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What are Generative Models?

e Discriminative Models:

— | Panda

Inpt imaée X Output: label y

e (Generative Models:

Panda

" p=esr
Input: label y Output: image x
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What are Generative Models?

Given training data from some distribution, learn a model that represents that
distribution and can generate new samples from the same distribution.

Training data ~ P ¢4 (X) Generated ~ P, 401 (%)
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Explicit v.s. Implicit Generative Models

e Explicit: explicitly define Py,pqe1(x)
o VAE
e Implicit: learn a model that can sample from P,,,4.:(x) without explicitly
defining it.
o GANs
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Why Generative Models?

Realistic, high-quality samples, super-resolution, and image inpainting, etc.

N

-

‘-_ ‘ : . L : % - ;. \ : ‘ - PR S " S 4 e , 1 . ]" .l, 3
BOSTON .
Department of Computer Science Rombach. et al.. 2022 5



https://arxiv.org/abs/2112.10752

Why Generative Models?

Text-to-Video

Prompt: A cartoon
kangaroo disco
dances.
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https://openai.com/sora
https://docs.google.com/file/d/16EGWFKdJ2CnE8i9IqsF_QClEFDb3F8F9/preview

Generative Models

e Generative adversarial networks (GANSs)
e Denoising diffusion models
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Generative Adversarial Networks (GANSs)

G G(z) D

Z ADH — — ﬂﬂ— real or fake?

(GGenerator Discriminator

G tries to synthesize fake images that fool D

D tries to identify the fakes [Goodfellow et al.. 2014]
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https://arxiv.org/pdf/1406.2661.pdf

Generative Adversarial Networks (GANSs)

G

(Gaussian noise

z ~N(0,1)

Synthesized image
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Generative Adversarial Networks (GANSs)
D

arg max B piua(@)[108 D ()] [+ Bz, (2) |log(1 — D(G(2)))] [Goodfellow et al.. 2014]
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Generative Adversarial Networks (GANSs)

G G(z) D

Z 4Dﬂ — — ﬂﬂ— real or fake?

(GGenerator Discriminator

G tries to synthesize fake images that fool D:

arg méﬂ Bz pou(@) 108 D(@)] + Ezrop, (2 [log(1 — D(G(2)))]

[Goodfellow et al., 2014]
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Generative Adversarial Networks (GANSs)

G

. ]

Generator

G(z) D

— ﬂﬂ— real or fake?

Discriminator

G tries to synthesize fake images that fool the best D:

arg
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ImMax
D
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B pgua(a) 108 D(2)] + Ezrop, (2 [log(1 — D(G(2)))]

[Goodfellow et al., 2014]
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https://arxiv.org/pdf/1406.2661.pdf

Training

real or fake?

Discriminator
G tries to synthesize fake images that fool D

Generator

D tries to identify the fakes

Training: alternate between training D and G with backprop.

[Goodfellow et al., 2014]
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https://arxiv.org/pdf/1406.2661.pdf

Common Issues

e Mode collapse
o Asituation where the generator produces limited or repetitive outputs, failing to capture the full
diversity of the training data distribution.

e Adversarial training is unstable
e Saturation problem (weak gradients)

arg|mi
gG

!

mMax
D

EwNPdata(fB) [log D(w)] + Eszz(z)

log(1 — D(G(2)))

]

o If Gis poor, D can easily distinguish between real and generated samples. The prediction of D
is close to 0, and the generator’s cost is close to 0.
o A better cost function:

arg max Ezrp.(2) log D(G(z))
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https://arxiv.org/pdf/1406.2661.pdf

GANSs are implicit generative models

p(X) “generative model” of the data x
Noise distribution G(z) Data distribution
z ~ N(0,1) GAN x ~ p(x)
Samples from a perfectly optimized, sufficientl
G(2) ~ p(x) i e sample !

expressive GAN are samples from the data
distribution
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Generative Adversarial Networks (GANSs)
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https://arxiv.org/pdf/1710.10196.pdf

Generative Adversarial Networks (GANSs)
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https://arxiv.org/pdf/1710.10196.pdf

Source B

StyleGAN

Coarse styles from source B

Middle styles from source B

Fine from B
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https://arxiv.org/pdf/1812.04948.pdf

Denoising Diffusion Models

Denoising diffusion models consist of two processes:
» Forward diffusion process that gradually adds noise to input

* Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)

Ho. et al., Denoising Diffusion Probabilistic Models, NeurlPS 2020
Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015

BOSTON . Song et al.. Score-Based Generative Modeling through Stochastic Differential Equations. ICLR 2021
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https://arxiv.org/pdf/2006.11239.pdf
https://arxiv.org/pdf/1503.03585.pdf
https://openreview.net/pdf?id=PxTIG12RRHS
https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/

Forward Diffusion Process

The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

Data Noise

wille, adbe  owih, Wi, ode i

q(x¢|xe-1) = N(xe; V1 — Bixe—1,5I) = q(x1.7[%0) = H‘I(Xt|xt—1) (joint)

t=1
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https://cvpr2022-tutorial-diffusion-models.github.io/
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Reparameterization Trick
Define

Then

q(xt | x¢-1) = N(\/ 1 — Bixt1, 5t1)
x; = /11— Bxe1 + VBee, e~N(0,1)
= Vouxi1 + mﬁ
= ooy 1X¢-2 + \/1 — 1€

= \/TtX() S vV 1 — QL€

q(x: | xo) (\/ X, (1 — ay) )
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https://ml-berkeley.notion.site/CS-198-126-Deep-Learning-for-Visual-Data-a57e2aca54c046edb7014439f81ba1d5

Forward Diffusion Process

Forward diffusion process (fixed)

Data Noise

Define &y = H(l — Bs) = q(x¢|x0) = N(x¢; Varxg, (1 — ap)I)) (Diffusion Kernel)

s=1

Forsampling: x; = /ay xg+ /(1 —ay) ¢  where € ~ N(0,I)

f3¢ values schedule (i.e., the noise schedule) is designed such that ap — 0 and ¢(xp|xp) =~ N (x7;0,1))
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Reverse Denoising Process

_ Reverse denoising process (generative)

Data Noise
a(x)  a(x)  alxz)  a(xs) q(x)
Wil RS S W S GRE. i | S
q(xo|x;) q(xy[xy) q(xafx3) q(xs(xy) q(xr [xT)
Sample x7 ~ N (x7;0,1)
q(xt) = / q(x0, x¢) dxg = / q(x0) q(xt[x0) dxq
lteratively sample X1 ~ q(x¢—_1|x¢) — — g gt B
b ~ 7 Diffused Joint Input Diffusion
True Denoising Dist. data dist. dist. data dist.  kernel

In general, q(x;_1|x¢) o< q(x¢_1)q(x¢|x¢_1) is intractable.

Can we approximate q(X;_1|X¢)? Yes, we can use a Normal distribution if 3¢ is small in each forward diffusion step.
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Reverse Denoising Process

Formal definition of reverse processes in T steps:

_ Reverse denoising process (generative)

A

Data Noise

e G @ de e 0 e e

/54

p(xr) = N(x7:0,1) @ s .
po(x0.7) = p(x7) | | Po(xt—-1]%2)
po(X¢—1lx¢) = N‘(Xt—ﬁlﬂo(xt, t), EO(Xt,t)) ' tzl_ll t

/

Trainable ﬁetwork 2
(U-net, Denoising Autoencoder) 3g(x,t) = 071
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Reverse Denoising Process

Formal definition of reverse processes in T steps:

_ Reverse denoising process (generative)

A

Data Noise

e G @ de e 0 e e

/54

p(x7) = N(x7;0,I) _ -
; = po(x0.7) = p(x7) | | PO(Xt-1]%2)
poli-11xe) = N (xe1; gl 1), 07D : Lt

Trainable network
(U-net, Denoising Autoencoder) 23
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Training Obijective

For training, we use a variational upper bound on negative log likelihood E [— logps(xo)]

We represent the mean of the denoising model using a noise-prediction network:

po(X¢,t) = # (Xt - L_ Ee(Xtat)>
V1-— 51% V91—

With this parameterization and further simplification, the final objective is:

Lsimple = ]Exorvq(xo),GNN(O,I),tNU(l,T_) [l l€ o 69( Vo Xo+ V19— e t)HQ]
N Y,
e

Xt
More details in Ho, et al., 2020
BOSTON .
Department of Computer Science Ho. et al.. 2020
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Denoising Diffusion Models

