+E_{t}=0
$$

Validity depends on spatial frequency of image

Constant brightness constraint

$$
u E_{x}+v E_{y}+E_{t}=0
$$

- How many equations and unknowns per pixel?

One equation, two unknowns u, v

- Intuitively, what does this constraint mean?

Infinite number of possible flows $(u, v)^{\top}$
We don't know where on straight line.

- The component of the flow perpendicular to the intensity gradient ($\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}$) (i.e., parallel to the edge) is unknown

The aperture problem

The aperture problem

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole illusion

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole illusion

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole illusion

Problems with Optical Flow

Aperture Problem

1) Flow perpendicular to brightness gradient
=> Cannot compute u, v

Problems with Optical Flow

Aperture Problem
2) Only a small portion of flow field is given

$$
\vec{\longrightarrow}
$$

can both represent

Lukas \& Kanade Optical Flow Algorithm

- How to get more equations for a pixel?
- Spatial coherence constraint: Pretend the pixel's neighbors have the same (u, v) $u E_{x}+v E_{y}+E_{t}=0$
- 5×5 window $=>25$ equations per pixel

$$
\left(\begin{array}{ll}
\mathrm{E}_{\mathrm{x}, 1} & \mathrm{E}_{\mathrm{y}, 1} \\
\mathrm{E}_{\mathrm{x}, 2} & \mathrm{E}_{\mathrm{y}, 2} \\
\ldots & \\
\mathrm{E}_{\mathrm{x}, 25} & \mathrm{E}_{\mathrm{y}, 25}
\end{array}\right)\binom{u}{v}=\left(\begin{array}{l}
\mathrm{E}_{\mathrm{t}, 1} \\
\mathrm{E}_{\mathrm{t}, 2} \\
\mathrm{E}_{\mathrm{t}, 25}
\end{array}\right)
$$

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674-679, 1981.

Lukas \& Kanade Optical Flow Algorithm

$$
\left(\begin{array}{cc}
\mathrm{E}_{\mathrm{x}, 1} \mathrm{E}_{\mathrm{y}, 1} \\
\mathrm{E}_{\mathrm{E}, 2} & \mathrm{E}_{\mathrm{y}, 2} \\
\cdots \\
\mathrm{E}_{\mathrm{x}, 25} & \mathrm{E}_{\mathrm{y}, 25}
\end{array}\right)\binom{u}{v}=\left(\begin{array}{c}
\mathrm{E}_{\mathrm{t}, 1} \\
\mathrm{E}_{\mathrm{t}, 2} \\
\mathrm{E}_{\mathrm{t}, 25}
\end{array}\right)
$$

1. When is this system solvable?

$$
\begin{gathered}
A\binom{u}{v}=b \\
25 \times 2 \quad 2 \times 1 \quad 25 \times 1
\end{gathered}
$$

2. What if the window contains just a single straight edge?
B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674-679, 1981.

Conditions for solvability

- "Bad" case: Single straight edge

Conditions for solvability

- "Good" case: Smooth change of brightness

Lucas-Kanade Optical Flow Algorithm

Linear least squares problem

$$
\begin{aligned}
& A\binom{u}{v}=b \\
& 25 \times 2 \quad 2 \times 1 \quad 25 \times 1
\end{aligned}
$$

Solution given by

$$
A^{T} A\binom{u}{v}=A^{T} b
$$

$$
\left[\begin{array}{cc}
\sum E_{x}^{2} & \sum E_{x} E_{y} \\
\sum E_{x} E_{y} & \sum E_{y}^{2}
\end{array}\right]\binom{u}{v}=-\binom{\sum E_{x} E_{t}}{\sum E_{y} E_{t}}
$$

The summations are over all pixels in the window.

Lucas-Kanade Optical Flow Algorithm

$$
\begin{array}{cc}
{\left[\begin{array}{cc}
\sum E_{x}^{2} & \sum E_{x} E_{y} \\
\sum E_{x} E_{y} & \sum E_{y}^{2}
\end{array}\right]\binom{u}{v}=-\binom{\sum E_{x} E_{t}}{\sum E_{y} E_{t}}} \\
A^{T} A & A^{T} b
\end{array}
$$

- $M=A^{\top} A$ is the "second moment matrix"
- Unique solution for flow vector (u, v) ?
= eigenvalues of the second moment matrix?
Eigenvectors and eigenvalues of M relate to edge direction and magnitude
Eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change, and the other eigenvector is orthogonal to it

