Boston University CAS CS 585: Image and Video Computing

Lecture on Convolution, Correlation, Object Recognizability, CNNs, Image Net

by Margrit Betke March 5, 2024

Learning Objectives for this Lecture

Computer Science

- Understand differences and similarities between pre-2012 "traditional computer vision" and post-2012 neural-network-based computer vision & see examples
- Understand why convolution is powerful
- Understand the connection between convolution and correlation
- Understand how tools from estimation theory can be used to measure recognizability of objects in images
- Understand template matching with image pyramids
- Understand CNNs as a learning hierarchy of features
- Learn about early CNN used in computer vision: LeCun's work on recognizing handwritten numbers
- Understand CNN concepts, e.g., convolution layers, fully connected (dense) layers, non-linearity (ReLU), pooling (downsampling)
- Learn about breakthrough dataset ImageNet

Today's Computer Vision: Mostly (but not all) Neural Networks

Computer Science

- Deep convolutional neural networks
- Transformers
- Diffusion models

traditional computer vision algorithms,
 representations, geometry, and tricks

Deep learning does not work well for: Multi-view geometry, i.e., 3D object pose and 3D scene representation

1D Discrete Convolution

Computer Science

1D Convolution:

Time signal f and shifted time signal g are multiplied

and added:

$$egin{align} (fst g)[n] &\stackrel{ ext{def}}{=} \sum_{m=-\infty}^{\infty} f[m]\,g[n-m] \ &= \sum_{m=-\infty}^{\infty} f[n-m]\,g[m]. \end{split}$$

2D generalization:

f = input image, g = template image (or CNN function)

2D Convolution Example

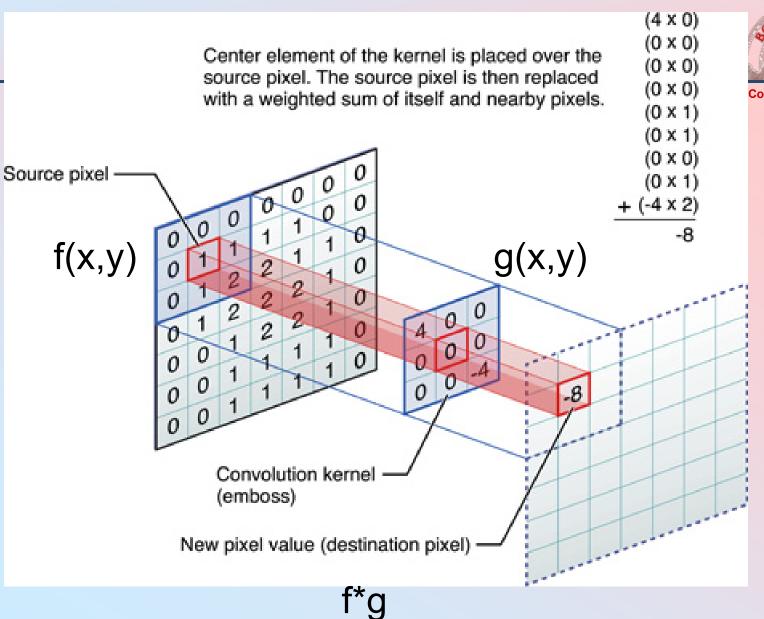
Computer Science

1 _{×1}	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature



Computer Science

Computer Science

Why is Convolution Powerful?

Signal Processing:

Computer Science

Convolution is used to define a "matched filter" for locating "targets" in time signals