Algorithm 1 Training Algorithm 2 Sampling
l: repeat 1: x7 ~ N(0,T)
2: XONQ(,XO) 2: fort=1T,...,1do
Z' b [K;l(l(f)orlr)n({l,...,T}) 3: z~N(0,I)ift > 1,elsez=0
= e ’ . 1 1—a
5: Take gradient descent step on X1 = 5 (Xt — = €0 (Xt,t)) + otz
Vo |l€ — eo(v/@ixo + vT—Gre, 2 S endfor
6: until converged 6: return X
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Network Architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent eg(x:,t)

Initconv out
. "M "s : ‘ ]
: | ¥ ll |
4 »
- e )
s l: =T
i b s - " ."
- . __ downl ) up2 —
16,16,3 || ; | ||I 16,16,3
down2 7 upl = 3 =
i
i i i
upo i
hdn 5
64
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https://www.deeplearning.ai/short-courses/how-diffusion-models-work/

Network Architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent eg(x:,t)

---> €g(x¢,1)

e
ey o g

deceeb e
Time Representatlon 1"

Fully-connected
Layers

Time representation: sinusoidal positional embeddings or random Fourier features.
Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization

layers. (see Dharivwal and Nichol NeurlPS 2021)
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Network Architectures

U-Net can take in more information in the form of embeddings.

Context embedding: relating to controlling the generation, e.g., text description.

up2
upl
up0 'I
hidden ' g T I % f
context i ., '|
time a
embedding

BOSTON -
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[0.24567, 0.00345, ..., 0.45672]

“Aripe

DO Embedding

Adding Context

l—
—P
o2 L
£
9 .y 0.03629)]
-
TS _j'
\
g
e
" [0.05672, 0.03934, ..., 0.45672]
oy Avocado Embedding
c armchair”
'T—l Predicted noise
I ,- -
O - i
1 '
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Noise Schedule
q(x¢|x-1) = N (x¢; V1 — Bixi—1, 5I)

Data Noise

po(xi—1]xt) = N (x¢_1; po(xt, ), 071)

Above, 3 and a,? control the variance of the forward diffusion and reverse denoising processes respectively.
Often a linear schedule is used for 3¢, and af is set equal to Sx.

Kingma et al. NeurlPS 2022 introduce a new parameterization of diffusion models using signal-to-noise ratio (SNR),
and show how to learn the noise schedule by minimizing the variance of the training objective.

We can also train while training the diffusion model by minimizing the variational bound (Improved DPM by Nichol and
Dhariwal ICML 2021) or after training the diffusion model (Analytic-DPM by Bao et al. ICLR 2022).
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Classifier-free Guidance

e trade off sample diversity and sample fidelity in conditional diffusion models
e jointly train a conditional and an unconditional diffusion model

€g(zx,c) = (1 +w)eg(zx,c) — wey(zy)

Non-guided Classifier-free guided

BOSTON .
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Latent Diffusion Model

~ B & Latent Space ) (Conditioning)
: . Diffusion Process | A
Ma

Denoising U-Net €g 2 Text
<---. L Repres
entations

{ '

Pixel Space, . ) ‘/
KQV E &---- (—T
denoising step crossattention  switch  skip connection concat - J
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Stable DiffusiQn

Department of Computer Science

UNIVERSITY Stable Diffusion 3, 2024 35
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DreamBooth

Input images
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https://arxiv.org/pdf/2208.12242.pdf

DreamBooth

Reconstruction Loss

Text — Image

Shared
Inputimages (~3-5) Weights

n Tet — Image

” A 0(09”

Class-Specific Prior Preservation Loss
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ControlNet

o 3

Input Canny edge

“..., quaint city Galic”

Bt —

Input human pose “chef in kitchen” “Lincoln statue”
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https://openaccess.thecvf.com/content/ICCV2023/papers/Zhang_Adding_Conditional_Control_to_Text-to-Image_Diffusion_Models_ICCV_2023_paper.pdf

Learning Objectives

Generative Models v.s Discriminative Models
Explicit v.s. Implicit Generative Models
Formation of GANs

Common issues in GANs

Forward and reverse process in diffusion models
Training and sampling in diffusion models

UNet in diffusion models

Conditional diffusion models

Applications of generative models

BOSTON Department of Computer Science
UNIVERSITY

39



