Face Recognition, Head Pose Estimation, Age Estimation, Facial Expression Analysis, VGG 16 and SSR-Net, Computer Vision and Biometrics

CS 585

March 7 and 19, 2024

Margrit Betke Department of Computer Science

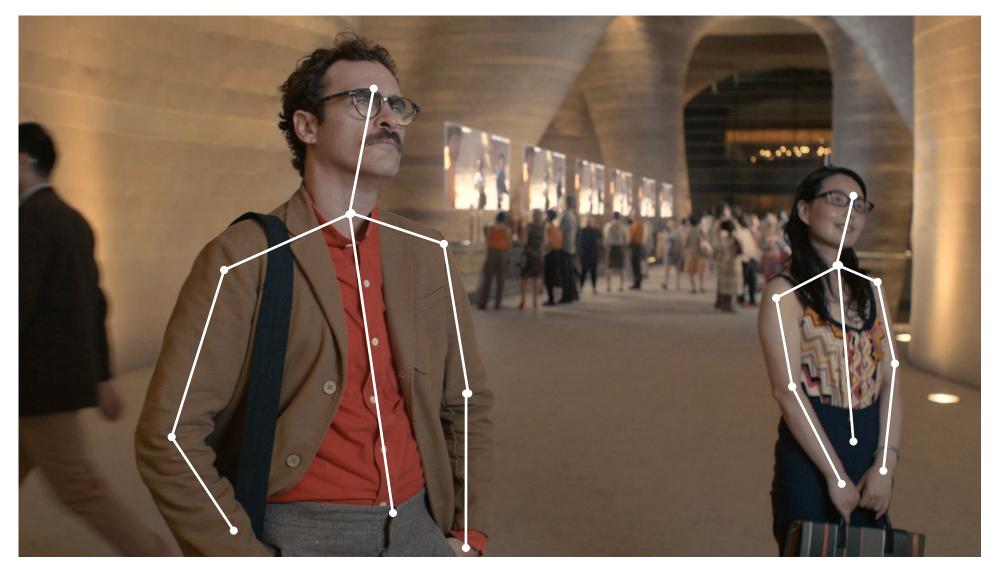
Boston University

LOOKING AT PEOPLE

LOOKING AT PEOPLE: PERSON LOCALIZATION

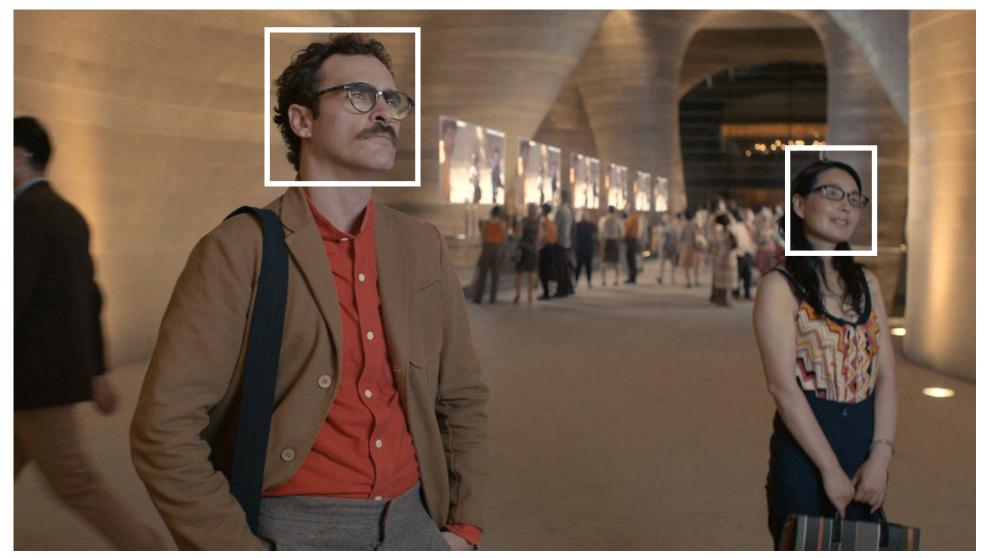
Boston University Computer Science

LOOKING AT PEOPLE: HUMAN POSE DETECTION



Boston University Computer Science

LOOKING AT PEOPLE: FACE DETECTION



LOOKING AT PEOPLE: FACE RECOGNITION

Image source: Her, 2013

Boston University Computer Science

LOOKING AT PEOPLE: FACIAL LANDMARK DETECTION

LOOKING AT PEOPLE: FACIAL EXPRESSION RECOGNITION

Image source: Her, 2013

Boston University Computer Science

LOOKING AT PEOPLE: FACE RECOGNITION

Image source: Her, 2013

Boston University Computer Science

Recognizing Faces

Two Tasks:

Face Verification

Face Identification

Face Verification?

Are these two images showing the same person?

Query Image



Reference Image

"One-to-one similarity"

Important for Access Control and Re-identification

Yes

Face Identification?

What is the ID or name of this person?

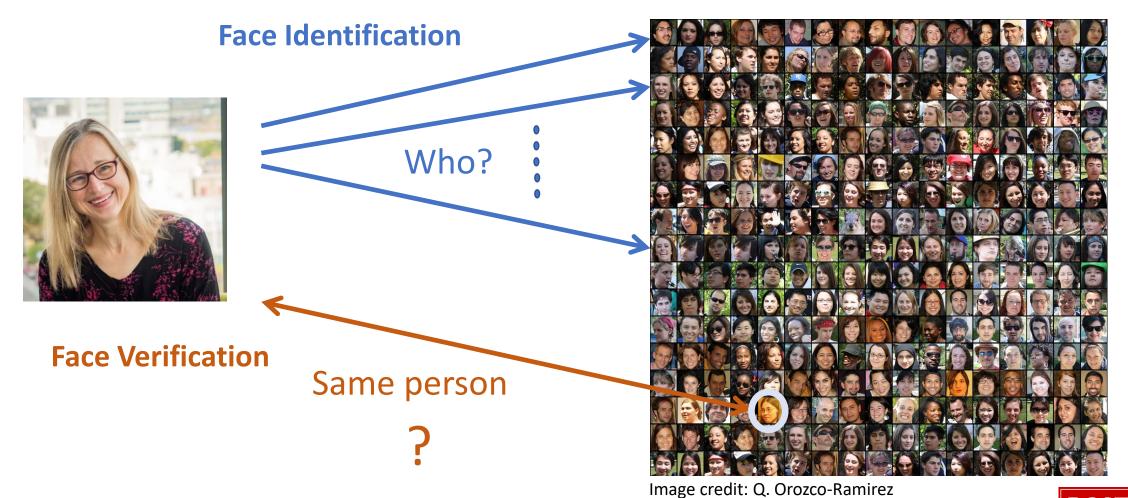
Query Image

= "Margrit Betke"

"One-to-many similarity"

Important for Watch-list Surveillance or Forensic Search

Gallery of Known Subjects



Boston University Computer Science

13 BOSTON UNIVERSITY

Gallery of Known Subjects

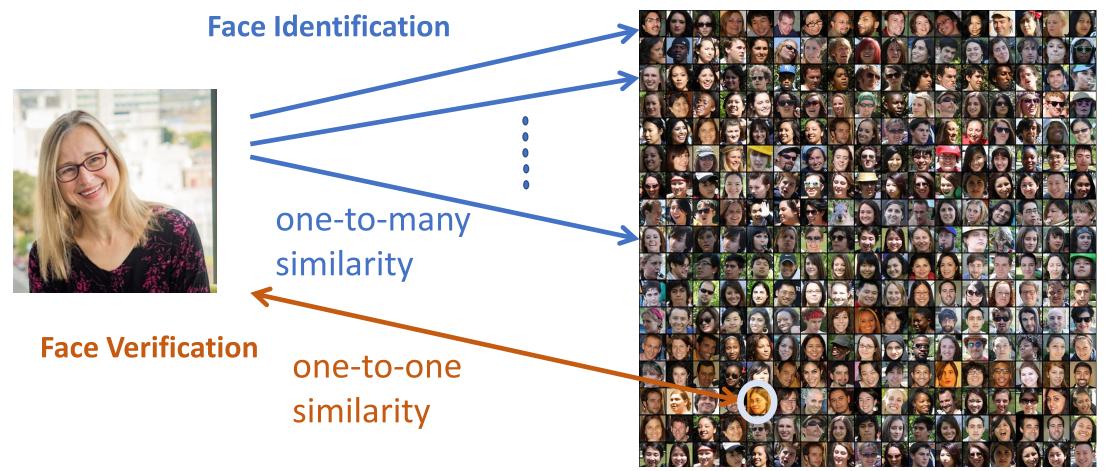


Image credit: Q. Orozco-Ramirez

Here: One picture per person

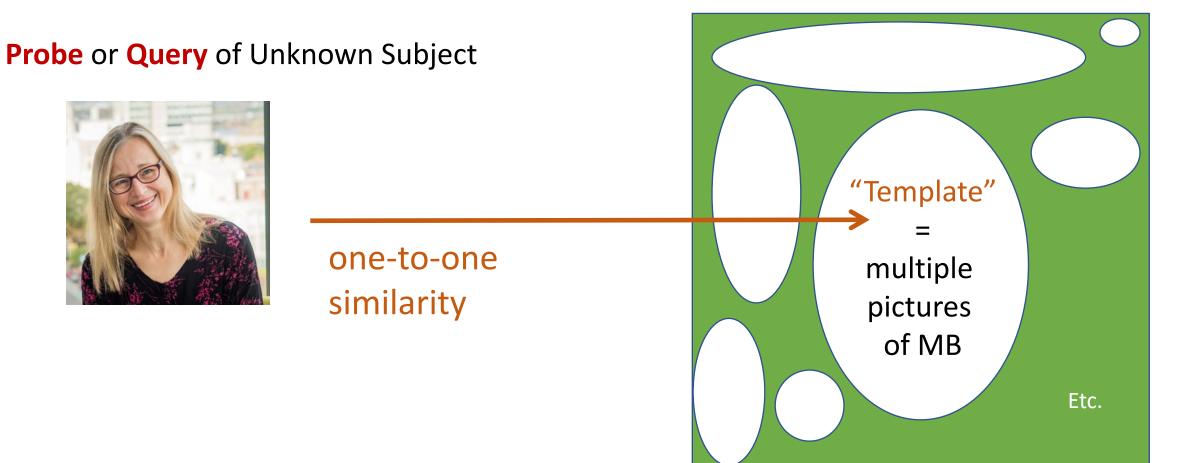
Better: Multiple pictures per person

Gallery of Known Subjects

Image credit: Q. Orozco-Ramirez

Gallery of Known Subjects

Gallery of Known Subjects



How does Face Recognition Technology Work?

