Generative Models

CAS CS 585 Image and Video Computing

Hao Yu

April 2, 2024

What are Generative Models?

• Discriminative Models:

• Generative Models:

What are Generative Models?

Given training data from some distribution, learn a model that represents that distribution and can generate new samples from the same distribution.

Training data ~ $P_{data}(x)$

Generated ~ $P_{model}(x)$

Explicit v.s. Implicit Generative Models

• Explicit: explicitly define $P_{model}(x)$

• VAE

- Implicit: learn a model that can sample from $P_{model}(x)$ without explicitly defining it.
 - GANs

Why Generative Models?

Realistic, high-quality samples, super-resolution, and image inpainting, etc.

Department of Computer Science

5

Why Generative Models?

Text-to-Video

Prompt: A cartoon kangaroo disco dances.

6

Generative Models

- Generative adversarial networks (GANs)
- Denoising diffusion models

G tries to synthesize fake images that fool D

D tries to identify the fakes

Department of Computer Science

G tries to synthesize fake images that fool D:

$$\arg\min_{G} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$$

[Goodfellow et al., 2014]

G tries to synthesize fake images that *fool* the *best* D:

$$\arg\min_{G}\max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

[Goodfellow et al., 2014]

Training

G tries to synthesize fake images that fool D

D tries to identify the fakes

Training: alternate between training D and G with backprop.

[Goodfellow et al., 2014]

Common Issues

- Mode collapse
 - A situation where the generator produces limited or repetitive outputs, failing to capture the full diversity of the training data distribution.
- Adversarial training is unstable
- Saturation problem (weak gradients)

$$\arg\min_{G}\max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}\log(1 - D(G(\boldsymbol{z})))$$

- If G is poor, D can easily distinguish between real and generated samples. The prediction of D is close to 0, and the generator's cost is close to 0.
- A better cost function:

$$\arg\max_{G} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} \log D(G(\boldsymbol{z}))$$

[Goodfellow et al., 2014]

GANs are implicit generative models

$$p(\mathbf{x})$$
 ----- "generative model" of the data \mathbf{x}

 $G(\mathbf{z}) \sim p(\mathbf{x})$

Samples from a perfectly optimized, sufficiently expressive GAN are samples from the data distribution

Department of Computer Science

StyleGAN

Department of Comp

Denoising Diffusion Models

Denoising diffusion models consist of two processes:

- · Forward diffusion process that gradually adds noise to input
- Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Reverse denoising process (generative)

Ho, et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020

Department of Computer Science Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021 Slides Credit: Arash Vahdat, Karsten Kreis, and Ruiqi Gao, Denoising Diffusion-based Generative 19 Modeling: Foundations and Applications, CVPR 2022 Tutorial

Noise

Data

Forward Diffusion Process

The formal definition of the forward process in T steps:

Department of Computer Science Slides Credit: Arash Vahdat, Karsten Kreis, and Ruigi Gao, Denoising Diffusion-based Generative 20 Modeling: Foundations and Applications, CVPR 2022 Tutorial

Reparameterization Trick

Define

$$egin{aligned} lpha_t &= 1 - eta_t \ ar lpha_t &= \prod_{i=1}^t lpha_i \end{aligned}$$

Then

BOSTON

UNIVERSITY

$$egin{aligned} q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) &= \mathcal{N}\Big(\sqrt{1-eta_t}\mathbf{x}_{t-1},\,eta_t\mathbf{I}\Big) \ \mathbf{x}_t &= \sqrt{1-eta_t}\mathbf{x}_{t-1} \,+\,\sqrt{eta_t}\epsilon, \quad \epsilon \sim \mathcal{N}(0,\,\mathbf{I}) \ &= \sqrt{lpha_t}\mathbf{x}_{t-1} \,+\,\sqrt{1-lpha_t}\epsilon \ &= \sqrt{lpha_tlpha_{t-1}}\mathbf{x}_{t-2} \,+\,\sqrt{1-lpha_tlpha_{t-1}}\epsilon \ &= \ldots \ &= \sqrt{arlpha_t}\mathbf{x}_0 \,+\,\sqrt{1-arlpha_t}\epsilon \ &q(\mathbf{x}_t\mid \mathbf{x}_0) = \mathcal{N}\Big(\sqrt{arlpha_t}\mathbf{x}_0,\,(1-arlpha_t)\mathbf{I}\Big) \end{aligned}$$

Department of Computer Science

Forward Diffusion Process

Forward diffusion process (fixed) Noise $\mathbf{X}_{\mathbf{0}}$ X_1 X_2 X_3 X_4 $\mathbf{X}_{\mathbf{T}}$... Define $\bar{\alpha}_t = \prod (1 - \beta_s) \quad \Rightarrow \quad q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I}))$ (Diffusion Kernel) For sampling: $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{(1 - \bar{\alpha}_t)} \epsilon$ where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

 β_t values schedule (i.e., the noise schedule) is designed such that $\bar{\alpha}_T \to 0$ and $q(\mathbf{x}_T | \mathbf{x}_0) \approx \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

BOSTON UNIVERSITY

Department of Computer Science Slides Credit: Arash Vahdat, Karsten Kreis, and Ruigi Gao, Denoising Diffusion-based Generative 22 Modeling: Foundations and Applications, CVPR 2022 Tutorial

Data

Reverse Denoising Process

In general, $q(\mathbf{x}_{t-1}|\mathbf{x}_t) \propto q(\mathbf{x}_{t-1})q(\mathbf{x}_t|\mathbf{x}_{t-1})$ is intractable.

