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Definition of the VLN Problem:
Goal: Build a AI system that guides robot with camera 
(vision) traveling from A to B, given an instruction by 
human (language).

Rule 1: Navigation happens in simulated environment, 
represented by a connected graph. The nodes of the graph are 
locations (viewpoints) to which the agent can move during the 
navigation. The edges between nodes indicate whether the 
robot can move between nodes or not.

Connected graph of 
scene/environment



Definition of the VLN Problem:
Rule 2: To navigate through the scene, the agent (the robot in the simulated scene) is given two types of 
information:

1. An instruction that tells the agent where to go and stop at the end. The instruction won’t change 
during the navigation.

2. The surrounding view of the node the agent currently stands in. We call these nodes “viewpoints.”

“Walk into the room, go inside another room, 
stop on the other side of the bed.”

The surrounding view at the viewpoint node

agent



Definition of the VLN Problem:
Rule 3: The agent needs to decide where to go next from a set of “navigable” 
viewpoints (nodes are “navigable” when nodes are connected by an edge) or stop. 
The navigation ends when the agent decides to stop. The navigation is considered 
successful if the destination is close enough to the ground truth destination.

agent“Walk into the room, go inside another room, 
stop on the other side of the bed.”

stop

begin



Definition of the VLN Problem:

As a reference, the navigation 
Success Rate (SR) for a human 
navigator is 86%.

Figure from “BEVBert: Multimodal Map Pre-training for 
Language-guided Navigation” (2023)
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The VLN problem involves many different areas of AI 



Calculating Cross-attention 

Learning to Navigate Unseen Environments: Back Translation with Environmental 
Dropout (Tan et al. 2019)

History aware multimodal transformer for vision-and-language navigation (Chen et 
al. 2021)

Think Global, Act Local: Dual-Scale Graph Transformer for Vision-and-Language 
Navigation (Chen et al. 2022)



One of the most important task for a VLN system to learn is 
how to relate images to text fragments in the instruction:

“Turn left from the window, walk 
away from the sink, go into the 

bedroom. Go to the bed.”

This is important in VLN, because these images are the views that represent the 
available direction to go in. So relating view & instruction ≈ relating action & instruction.



Sink Window            
Bed

Relevance Score:
Low

High

Attention mechanism: to enable the VLN system to focus on a certain image 
based on its relevance to a certain text fragment (instruction).

This is also helpful 
between text or 
images themselves



Soft-Dot attention: “Env-Drop”, Tan et al., 2019
How to focus: when making decision, give relevant subject(s) softmax’ed higher weights compared to other 
ones.

How to calculate relevance: similarity, e.g. dot-product.

Say, given the instruction “go near the bed”, what we want is to let the agent head to the direction represented by 
the image of a bed instead of a sink.

“bed” 1 x 512 

512 x 2 Dot-product 
(matrix mul)

Softmax

1 x 2
[0.1,0.9]

Attention 
score

0.1

0.9 (I should go 
this way)



Attention by Transformer (in HAMT, Chen et al. 2021)

“bed”

Query vector: 1 x 512

Step 2: 
Get normalized 
attention score (in a 
form of “probability”)

Key vector 1 x 512

Step 1: 
Get attention

In theory, these attention scores can be used to decide which 
way to go.
Nonetheless, practically the navigation action prediction is 
based on the “contextualized” features, instead of just the 
normalized attention scores.
Remember that the action is taken based on the images that 
represent the direction to go, so the attention scores we are 
more curious about are 1 image v.s. K words instead 1 word 
v.s. K images



E.g., we want to predict how likely the agent should go to the direction with a bed object in its 
represented view, given the instruction (context) “go bed”.

Attention by Transformer (in HAMT, Chen et al. 2021)

“bed”

Query vector: 1 x 512
Step 2: 
Get normalized 
attention score (in a 
form of “probability”)

Key vector 1 x 512

Value vector 1 x 512

Step 1: 
Get attention

Step 3: 
Multiply  normalized 
attention scores with the 
value vector

Step 4: 
Sum them all up to be the new 
feature for the view bed” (but 
now it is “contextualized” by the 
instruction “go bed”. 

And you can repeat this 
process to calculate the 
action score for other 
available actions with 
different view images.

“go” Full
Connected layer

softmax

Contextualized
Bed Features

1 x 512

FC



Attention by transformer (in HAMT, Chen et al. 2021)
With the core attention mechanic explained, we can now build a “full” 
transformer encoder with some extra techniques.

The attention calculation

Multiple head: allowing multiple set of relationship between the 
same image-text pairs.

Positional encoding: for text, this additional embedding 
(encoding) indicates the position of the word in the instruction. 
Similarly, positional encoding can be applied to images 
regarding direction, angle… as well.

Layer normalization & residual Layer: provide stability in updated 
features, alleviate vanishing gradients, etc.

Encoder stacking:
we can stack them 
up multiple times 
one after another. FeedForward: just linear activation layer, nothing special

Contextualized
features



Attention by transformer (in HAMT, Chen et al. 2021)
Remember that Transformer Encoder (TE) works on tokens/embeddings regardless of 
whether they are images or texts. That means the transformer encoder can calculates 
contextualized texts from texts (Machine Translation), images from images (ViT for 
classification) as well.

TE 1
(text-text)

TE 2
(image-image)

TE 3
(image-image)

TE 4
(image-text)

The
HAMT 
model



Attention by transformer (in RecBERT, Hong et al. 2021)

“[CLS (step 1)] Turn left from the 
window, walk out of the sink, go into 

the bedroom. Go to the bed.”

(Each word including [CLS] is a token, represented by a feature vector, just 
like an image) 

“[CLS (step 2)] Turn left from the 
window, walk out of the sink, go into 

the bedroom. Go to the bed.”