Pre-2012 Revolution in Computer Vision: MIT's "Eigenfaces"

Now:

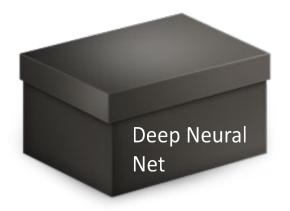
Deep Neural Networks

Except: Pre-processing still uses traditional techniques

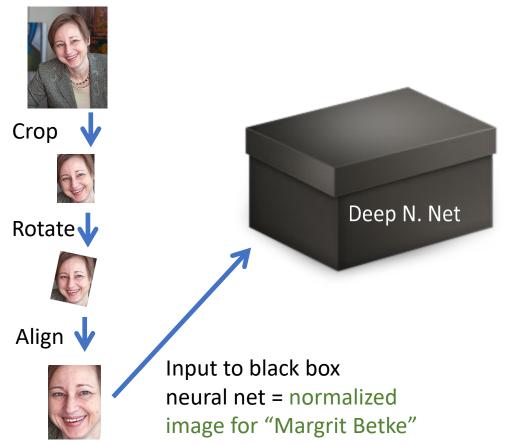
Deep Neural Networks used for Face Recognition

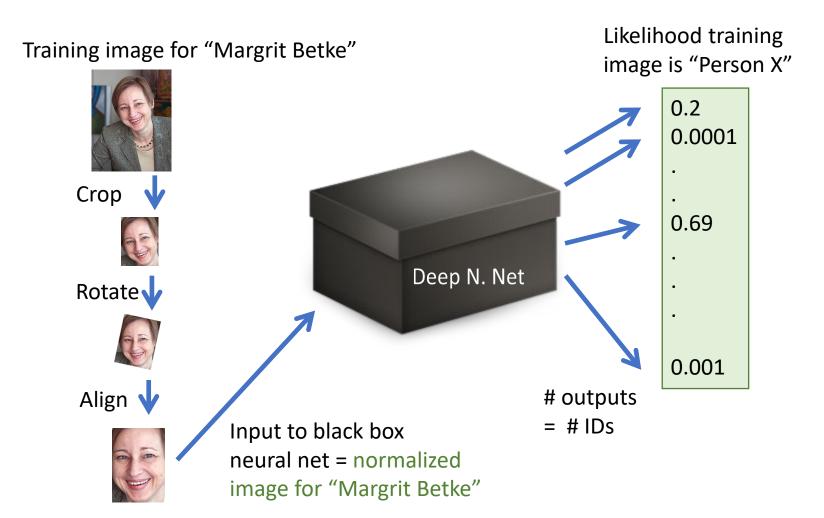
- 1. Network architecture
- 2. Training
- 3. Testing = "use mode"

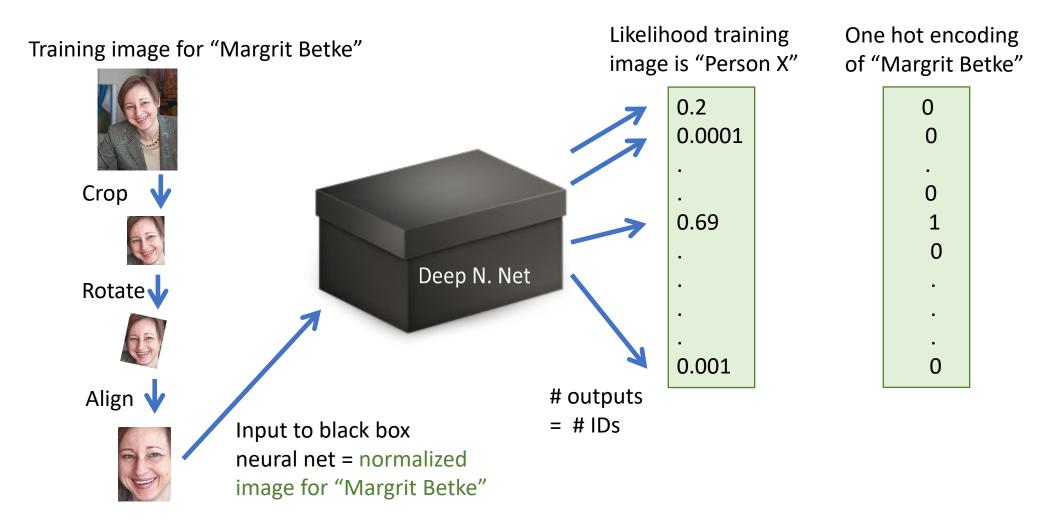
Network Architecture

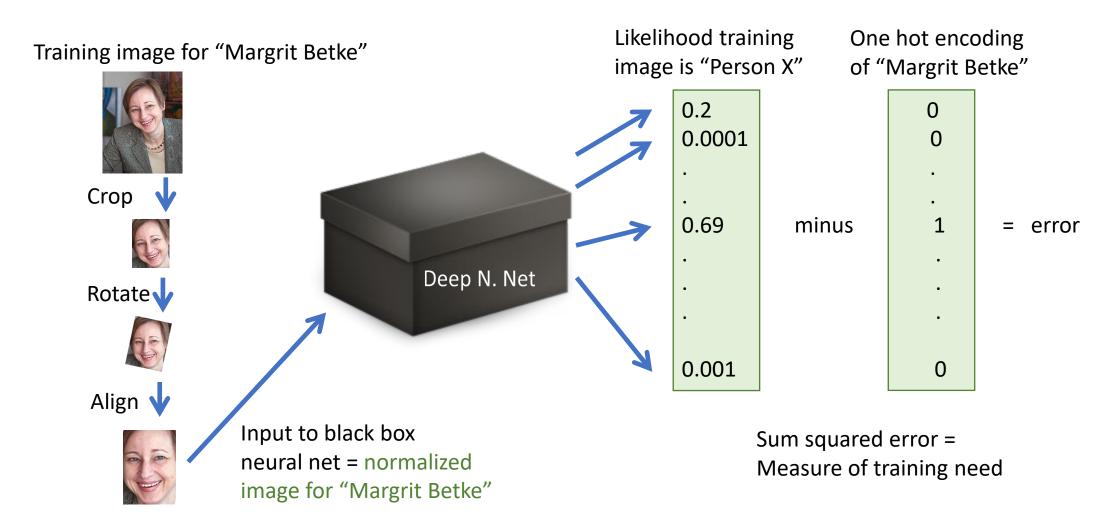


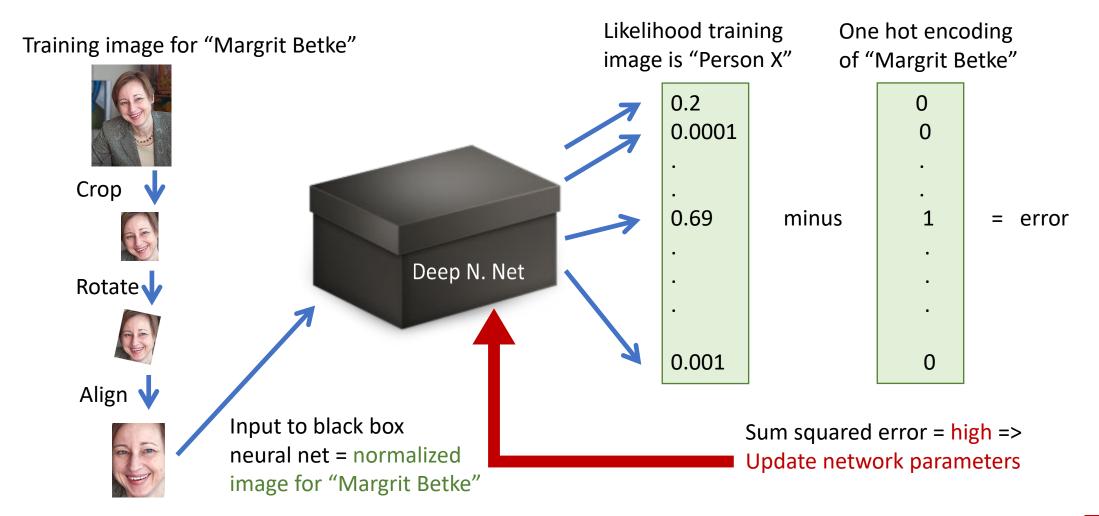
Training image for "Margrit Betke"