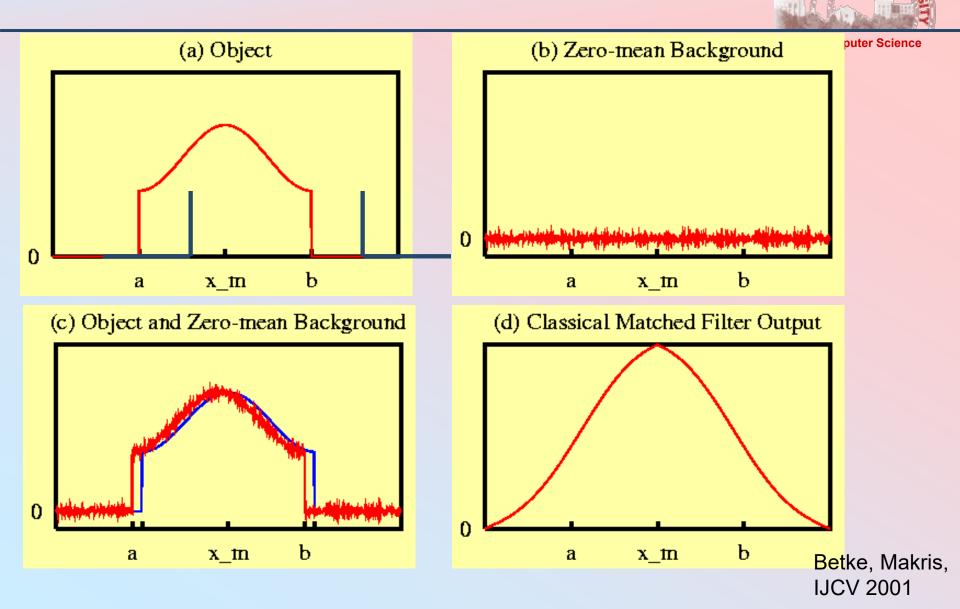
Template matching is optimal algorithm if noise is Gaussian.

Optimality of Template Matching

Computer Science

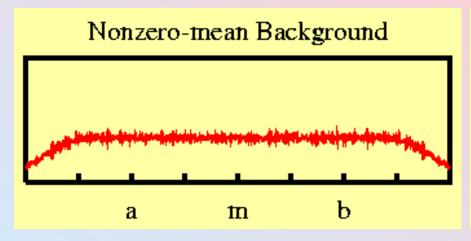
Betke, Makris, IJCV 2001

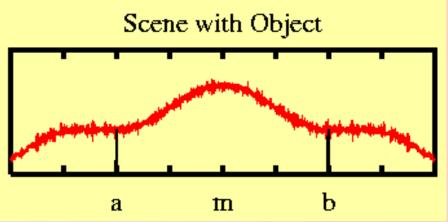
1D Position Estimation: Σ object*background

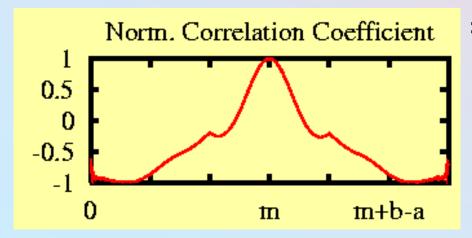


Another 1D convolution example:

Computer Science







= convolution/std-devs

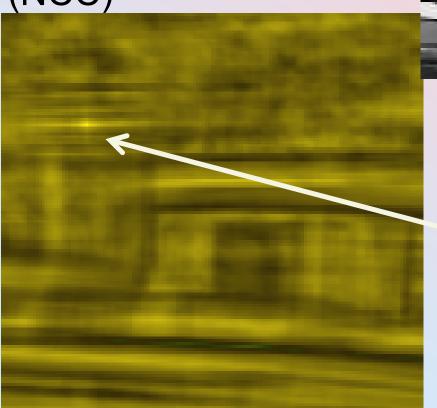
Betke, Makris, IJCV 2001

2D Position Estimation

Convolution of one-way sign with itself

2 D Position Estimation

Convolution of one-way sign with scene (NCC)

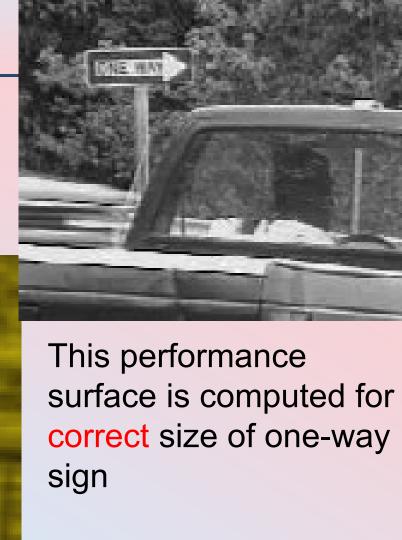


Peak in performance surface (= negative loss fct) at correct location

Betke, Makris, IJCV 2001

2 D Position Estimation

Convolution of one-way sign with scene (NCC)