“[CLS (step 3)] Turn left from the 
window, walk out of the sink, go into 

the bedroom. Go to the bed.”
[CLS (step 3)]

(Done)

(Done)

(I should go 
this way)



TE 1
(viewpoint-viewpoint)

TE 2
(text-text)

TE 3
(image+object)-
(image+object)

Attention by transformer (in DUET, Chen et al. 2022)



Data Augmentation w/ multimodal learning

Speaker-Follower Models for Vision-and-Language Navigation (Fried et al. 2018)

Less is More: Generating Grounded Navigation Instructions from Landmarks (Wang et al. 2022)

PanoGen: Text-Conditioned Panoramic Environment Generation for Vision-and-Language 
Navigation (Li et al. 2023)

The navigation data is expensive to collect, especially those from the real life. 
Data augmentation is a way to train a model to generalize better without the 
need of additional labor to collect data. 



Data Augmentation by Generating More Instruction for sampled Path (in Speaker & 
Follower from Fried et al. 2018)

“Walk into the room, 
go inside another 

room again, stop on 
the other side of the 

bed.”

Human annotator

“Walk across the 
table and get into 

the bathroom, 
stop.”

Image-to-text 
sequential 

model 
(Seq2Seq)

Ground truth 
path

Sampled path

7,189 paths
21.5k instructions
Roughly the same 
amount of data as the 
original dataset.



Data augmentation by Landmark Alignment (in Marky, 
Wang et al. 2022)

If we think about what an instruction is made of given any navigation path, 
mainly there are two types of information decide how we describe it:
1. Camera view and its change over steps
2. Landmark of the view

E.g., You're starting in a laundry room, facing the railing. Walk out of this 
laundry room onto the wooden flooring. Turn right and go down the hallway
toward the end of this hallway.

To generate any instruction for a path, we need to fill-in the two types of information 
above. We can describe the change of the camera view by calculate the angle 
between “inbound” and “outbound” given the trajectory of the path (x-y-z axis).
So what’s “tricky” is how do we locate the seen “landmarks” within the view images.



Data augmentation by Landmark Alignment (in Marky, 
Wang et al. 2022)

The idea is to 
1. build an landmark 

alignment model that can 
detect/recognize visual 
landmarks along the 
navigation path.

2. Given a scene(navigation 
environment), detect 
landmarks in it.



Data augmentation by Landmark Alignment (in Marky, 
Wang et al. 2022)

Visual Candidates 
(Potentially Landmarks)

Textual 
Landmarks

Align them In this case, we obtain the real 
landmarks from all images we 
perceive during the path.



Data augmentation by Landmark Alignment (in Marky, 
Wang et al. 2022)

Relevance between any image-text pair:

Temporal differenceText-Image feature 
similarity

Find out the most likely alignment between 
the set of images and  the set of landmark 
texts among all the possible alignments.

Connectionist Temporal Classification (CTC) loss: 



Data augmentation by Landmark Alignment (in Marky, 
Wang et al. 2022)

The idea is to (continued): 
3. Generate a path connecting the 
sampled landmarks.
4. Generate the instruction by the 
landmarks and description of the 
camera view change.

Result: 1 million+ navigation 
instructions as “silver data”. 
(The term “silver data” refers to 
high-quality annotations–not 
created by people–that are derived 
by combining models and 
constraints)



Data augmentation by generating more scenes in various 
style (in PanoGen, Li et al. 2023)

The biggest challenge in VLN 
is to understand scenes that 
have never been seen during 
training. 
E.g., even for the same 
instruction “go to the 
bedroom”, views that the 
agent sees can be vastly 
different between training and 
testing (especially in terms of 
style).

“bedroom”



Data augmentation by generating more scenes in various 
style (in PanoGen, Li et al. 2023)
The way to augment the existing data for PanoGen is based on the opposite way to 
the works previously discussed, i.e., to generate images given specific texts. 

The specific texts are the description of the scene (caption), and PanoGen 
generates images based on the same description but in a different “style”.

“a  bedroom 
with a bed”

Generative model
(Stable Diffusion)

Captioning 
model

(BLIP-2)

But there’s an issue that, VLN models take a set of discretized images from a 
panoramic view as visual input. So the captioning model generates description 
based on these discretized images instead of the panoramic view.



Data augmentation by generating more scenes in various 
style (in PanoGen, Li et al. 2023)

BLIP-2

The generated images look okay 
individually. But they do not make up a 
“continuous” panoramic view 
(incoherent panorama).

(Stable Diffusion)



Data augmentation by generating more scenes in various 
style (in PanoGen, Li et al. 2023)

("Outpainting" in the 
context of generative 
models refers to the task 
of generating content 
beyond the boundaries of 
an input image or scene.)

Instead, PanoGen asked the Stable Diffusion model to generate the 
panoramic view recursively

“Look” up

outpaint

“Look” right outpaint

“a window with a 
view of a pool”

“A bedroom with a 
ceiling fan”



Data augmentation by generating more scene views in 
various style (in PanoGen, Li et al. 2023)

By recursive outpainting, 
the panoramic view from 
stitched the generated 
images has better 
coherence than generating 
them separately.

7644 panoramas
Replacing 30% of 
the panoramas 
during VLN model 
fine-tuning.



Summary

1. Vision-and-Language Navigation 
a. Definition
b. Related Research Areas

2. Multimodal Attention: 
a. Soft-dot attention (Env-Drop)
b. Transformer encoder attention (HAMT & DUET)

3. Data Augmentation
a. Instruction Augmentation: Speaker (& Follower) model
b. Instruction Augmentation: Marky
c. View Augmentation: PanoGen
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