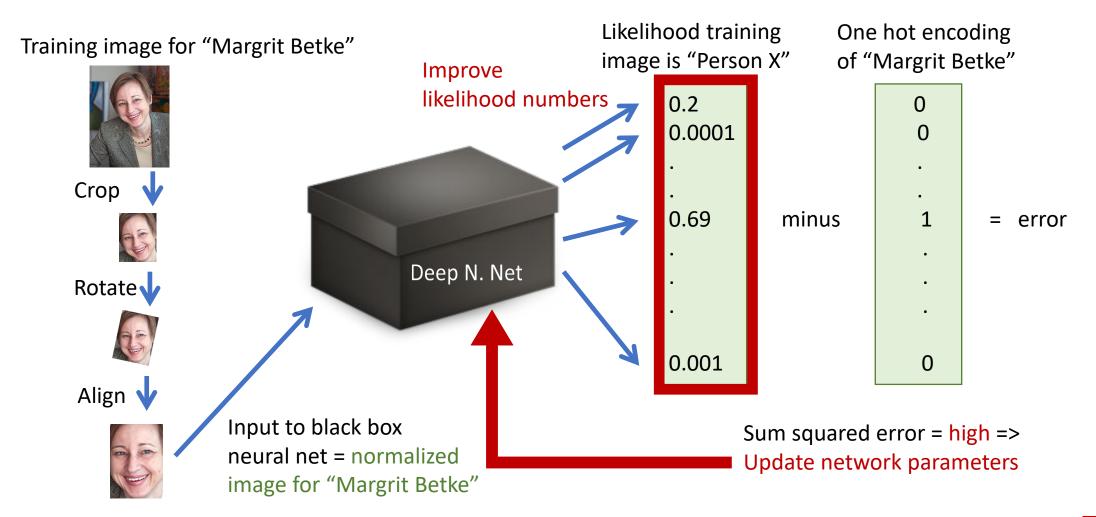


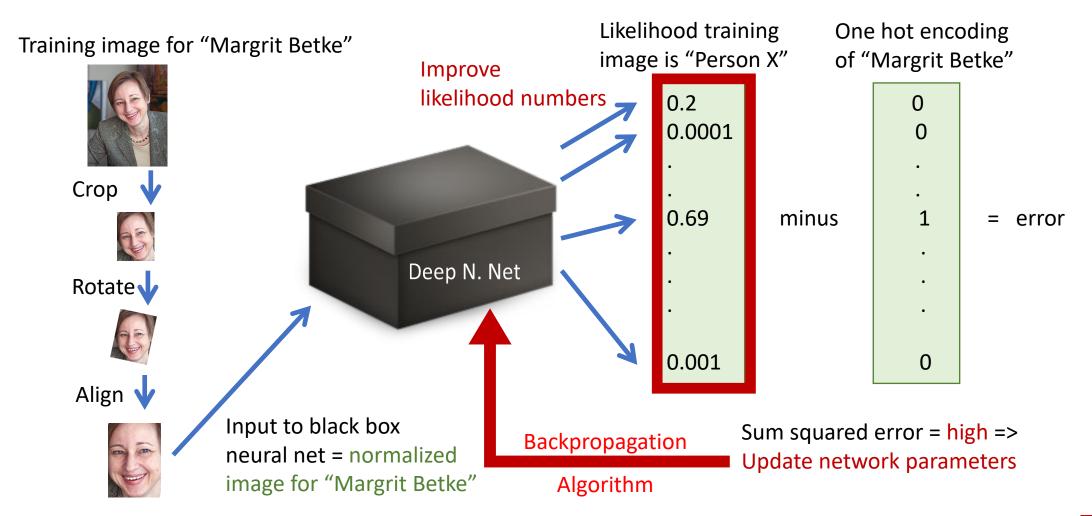


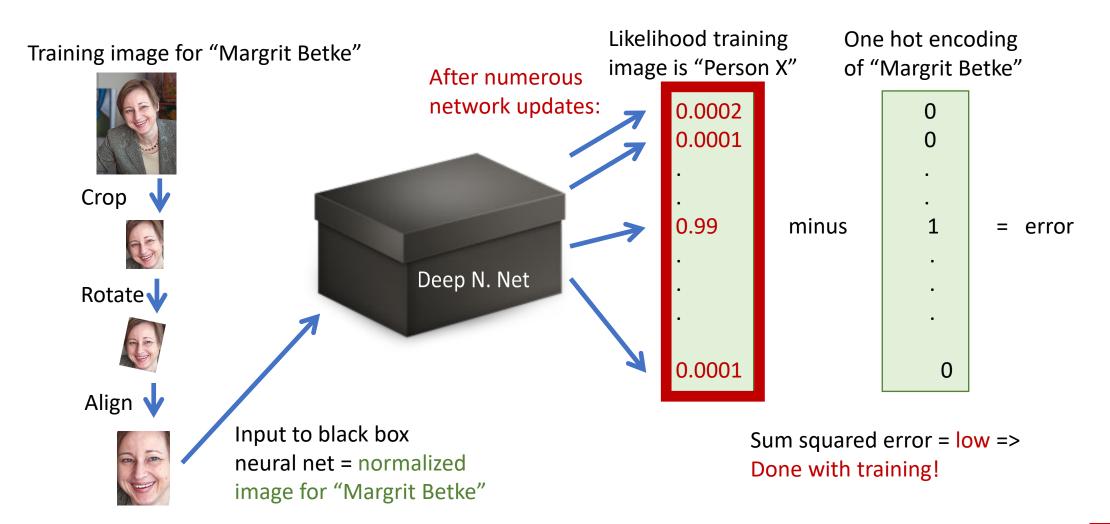






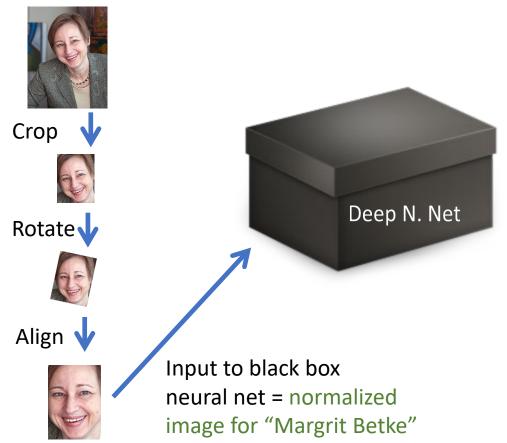






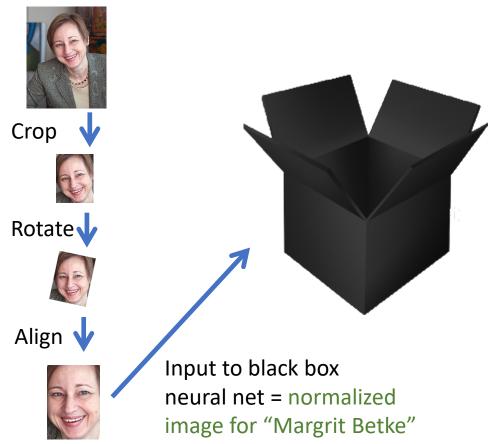
Trained network

Training image for "Margrit Betke"

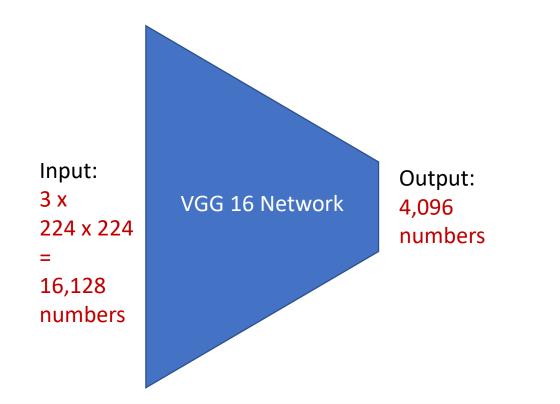


Let's look at the trained network

Training image for "Margrit Betke"

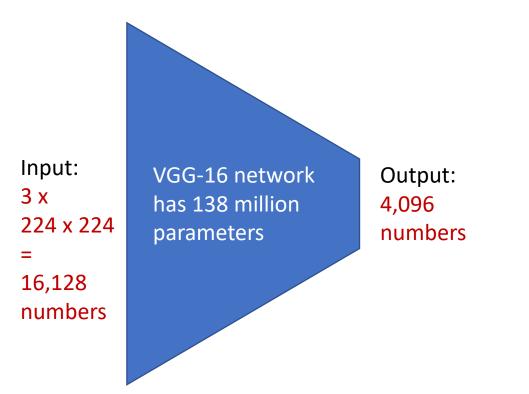


Network Architecture: VGG-16

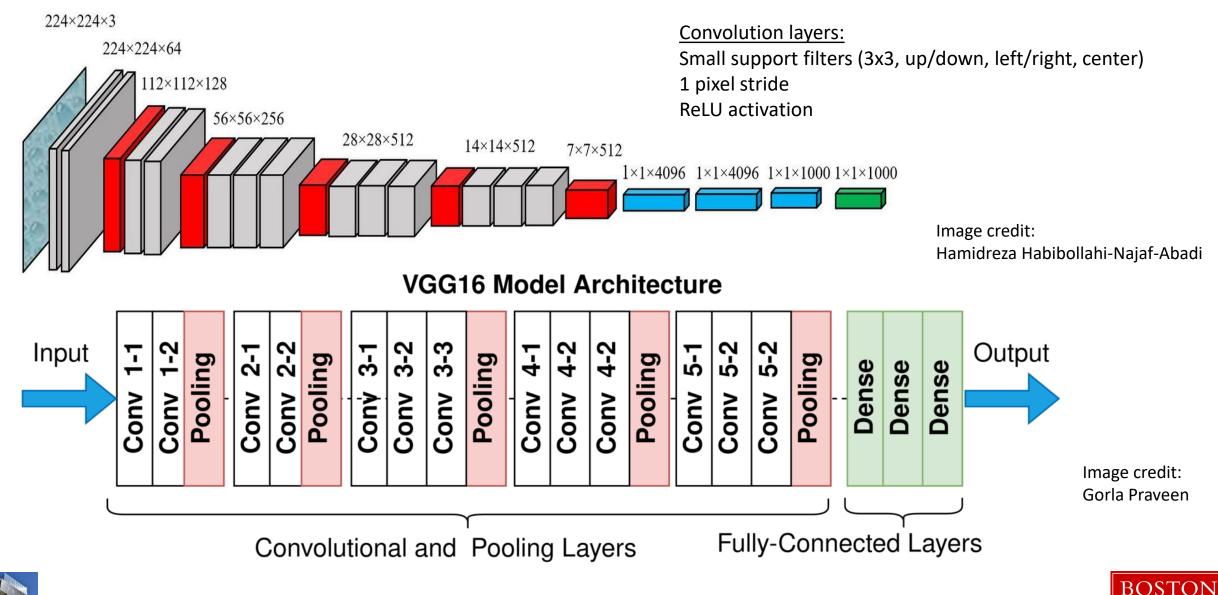


VGG = Visual Geometry Group, Oxford Karen Simoyan & Andrew Zisserman, 2014

Network Architecture: VGG-16



Network Architecture of VGG-16: Two Visualizations

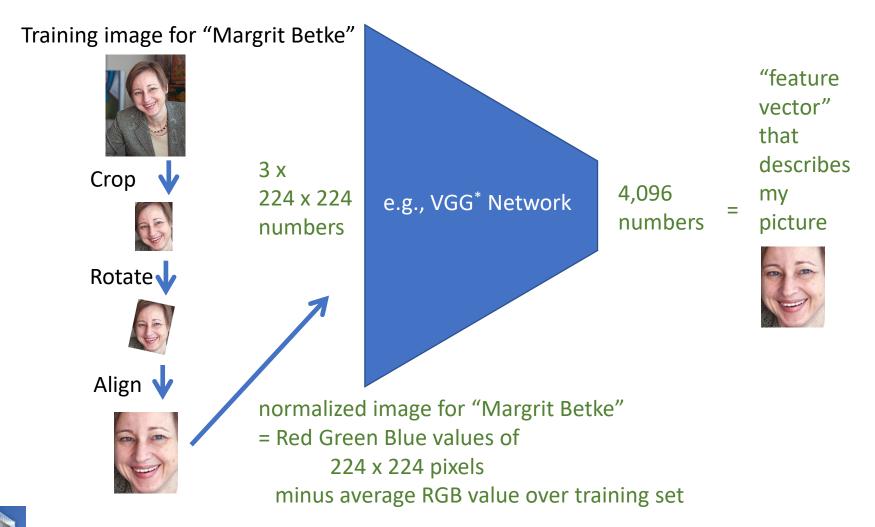


33

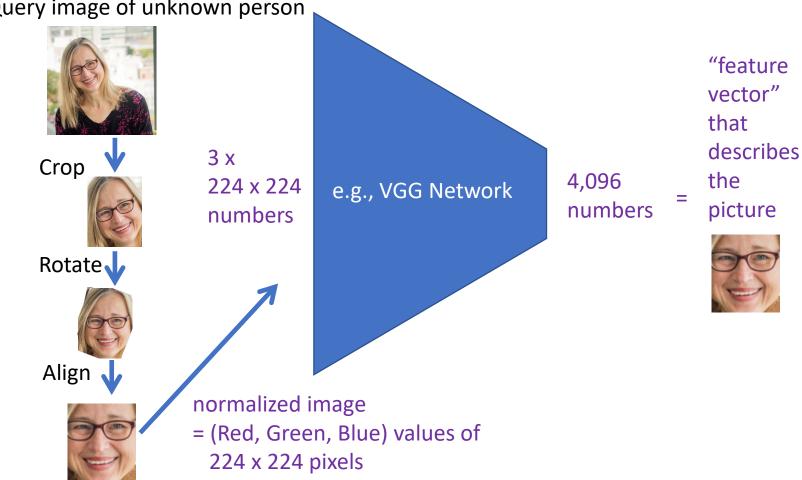
INIVERSIT

Boston University Computer Science

Let's look at how to use the trained network

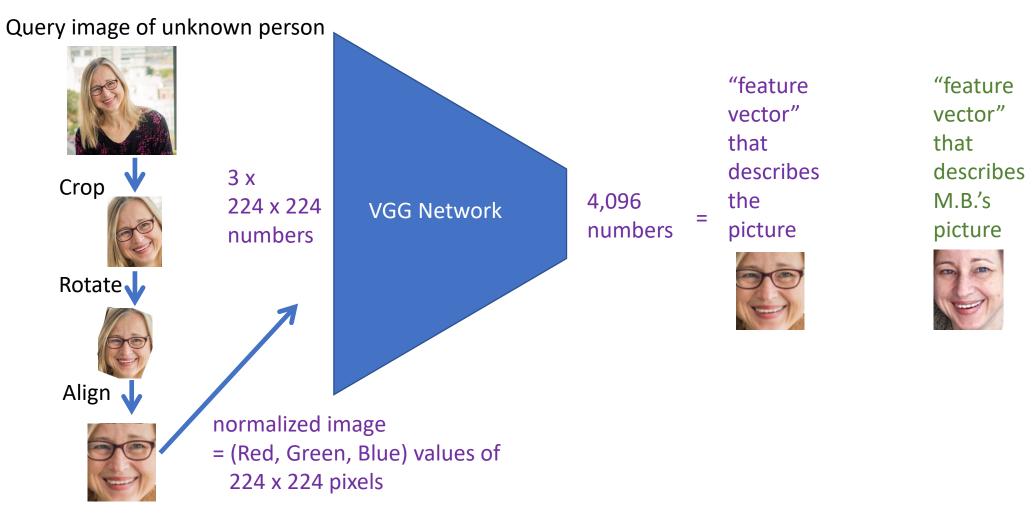


Face Recognition in "Use Mode"



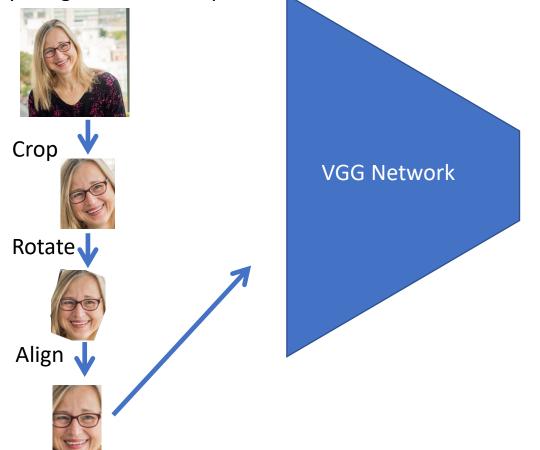
Query image of unknown person

Face Verification in "Use Mode"