Interpreting the Eigenvalues

Classification of image points using eigenvalues of the second moment matrix:

Uniform region

- gradients have small magnitude
- small λ_{1}, small λ_{2}
- system is ill-conditioned

Edge

- gradients have one dominant direction
- large λ_{1}, small λ_{2}
- system is ill-conditioned

High-texture or corner region

- gradients have different directions, large magnitudes
- large λ_{1}, large λ_{2}
- system is well-conditioned

Horn and Schunk's Optical Flow Algorithm: CBA \& SA

Smoothness Assumption

(SA)
Use spatial derivatives of flow: $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$, and $\frac{\partial v}{\partial y}$
Magnitude of the flow gradient $=0$

$$
\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}
$$

Patch size: Small

Large

CBA may be violated, SA strong

Horn and Schunk's Optical Flow Algorithm: CBA \& SA

Retrieve flow $(u, v)^{T}$ by reducing the error in CBA and
Use regularization, weigh errors with a scalar α :

$$
\begin{gathered}
\min _{(u, v)} \sum_{\text {patch }}\left(\alpha \text { error }_{C B A}+\operatorname{error}_{S A}\right) \\
\min _{(u, v)} \sum_{\text {patch }}\left(\alpha\left(u E_{x}+v E_{y}+E_{t}\right)^{2}+\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right)
\end{gathered}
$$

Horn and Schunk's Optical Flow Algorithm: CBA \& SA

Retrieve flow $(u, v)^{T}$ by reducing the error in CBA and Use regularization, weigh errors with a scalar α :

$$
\begin{gathered}
\min _{(u, v)} \sum_{\text {patch }}\left(\alpha \operatorname{error}_{C B A}+\operatorname{error}_{S A}\right) \\
\min _{(u, v)} \sum_{\text {patch }}\left(\alpha\left(u E_{x}+v E_{y}+E_{t}\right)^{2}+\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right) \\
\min _{(u, v)} \sum_{(i, j) \in P}\left(\alpha\left(u_{i, j} E_{x}+v_{i, j} E_{y}+E_{t}\right)^{2}+\right. \\
\frac{\mathrm{i}, \mathrm{j}+1}{4}\left[\left(u_{i+1, j}-u_{i, j}\right)^{2}+\left(u_{i, j+1}-u_{i, j}\right)^{2}+\left(v_{i+1, j}-v_{i, j}\right)^{2}+\left(v_{i, j+1}-v_{i, j}\right)^{2}\right]
\end{gathered}
$$

Horn and Schunk's Optical Flow Algorithm: CBA \& SA

$$
\begin{aligned}
\bar{u} & =u_{i-1, j}+u_{i+1, j}+u_{i, j+1}+u_{i, j-1} \\
\bar{v} & =v_{i-1, j}+v_{i+1, j}+v_{i, j+1}+v_{i, j-1}
\end{aligned}
$$

$$
\begin{aligned}
& u_{i, j}^{(n+1)}=u_{i, j}^{(n)}-\alpha \frac{E_{x} \bar{u}_{i, j}^{(n)}+E_{y} \bar{v}_{i, j}^{(n)}+E_{t}}{1+\alpha\left(E_{x}^{2}+E_{y}^{2}\right)} E_{x} \\
& v_{i, j}^{(n+1)}=v_{i, j}^{(n)}-\alpha \frac{E_{x} \bar{u}_{i, j}^{(n)}+E_{y} \bar{v}_{i, j}^{(n)}+E_{t}}{1+\alpha\left(E_{x}^{2}+E_{y}^{2}\right)} E_{y}
\end{aligned}
$$

Problems with Optical Flow

"Aperture Problem(s)"

1) Flow perpendicular to brightness gradient
=> Cannot compute u, v

Problems with Optical Flow

"Aperture Problem(s)"
2) Only a small portion of flow field is given

can both represent

What to do when the Optical Flow Algorithm breaks down

- Apparent motion is large (larger than a pixel)
- Iterative refinement
- Coarse-to-fine estimation
- Exhaustive neighborhood search
- A point does not move like its neighbors
- Motion segmentation
- Constant Brightness Assumption does not hold
- Exhaustive neighborhood search with normalized correlation

Learning Objectives:

Understand

- Difference between motion flow fields and optical flow fields
- Constand Brightness Assumption (CBA)
- Flow Smoothness Assumption
- Derivation of CBA using calculus
- 2 versions of the "Aperture Problem"
- Lucas-Kanade and Horn-Schunk algorithms

Be able to draw translational \& rotational flow fields