Different surfaces for different sizes of object

Sample Performance Surfaces

complexity: 250 size: 73×27

max. cor. coef. 0.82

correct match

complexity: 33 size: 73×27

max. cor. coef. 0.64

incorrect match

(shown enlarged) complexity: 25 size: 21 × 5 max. cor. coef. 0.70 incorrect match

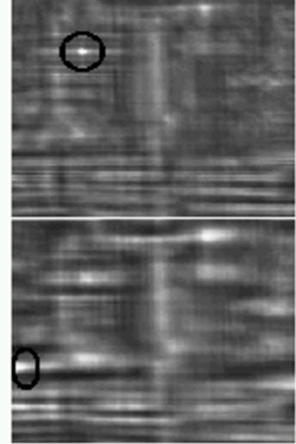


Image Credit: Efros/Freeman

Convolving template with subimage

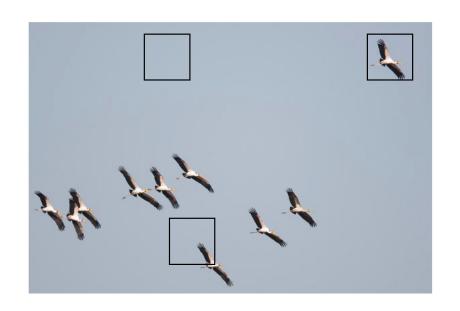
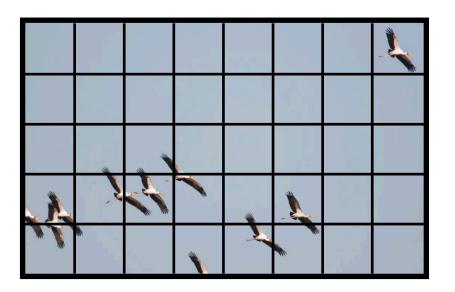


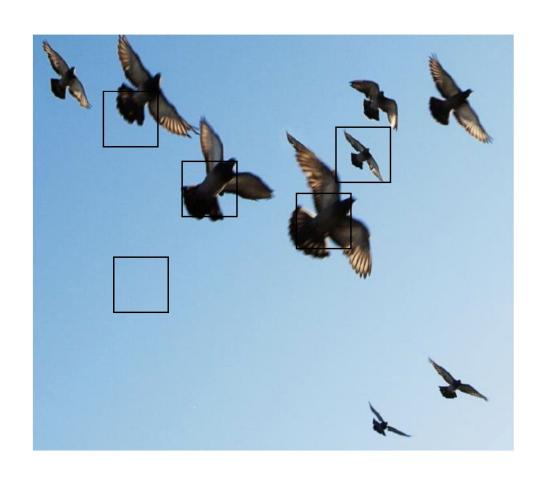


Image Credit: Efros



Sk	ΚУ	Sky	Sky	Sky	Sky	Sky	Sky	Bird
Sk	ίy	Sky	Sky	Sky	Sky	Sky	Sky	Sky
Sk	ίy	Sky	Sky	Sky	Sky	Sky	Sky	Sky
Bii	rd	Bird	Bird	Sky	Bird	Sky	Sky	Sky
Sł	<y< td=""><td>Sky</td><td>Sky</td><td>Bird</td><td>Sky</td><td>Sky</td><td>Sky</td><td>Sky</td></y<>	Sky	Sky	Bird	Sky	Sky	Sky	Sky

What if object in image appears in a range of sizes?