Face Verification in "Use Mode"

Query image of unknown person



"feature vector" that describes the picture	minus	"feature vector" that describes M.B.'s picture	= error
--	-------	---	---------

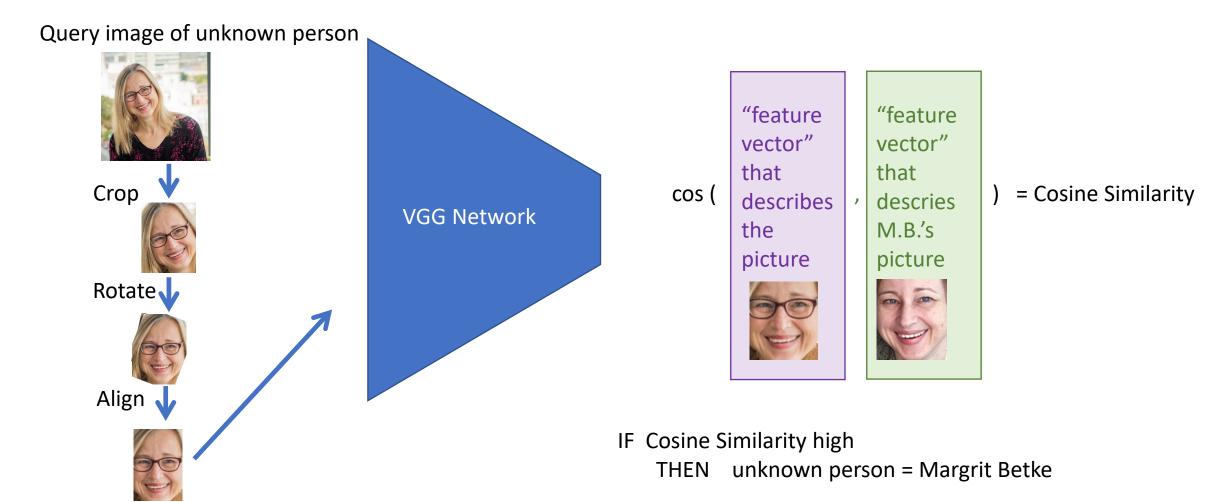
IF error small THEN unknown person = Margrit Betke

Face Verification in "Use Mode"

Query image of unknown person "feature "feature vector" vector" that that Crop minus)2 = Euclidean Error describes describes **VGG Network** the M.B.'s picture picture Rotate Align 🗸 IF Euclidean error small unknown person = Margrit Betke THEN

Boston University Computer Science

Face Verification in "Use Mode"



Boston University Computer Science

Face Identification in "Use Mode"

Query image of unknown person # IDs vectors "feature vector" that "feature Crop -> # IDs errors minus describes vector" VGG Network the that picture describes Rotate picture of person X Align 🗸 For all IDs in database: IF smallest error for ID x THEN unknown person = ID xBOSTON

40

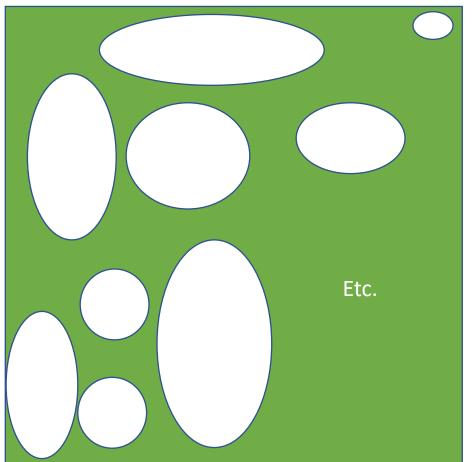
UNIVERSITY

Benchmark Dataset (from 2007, still used) Labeled Faces in the Wild (LFW) *

5,749 identities 13,233 face images 1,680 people with two or more images

- Publicly available
- Web data
- Celebrities

Gallery of Known Subjects



Recognition Results on LFW Dataset

Google

Neural Net Name:	FaceNet 2015	DeepFace 2014
Number of Photos:	> 500 Million	4.4 Million
Number of Subjects:	> 10 Million	4,000
Accuracy:	99.6%	97.3%

Do these accuracy numbers show that the problem was solved already in 2015?

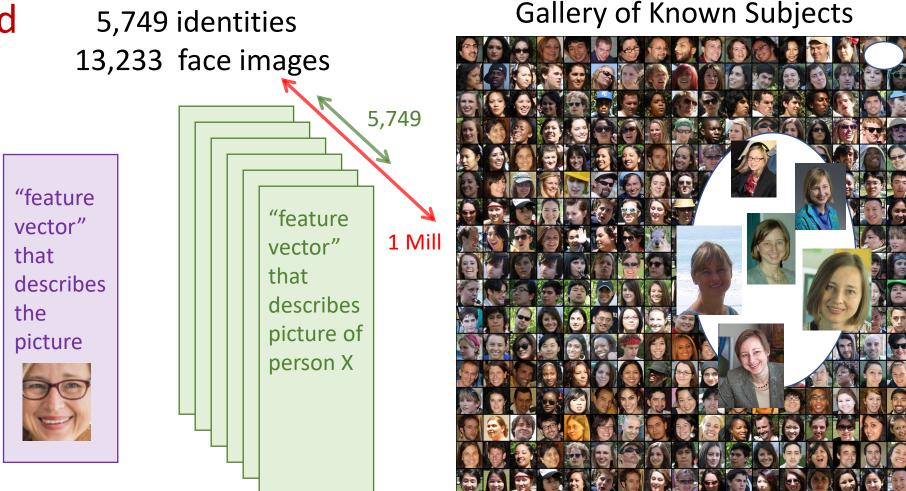
Do these accuracy numbers show that the problem was solved already in 2015?

No!

- 1. Distractor images
- 2. Training versus testing datasets
- 3. What is the best network/algorithm?
- 4. What are the limitations of existing systems?

Benchmark Dataset Labeled Faces in the Wild (LFW)

What if we add 1 million "distractor" face images?



Benchmark Dataset Labeled Faces in the Wild (LFW)

With 1 million "distractor" face images:

Recognition rates go down a lot!

Gallery of Known Subjects

Do these accuracy numbers show that the problem was solved in 2015?

No!

- 1. Distractor images
- 2. Size of datasets
- 3. What is the best network/algorithm?
- 4. What are the limitations of existing systems?

Size of Training Datasets

Google facebook

Neural Net Name:	FaceNet 2015	DeepFace 2014
Number of Photos:	> 500 Million	4.4 Million
Number of Subjects:	> 10 Million	4,000
Accuracy on LFW datase	et (5K): 99.6%	97.3%

Do these accuracy numbers show that the problem is solved?

No!

- 1. Distractor images makes the problem much more difficult
- 2. Size of datasets does matter a lot 🔧
- 3. What is the best network/algorithm?
- 4. What are the challenges & limitations of existing systems?

Is the key to success the size of the training data or the network ?

Google

facebook

Neura	Net	Name:

FaceNet 2015

DeepFace 2014

Number of Photos:

> 500 Million

4.4 Million

4,000

Number of Subjects: > 10 Million

Accuracy on LFW dataset:

99.6%

97.3%

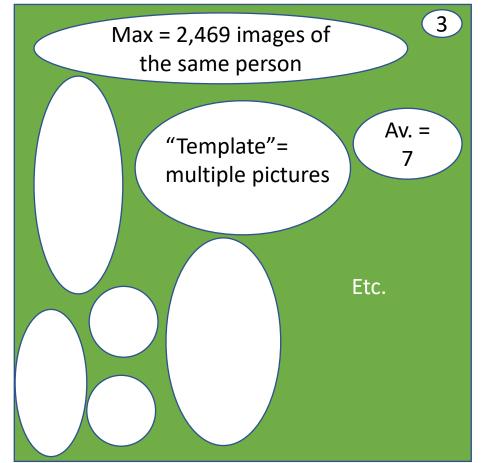
2017 MegaFace2^{*} Dataset

https://arxiv.org/pdf/1705.00393.pdf

672,057 identities 4,753,320 face images

- Publicly available
- No celebrities
- Flickr account data
- Automated labeling
- 59% males, 41% females
- Age range among template images: 16 years

Gallery of Known Subjects



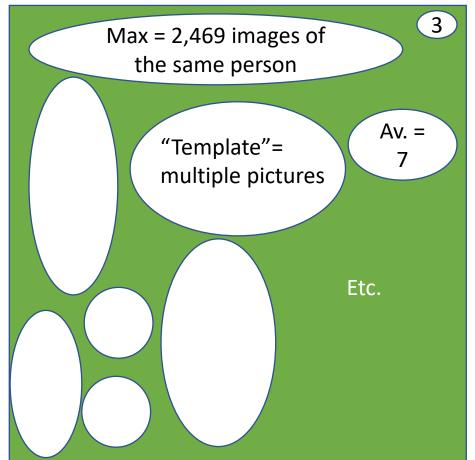
2017 Competition

- Train on MegaFace2 (672K IDs, 4 mill. images)
- Test on FaceScrub* (530 IDs, 106K images)
- Add 1 million "distractor" face images

6 teams provided feature vectors to competition organizers on FaceScrub & distractor images

Results varied between 28% to 76% recognition accuracy

Method matters!



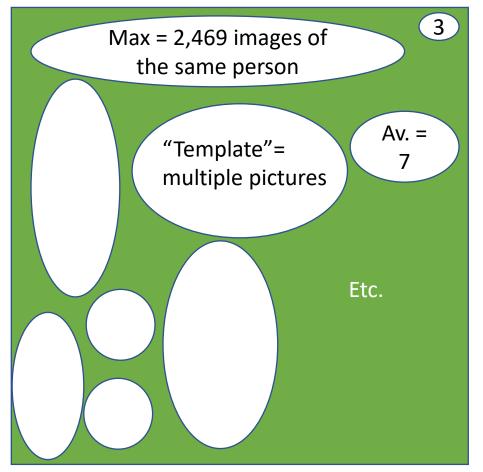
2017 MegaFace2 Dataset

- Train on MegaFace2
- Test on FaceScrub (530 IDs, 106K images)
- Add 1 million "distractor" face images

E.g., NEC's commercial product: ~100% accuracy without distractors ~60% accuracy with 1 million distractors

Best method: GRCC with 76% accuracy with 1 million distractors

Gallery of Known Subjects



We don't know what was under the hood in the 2017 Competition. Secrets of the trade...

More recently, network structures, loss functions, and training schemes have been published.

Most recent conference: International Joint Conference on Biometric, Ljubljana, Slovenia, September 25-28, 2023

Our research group's work won a "Best Poster Award"

Do these accuracy numbers show that the problem is solved?

No!

- 1. Distractor images makes the problem much more difficult
- 2. Size of datasets does matter a lot 🔧
- 3. Competitions used to determine best network/algorithm
- 4. What are the challenges & limitations of existing systems?

Do these accuracy numbers show that the problem is solved?

No!

- 1. Distractor images makes the problem much more difficult
- 2. Size of datasets does matter a lot 🔧
- 3. Competitions used to determine best network/algorithm
- 4. What are the challenges & limitations of existing systems?

What are other limitations of existing systems?

System performance degrades due to

Aging

Pose Variations: Frontal vs. Profile

What are other limitations of existing systems?

System performance degrades due to

Aging

Pose Variations: Frontal vs. Profile

- <u>Klare et al., CVPR 2015</u>: IARPA Janus Benchmark A
- <u>Sengupta et al., WACV 2016</u>: CFP Dataset
- <u>Yu et al., ICCV 2017</u>: AFLW2000 Dataset

Let's do a Human Experiment on Recognizing Faces in Frontal versus Profile Images

Please determine if the following images show the same person.

Poll: Same Person?

Same Person?