Can we approximate $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$? Yes, we can use a Normal distribution if β_t is small in each forward diffusion step.

Department of Computer Science Slides Credit: Arash Vahdat, Karsten Kreis, and Ruiqi Gao, Denoising Diffusion-based Generative 23 Modeling: Foundations and Applications, CVPR 2022 Tutorial

Reverse Denoising Process

Formal definition of reverse processes in T steps:

Reverse denoising process (generative)

Data

Department of Computer Science Slides Credit: Arash Vahdat, Karsten Kreis, and Ruigi Gao, Denoising Diffusion-based Generative 24 Modeling: Foundations and Applications, CVPR 2022 Tutorial

23

Reverse Denoising Process

Formal definition of reverse processes in T steps:

Reverse denoising process (generative)

Data

Department of Computer Science Slides Credit: Arash Vahdat, Karsten Kreis, and Ruigi Gao, Denoising Diffusion-based Generative 25 Modeling: Foundations and Applications, CVPR 2022 Tutorial

23

Training Objective

For training, we use a variational upper bound on negative log likelihood $\mathbb{E}\left[-\log p_{\theta}(\mathbf{x}_{0})\right]$ We represent the mean of the denoising model using a noise-prediction network:

$$\mu_{\theta}(\mathbf{x}_t, t) = \frac{1}{\sqrt{1 - \beta_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \,\epsilon_{\theta}(\mathbf{x}_t, t) \right)$$

With this parameterization and further simplification, the final objective is:

$$L_{\text{simple}} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), t \sim \mathcal{U}(1, T)} \left[||\epsilon - \epsilon_{\theta} (\underbrace{\sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \ \epsilon, t)}_{\mathbf{x}_t} ||^2 \right]$$

More details in Ho, et al., 2020

Denoising Diffusion Models

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$abla_{ heta} \left\| oldsymbol{\epsilon} - oldsymbol{\epsilon}_{ heta} (\sqrt{ar{lpha}_t} \mathbf{x}_0 + \sqrt{1 - ar{lpha}_t} oldsymbol{\epsilon}, t)
ight\|^2$$

6: until converged

Algorithm 2 Sampling 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\overline{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for

6: return \mathbf{x}_0

Network Architectures

DSTON

VERSIT

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent $\epsilon_{\theta}(\mathbf{x}_t, t)$

Network Architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent $\epsilon_{\theta}(\mathbf{x}_t, t)$

Time representation: sinusoidal positional embeddings or random Fourier features.

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization

layers. (see Dharivwal and Nichol NeurIPS 2021)

Department of Computer Science Slides Credit: Arash Vahdat, Karsten Kreis, and Ruiqi Gao, Denoising Diffusion-based Generative 29 Modeling: Foundations and Applications, CVPR 2022 Tutorial

Network Architectures

U-Net can take in more information in the form of embeddings.

Context embedding: relating to controlling the generation, e.g., text description.

Adding Context

Noise Schedule

Data

 $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_t, t), \sigma_t^2 \mathbf{I})$

Above, β_t and σ_t^2 control the variance of the forward diffusion and reverse denoising processes respectively.

Often a linear schedule is used for β_t , and σ_t^2 is set equal to β_t .

Kingma et al. NeurIPS 2022 introduce a new parameterization of diffusion models using signal-to-noise ratio (SNR), and show how to learn the noise schedule by minimizing the variance of the training objective.

We can also train while training the diffusion model by minimizing the variational bound (<u>Improved DPM by Nichol and</u> <u>Dhariwal ICML 2021</u>) or after training the diffusion model (<u>Analytic-DPM by Bao et al. ICLR 2022</u>).

Department of Computer Science Slides Credit: Arash Vahdat, Karsten Kreis, and Ruigi Gao, Denoising Diffusion-based Generative 32 Modeling: Foundations and Applications, CVPR 2022 Tutorial

Classifier-free Guidance

- trade off sample diversity and sample fidelity in conditional diffusion models
- jointly train a conditional and an unconditional diffusion model

$$\tilde{\boldsymbol{\epsilon}}_{\theta}(\mathbf{z}_{\lambda},\mathbf{c}) = (1+w)\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda},\mathbf{c}) - w\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda})$$

Non-guided Department of Computer Science Classifier-free guided

Latent Diffusion Model

Stable Diffusion

Department of Computer Science

DreamBooth

Input images

in the Acropolis

in a doghouse

swimming

getting a haircut

DreamBooth

ControlNet

"Lincoln statue"

Input human pose Department of Computer Science

Default

Learning Objectives

- Generative Models v.s Discriminative Models
- Explicit v.s. Implicit Generative Models
- Formation of GANs
- Common issues in GANs
- Forward and reverse process in diffusion models
- Training and sampling in diffusion models
- UNet in diffusion models
- Conditional diffusion models
- Applications of generative models