Frontal vs. Profile

GT: Same persons:

Kristen Grauman, UTA

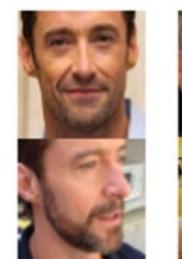
Pawan Sinha, MIT

© Betke

GT: Not same person

GT: Same person

Cao et al., 2018



Research on Face Recognition under Pose Variations

Cao et al., CVPR 2018

Idea: Map profile representations into frontal pose representations

Results:

Verification:

True Acceptance Rate (TAR) at

False Acceptance Rate (FAR) of

0.01: 94%

0.001:89%

Rank 1 Identification:

96.8%

Zhu et al., PAMI 2019: pdf

Idea: 3D Dense Face Alignment (3DDFA) = Use DNNs to estimate 3D Morphable Model (3DMM) parameters:

- Pose: 3 Euler angles, translation, scale
- Shape: 50 dimensions
- Expression: 19 dimension

Results:

Better than state-of-the-art but relatively poor (regression by neural network difficult!)

Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape

Zhu et al., <u>ECCV 2020</u>, <u>PAMI 2022</u>:



ICP: Iterative Closest Point Algorithm. We will discuss in detail in a later lecture.

What are other limitations of existing systems?

System performance degrades due to

Aging

- Best-Rowden-Jain-PAMI-2017
- NIST Mugshot Identification Database (MID)
- NIST Multiple Encounter Dataset (MEDS), FBI Biometric Center of Excellence

Let's do a Human Experiment on Recognizing Age Difference of Images of Faces

Poll: Estimate Aging

E F G H

Images E-H: © Betke

Credit for Images A-D: Best-Rowden and Jain, 2018

Estimating Aging

Best-Rowden and Jain, 2018



Elapsed time: 9 years

8 years

В

8 years

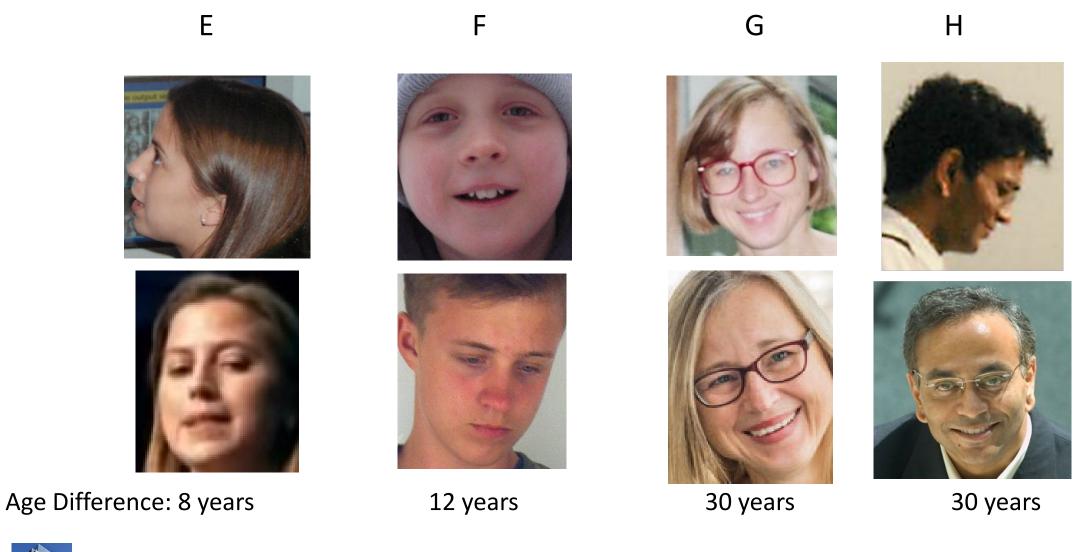
D

9 years

99% of subjects can still be recognized at 0.01% FAR up to approximately 6 years elapsed time

Best-Rowden and Jain, 2018

Estimating Aging



Deep EXpectation (DEX): Age Estimation

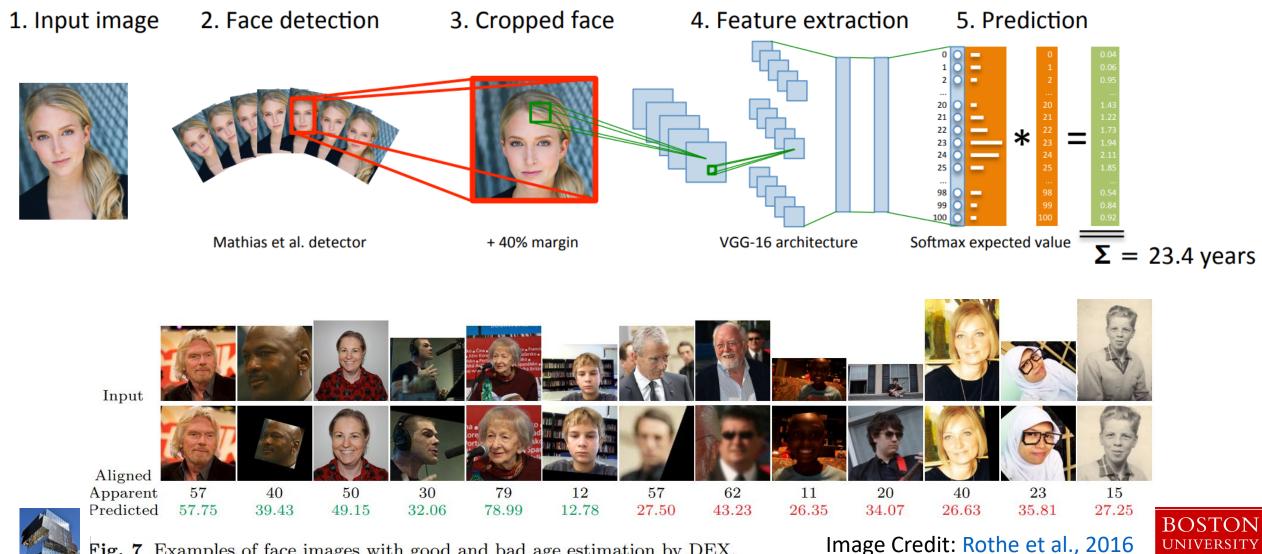
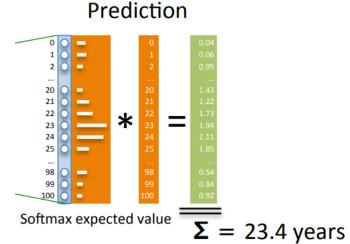


Fig. 7 Examples of face images with good and bad age estimation by DEX.

SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation

In DEX:

- Regression by conversion into age classes
- #age-groups=100,
- Representative age of *i*th bin is μ_i
- μ_{23} is age 23



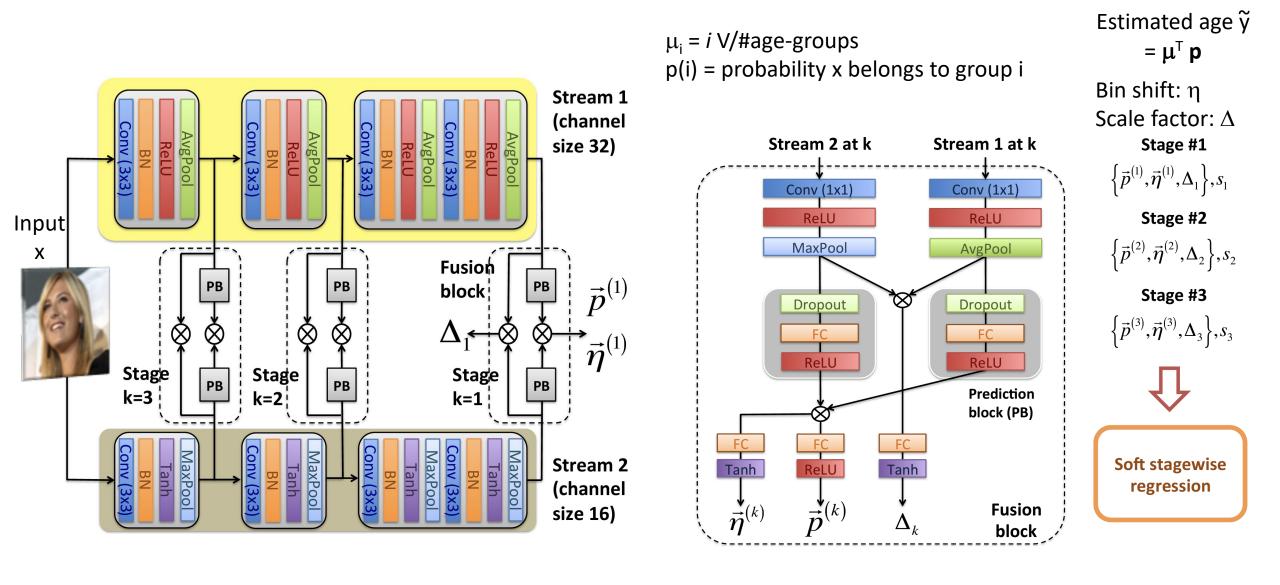
In SSR-Net:

- Regression by coarse-to-fine hierarchical conversion into age classes
- Coarse: "relatively younger" "about right age" "relatively older"
- Next stage: Refine decision of previous stage
- Representative of age group: $\mu_i = i V/\#age-groups$
- p(i) = probability x belongs to group *i*
- Estimated age $\tilde{y} = \sum_{k=1}^{K} \mu^{(k)}$. $\mathbf{p}^{(k)}$ where K = # stages
- To avoid quantization noise & class ambiguity when navigating between stages: Use bin shift η and scale factor Δ
- The shift vector $\boldsymbol{\mu}^{(k)}$ adjusts the center for each bin at kth stage
- The scale factor $\Delta^{(k)}\,$ scales the widths of all bins at kth stage
- Learned by network: $p^{(k)},\,\eta^{(k)},\,\Delta^{(k)}$ for all k

Insight: This is a general regression scheme!

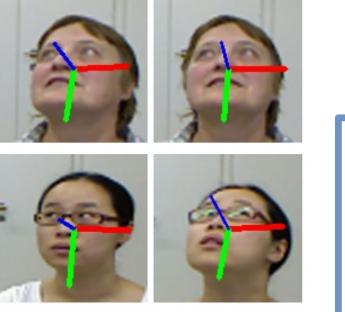
Credit: Yang et al., IJCAI 2018 71

SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation



Head Pose Estimation

FSA-Net: Learning Fine-Grained Structure Aggregation for Head Pose Estimation from a Single Image

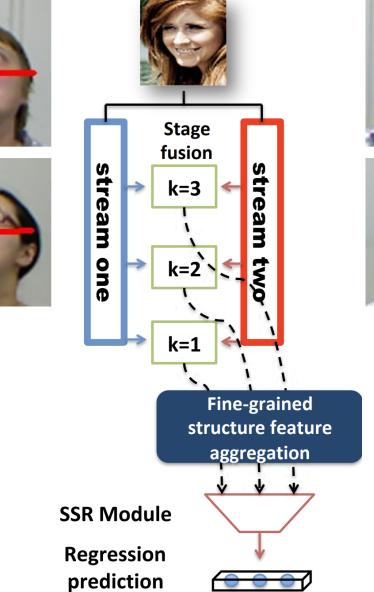


Goal:

Estimate yaw, pitch, roll angles of head

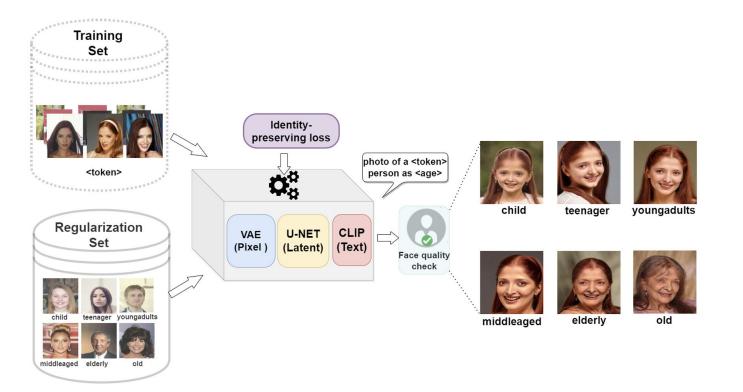
Regression Problem:

Use SSR-Net but for vector output



Identity-Preserving Aging of Face Images via Latent Diffusion Models*

<u>Banerjee et al., IJCB 2023</u>: Use a latent text-to-image diffusion model to synthetically age and de-age face images



International Joint Conference on Biometrics, September 2023: Keynote Address by Mayank Vatsa

Biometric Datasets from IIT Jodhpur

https://iab-rubric.org/resources

- DroneSurf: face recognition from drones
- <u>Dhamecha et al., IJCB 2023,</u> <u>Disguise Detection</u>
- TIFS 2023: Largest fingerprint dataset
- Injured Face Recognition (120 unclaimed dead identified)

- Narayan et al., CVPR 2023
- **<u>DFPlatter</u>**: Multi-subject deepfakes

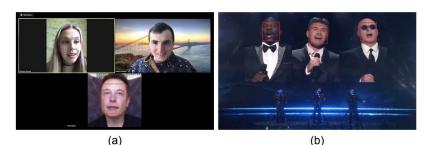
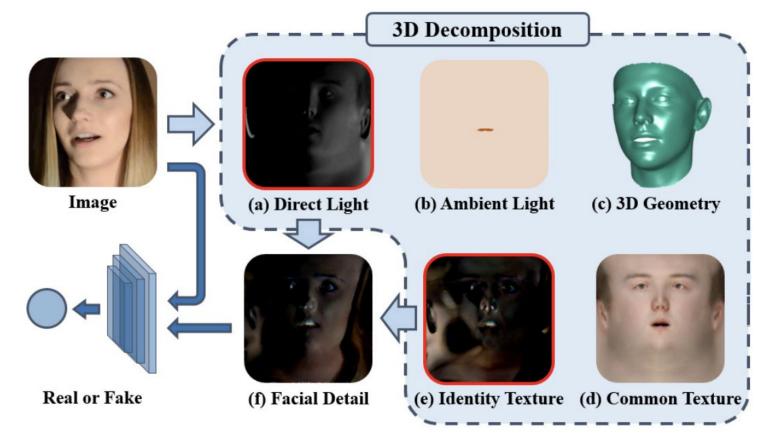


Figure 1. Samples showcasing multi-face deepfakes circulated on social media. (a) A zoom call with a deepfake of Elon Musk [8] (b) Real-time deepfake generation at America's Got Talent [9] (c) Deepfake round-table with multiple deepfake subjects [33].

Boston University Computer Science

Face Forgery Detection by 3D Decomposition

Zhu et al., <u>CVPR 2021</u>, <u>Trans PAMI, 2023</u>



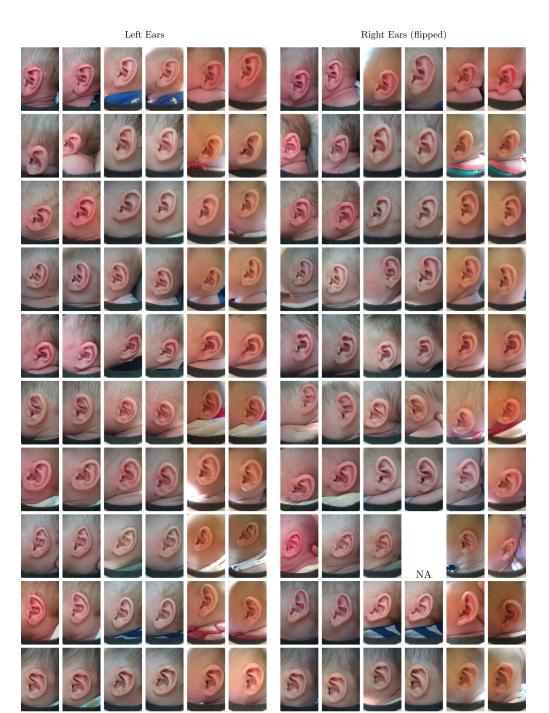
Alternative Biometrics: Ears

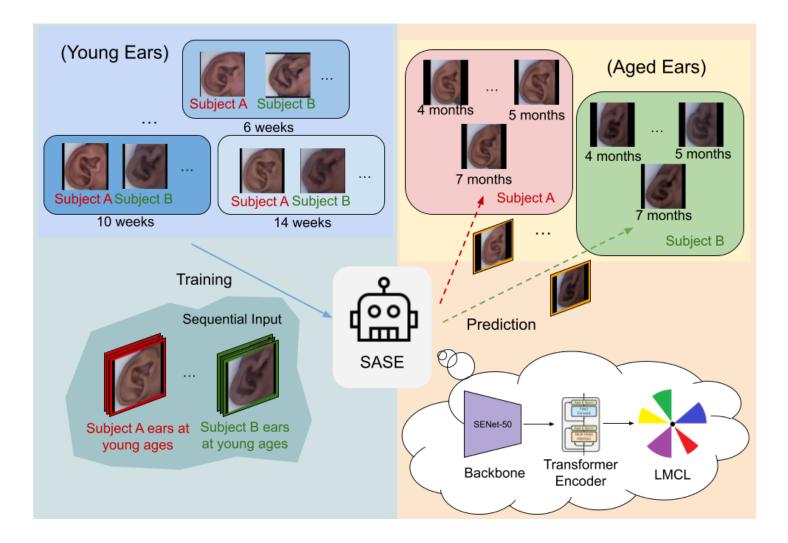
Our Task:

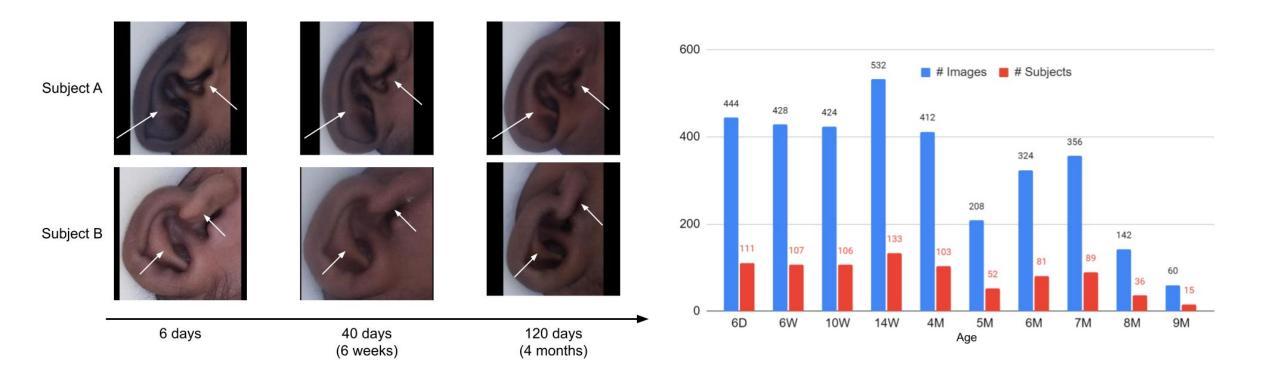
Can we identify newborns, during the subsequent months based on images of their growing ears?

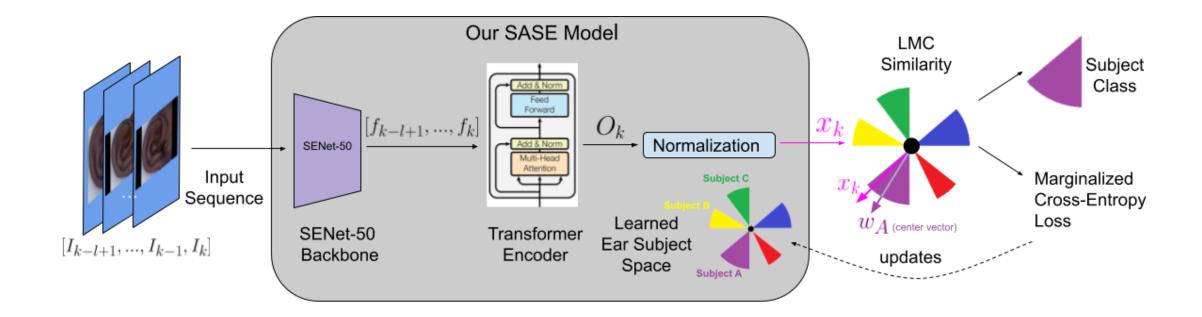
Motivation:

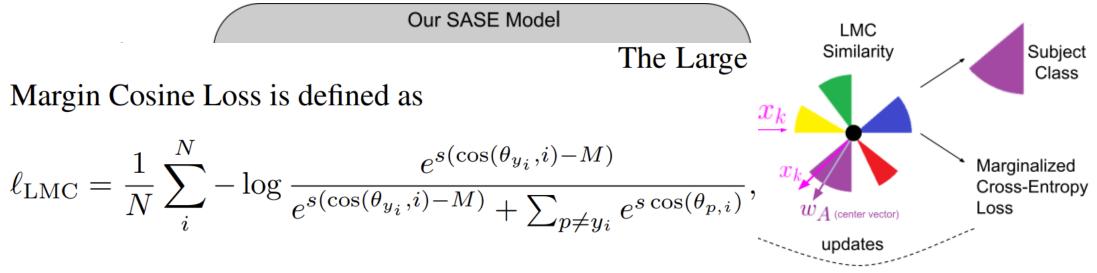
- Infants should be immunized.
- Infants born to women with HIV should receive the HIV-prevention medicine zidovudine.
- Our collaborators in rural Zambia, health care professionals who manage a network of clinics, have difficulties tracking down babies.











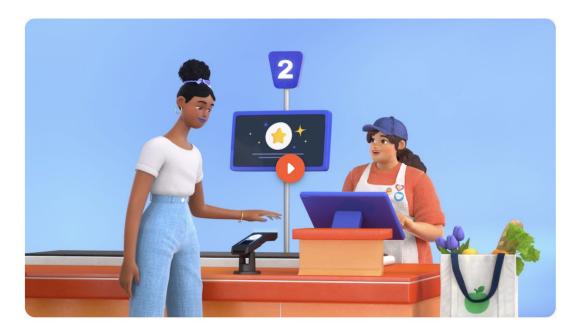
where N is the number of training samples, i stands for the *i*th sample, y_i stands for the ground truth subject of the sample, $\cos(\theta_p, i) = w_p^T x_i$ (with $||w^T|| = ||x_i|| = 1$), and the learnable vector w_p of the *p*th subject, which works as a "center" to represent subject p in latent "ear space."

Table 3. Average cross-validation recognition accuracy of SASE compared to four baseline models on three datasets

Dataset	UERC [19]	FG-NET [32] (Aging Faces)		Our EICZA (Aging Ears)		
	without	Age Neutral	Age Constrained	Age Neutral	Age Constra	ined Train/Test
Model	Ear Ages	Train/Test	Train/Test	Train/Test	with Day 6	without Day 6
SqueezeNet [28]	26.88%	17.85%	7.24%	52.30 %	8.23%	11.14%
ResNet-50 [25]	36.72%	82.84%	55.92%	61.30%	13.84%	22.98%
SENet [27]	41.86%	78.89%	46.05%	68.11 %	18.85%	28.46%
SASE (Our Model)	42.56%	82.90%	52.96%	69.49%	33.14%	49.98%

The Palm as a Biometric

https://one.amazon.com



Your palm is all you need

Extremely high accuracy needed for financial transactions.

100% accuracy claimed

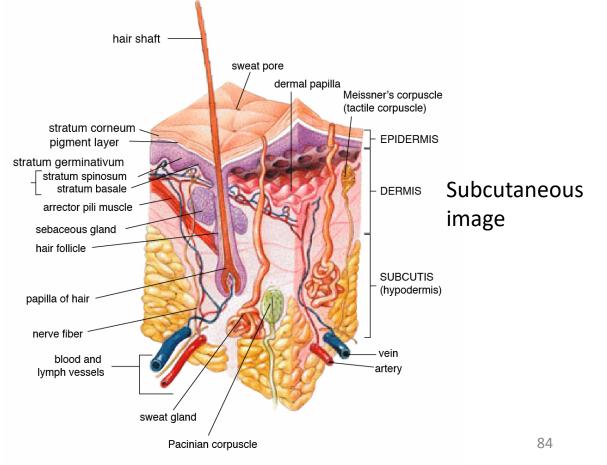
Manoj Aggarwal, Director of Applied Science, Amazon One gave a keynote address at IJCB 2023, September 28

How does Amazon's Palm Recognition work?

Bi-modal input:

1. RGB image of your palm

2. Subsurface image of your palm illuminated by near infrared light



Computer Vision & Biometrics

Other Biometric Tasks:

- Gait Recognition
- Iris Recognition
- Fingerprint Recognition
- Face Recognition with Face Expressions or micro-expressions

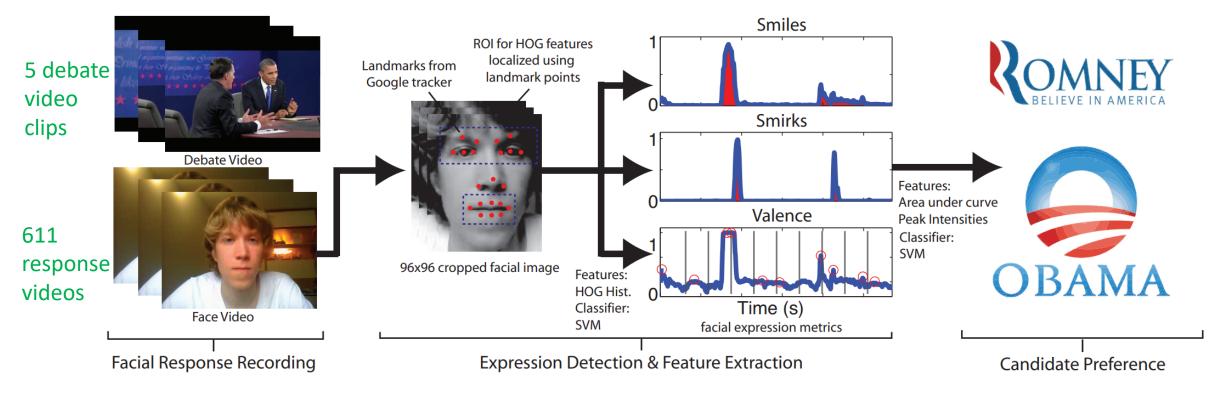
Ethical Concerns:

- Misuse by personal enemies: Fake nude pictures on social media
- Misuse by totalitarian governments: "Big-brother watching you"
- Arms race of fake creation/fake detection

LOOKING AT PEOPLE: FACIAL EXPRESSION RECOGNITION

Image source: Her, 2013

Expression Recognition Reveals Political Preference

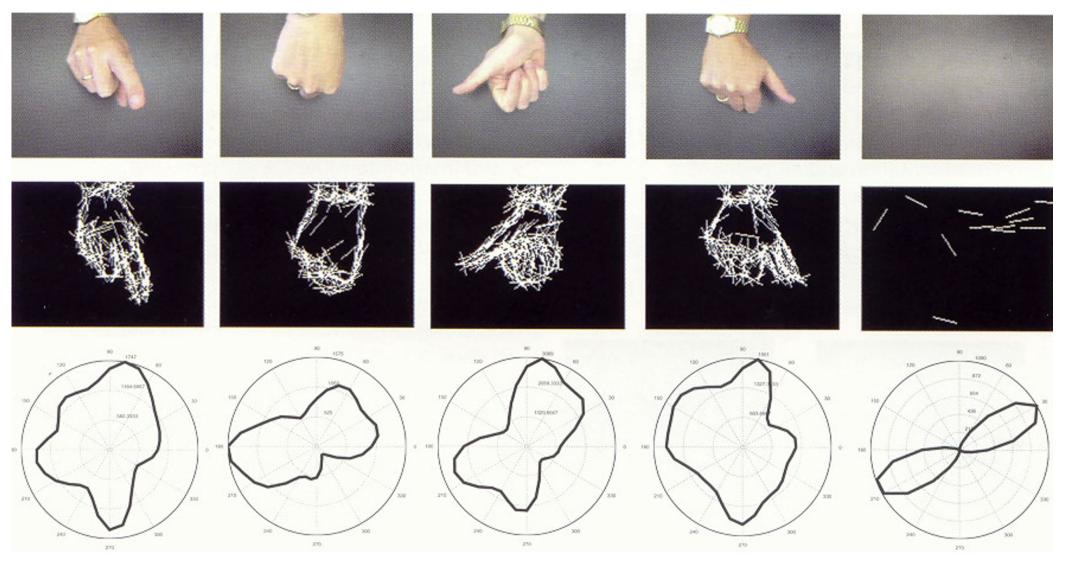


Accuracy ~ 80%

Boston University Computer Science

Image Credit: <u>McDuff et al., 2017</u>

What are HOGs?



HOGs = Histograms of Gradients

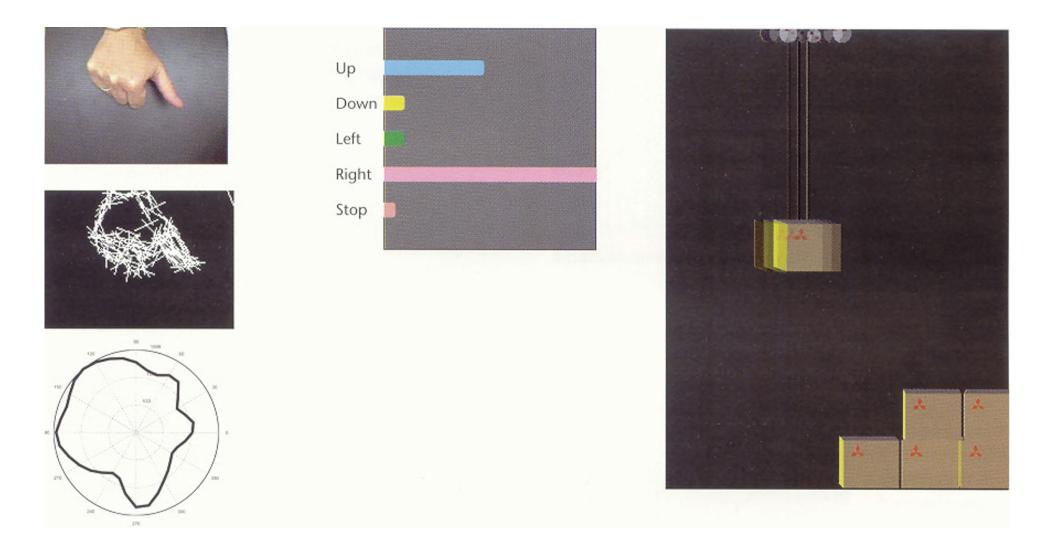
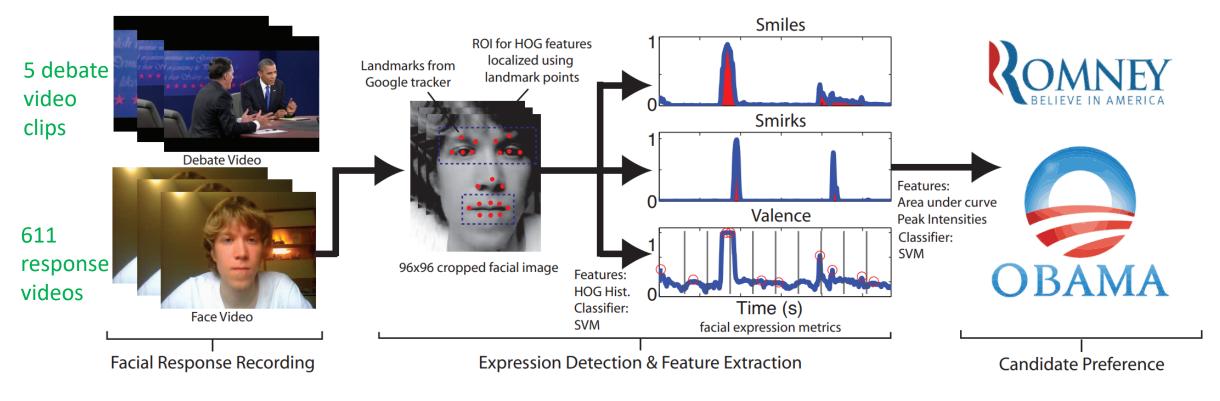


Image Credit: <u>Freeman et al., 1998</u>

Expression Recognition Reveals Political Preference

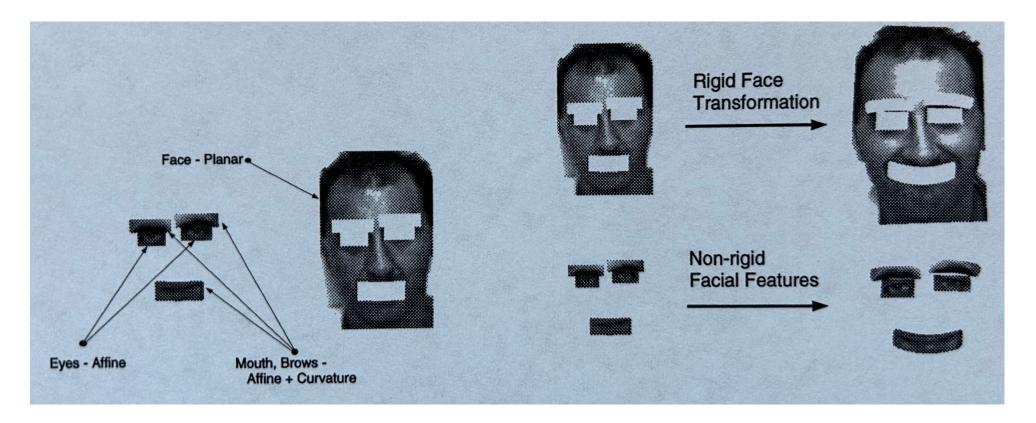


Accuracy ~ 80%

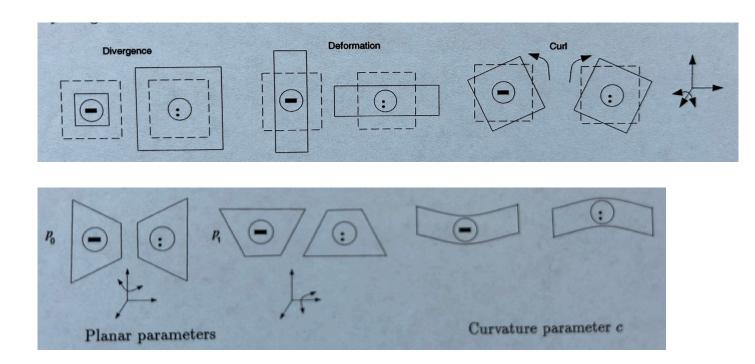
Boston University Computer Science

Image Credit: <u>McDuff et al., 2017</u>

First Computer Vision Work on Facial Expression Analysis: Yaser Yacoob's PhD thesis & IJCV paper with Michael Black



First Computer Vision Work on Facial Expression Analysis: Yaser Yacoob's PhD thesis & IJCV paper with Michael Black



Optical flow (u,v) parameterized:

 $u(x,y) = a_0 + a_1 x + a_2 y$ $v(x,y) = a_3 + a_4 x + a_5 y$

Divergence = $a_1 + a_5$ Curl = $-a_2 + a_4$ Deformation = $a_1 - a_5$

Yaw and pitch: $u(x,y) = a_0 + a_1 x + a_2 y + p_0 x^2 + p_1 xy$ $v(x,y) = a_3 + a_4 x + a_5 y + p_1 y^2 + p_0 xy$

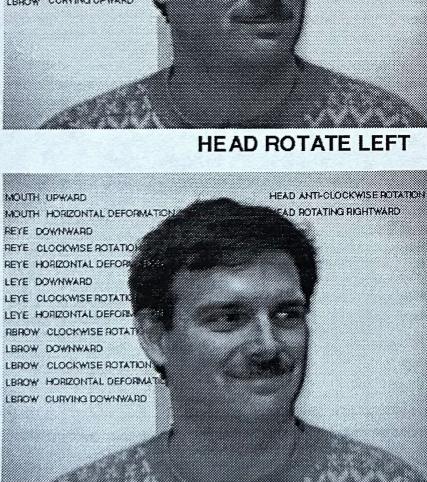
Mouth curvature: $v(x,y) = a_3 + a_4 x + a_5 y + c x^2$

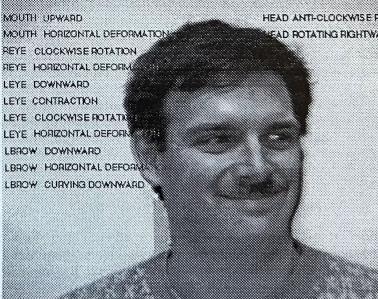
Credit: Black & Yacoob 1997 92

First Computer Vision Work on Facial Expression Analysis: Yaser Yacoob's PhD thesis & IJCV paper with Michael Black

Emotion	Observed facial cues		
Surprise	brows raised (curved and high)		
	skin below brow stretched		
	horizontal wrinkles across forehead		
	eyelids opened and more of the white of the eye is visible		
	jaw drops open without tension or stretching of the mouth		
Fear	brows raised and drawn together		
	forehead wrinkles drawn to the center		
	upper eyelid is raised and lower eyelid is drawn up		
	mouth is open		
	lips are slightly tense or stretched and drawn back		
Disgust	upper lip is raised		
	lower lip is raised and pushed up to upper lip or is lowered		
	nose is wrinkled		
	cheeks are raised		
	lines below the lower lid, lid is pushed up but not tense		
	brows are lowered, lowering the upper lid		
Anger	brows lowered and drawn together		
	vertical lines appear between brows		
	lower lid is tensed and may or may not be raised		
	upper lid is tense and may or may not be lowered due to brows' action		
	eyes have a hard stare and may have a bulging appearance		
	lips are either pressed firmly together with corners straight or down or		
	open, tensed in a squarish shape		
	nostrils may be dilated (could occur in sadness too)		
	unambiguous only if registered in all three facial areas		
Happiness	corners of lips are drawn back and up mouth may or may not be parted with teeth exposed or not		
and the second	a wrinkle runs down from the nose to the outer edge beyond lip corne		
	cheeks are raised		
	lower eyelid shows wrinkles below it, and may be raised but not tense		
	crow's-feet wrinkles go outward from the outer corners of the eyes		
Sadness	inner corners of eyebrows are drawn up		
Jauness	skin below the eyebrow is triangulated, with inner corner up		
	upper lid inner corner is raised		
	corners of the lips are drawn or lip is trembling		

Expr.	B/E	Satisfactory actions
Anger	B	inward lowering of brows and mouth contraction
Anger	E	outward raising of brows and mouth expansion
Disgust	В	mouth horizontal expansion and lowering of brows
Disgust	Е	mouth contraction and raising of brows
Happiness	В	upward curving of mouth and
		expansion or horizontal deformation
Happiness	Е	downward curving of mouth and
		contraction or horizontal deformation
Surprise	B	raising brows and vertical expansion of mouth
Surprise	Е	lowering brows and vertical contraction of mouth
Sadness	B	downward curving of mouth and
		upward-inward motion in inner parts of brows
Sadness	E	upward curving of mouth and
		downward-outward motion in inner parts of brows
Fear	B	expansion of mouth and raising-inwards inner parts of brows
Fear	E	contraction of mouth and lowering inner parts of brows

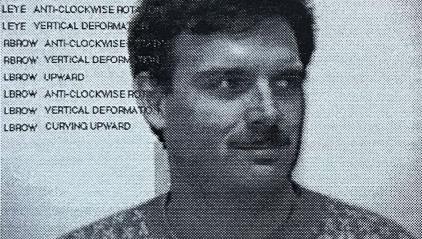




BEGIN SMILE

HEAD ANTI-CLOCKWISE ROTATION EAD ROTATING RIGHTWARD

HEAD ROTATE LEFT



REYE ANTI-CLOCKWISE ROTATION LEYE UPWARD LEYE ANTI-CLOCKWISE HOTA LEYE VERTICAL DEPORMAT **RBROW ANTI-CLOCKWASE** RBROW VERTICAL DEFORM LEROW UPWARD LBROW ANTHOLOCKWISE RC LEROW VERTICAL DEFORMATION

MOUTH VERTICAL DEFORMATION

HEAD CLOCKWISE ROTATION EAD HORIZONTAL DEFORMATION **BOTATING LEFTWARD**

MOUTH HORIZONTAL DEFORMATION HEAD ANTI-CLOCKWISE ROTATION MOUTH CURVING UPWARD REYE DOWNWARD REYE CONTRACTION REYE HORIZONTAL DEFORM LEYE DOWNWARD LEY'E CONTRACTION LEYE HORIZONTAL DEFORM REPOW VERTICAL DEFORMA LEROW VERTICAL DEFORMATION

I'll show the video from Yaser's phd defense in class

Credit: Black & Yacoob 1997

SMILE

SMILE HEAD ROTATE RIGHT

HEAD ROTATE RIGHT

Facial Action Coding System: FACS

Wikipedia:

"In 1969, Hjortsjö devised the first system to taxonomize human facial movements by their appearances on the face, along with a description of each change in appearance caused by the action of each facial muscle. American psychologists Paul **Ekman and Wallace Friesen later in** 1978 formalized the descriptions as the Facial Action Coding System."

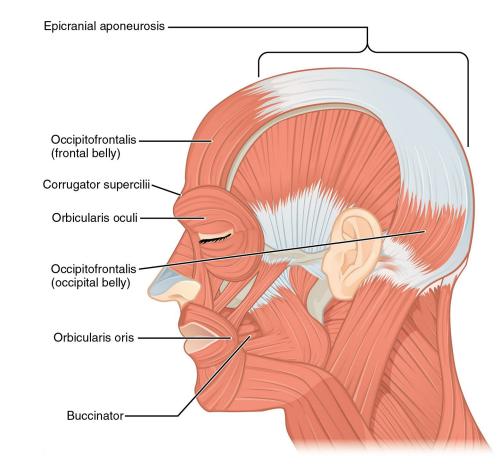


Image Credit - Wikimedia: By CNX Anatomy 213

Expression Recognition based on AUs

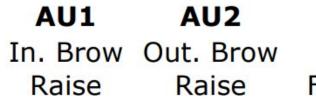
Emotion 🔺	Action units 🗢		
Anger	4+5+7+23		
Contempt	R12A+R14A		
Disgust	9+15+17		
Fear	1+2+4+5+7+20+26		
Happiness	6+12		
Sadness	1+4+15		
Surprise	1+2+5B+26		

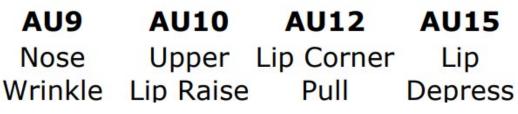
AU number 🗢	FACS name 🗢	Muscular basis 🗢
0	Neutral face	
1	Inner brow raiser	frontalis (pars medialis)
2	Outer brow raiser	frontalis (pars lateralis)
4	Brow lowerer	depressor glabellae, depressor supercilii, corrugator supercilii
5	Upper lid raiser	levator palpebrae superioris, superior tarsal muscle
6	Cheek raiser	orbicularis oculi (pars orbitalis)
7	Lid tightener	orbicularis oculi (pars palpebralis)
8	Lips toward each other	orbicularis oris
9	Nose wrinkler	levator labii superioris alaeque nasi
10	Upper lip raiser	levator labii superioris, caput infraorbitalis
11	Nasolabial deepener	zygomaticus minor
12	Lip corner puller	zygomaticus major
13	Sharp lip puller	<i>levator anguli oris</i> (also known as <i>caninus</i>)
14	Dimpler	buccinator
15	Lip corner depressor	depressor anguli oris (also known as triangularis)
16	Lower lip depressor	depressor labii inferioris
17	Chin raiser	mentalis
18	Lip pucker	incisivii labii superioris and incisivii labii inferioris
19	Tongue show	
20	Lip stretcher	risorius with platysma
21	Neck tightener	platysma]
22	Lip funneler	orbicularis oris
23	Lip tightener	orbicularis oris
24	Lip pressor	orbicularis oris
25	Lips part	depressor labii inferioris, or relaxation of mentalis or orbicularis oris
26	Jaw drop	masseter; relaxed temporalis and internal pterygoid
27	Mouth stretch	pterygoids, digastric
28	Lip suck	orbicularis oris

ΟN

Boston University Computer Science

FFDEX SDK: A Cross-Platform RealTime Multi-Face Expression Recognition Toolkit





AU17 AU18 Chin Lip Raise Pucker

ip Lip ker Press AU25 Mouth Open AU28 Lip Suck Smirk*

Boston University Computer Science

Image Credit: McDuff et al., 2016 97

AU43

Eyes

Closed

OpenFace 2.0

Runs in real time Source code available

68 facial landmarks

SVR-HOG works better for expression analysis than deep methods

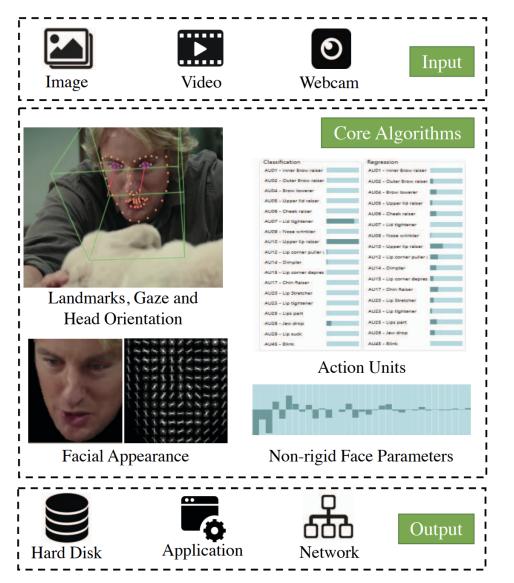


Fig. 1: OpenFace 2.0 is a framework that implements modern facial behavior analysis algorithms including: facial landmark detection, head pose tracking, eye gaze and facial action unit recognition.

Credit: <u>Baltrusaitis et al., 2018</u>

Learning Objectives of this Lecture

- Be able to describe computer vision tasks that involve analysis of the humans in images: Person detection, human pose estimation, face detection, facial feature detection, facial expression recognition, face recognition
- Understand the difference between face verification and face identification
- Know biometrics terminology (query, probe, gallery, template, distractors)
- Know mechanism for training and testing face recognition models
- Can describe the VGG-16 architecture
- Know what a HOG feature is
- Know about the FACS

- Know some benchmark datasets for face recognition
- Can discuss the challenges and limitations of face recognition systems (aging, pose) and how they are being addressed by ongoing research
- Can explain how to convert a regression problem into a coarse-to-fine classification problem
- Know about AI for non-face biometrics, e.g., Amazon's palm recognition, ear recognition, gait recognition
- Know about fake ID creation/detection
- Be able to discuss ethical issues with biometrics
- Know about methods for facial expression recognition