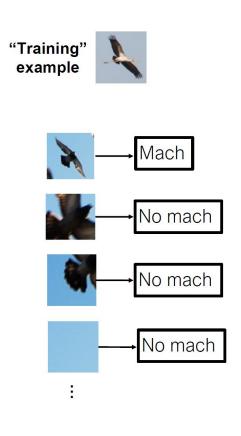


Image Credit: Efros

Multi-Scale Pyramids

Multi-Scale Pyramids

A multiscale image pyramid provides an alternative image representation to achieve translation and scale invariance

Multi-Resolution Matching

Computer Science

Normalized correlation coefficient over multi-resolution search space:

$$r = 1/n \sum_{i} (s_{i} - mean(s)) (m_{i} - mean(m)) (\sigma_{s} \sigma_{m})$$

←Template matched over all resolutions



Finding the Face and its Movement by Locating the Best Match of a Face Template

Computer Science

(a) Input

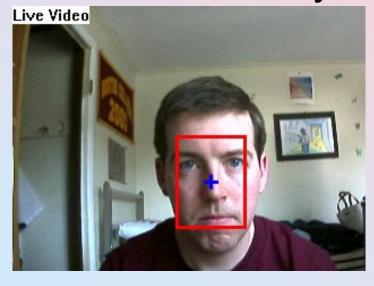
You can apply template matching to a small version of your input image and use that search result to start searching for a match in the 2nd smallest images. Repeat until the original size is processed.

(d) Correlation

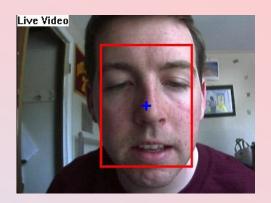
Face Detection

Computer Science

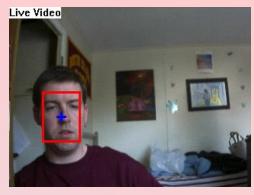
Data Variability



Shadows
Cluttered background

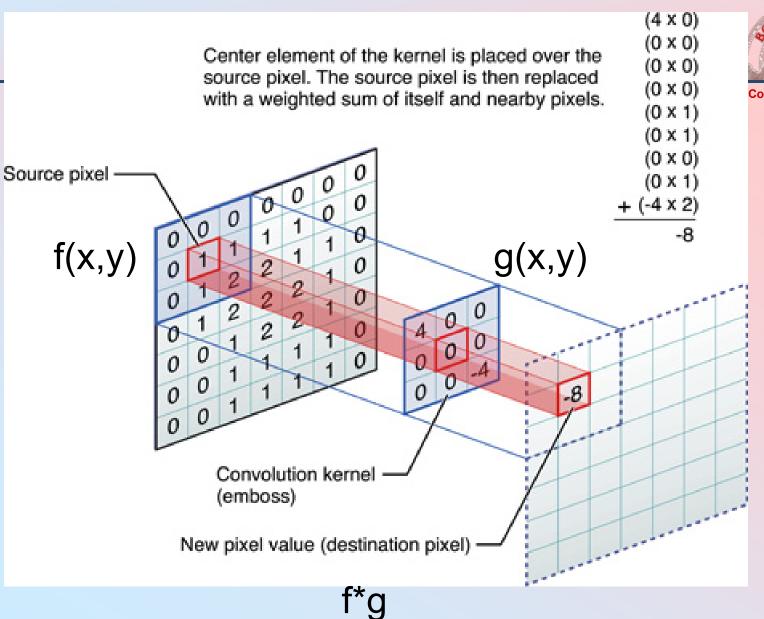


Large Face



Small Face

Clo



Computer Science

Object Recognition = Parameter Estimation

Computer Science

Affine parameterization x' = Ax + b = > estimate a

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

2D translation

$$\mathbf{A} = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \begin{pmatrix} \cos \theta_0 & \sin \theta_0 \\ -\sin(\theta_0 + \alpha) & \cos(\theta_0 + \alpha) \end{pmatrix}$$

scale, sheer in x & y, rotation

Betke, Makris, IJCV 2001

Object Recognition = Parameter Estimation

Computer Science

Affine parameterization x' = Ax + b = estimate a

Likelihood function

$$P(\mathbf{I} \mid \mathbf{a}) = \frac{1}{(2\pi\sigma^2)^{MN/2}}$$

$$\times \exp\left(-\frac{1}{2\sigma^2} \sum_{k=1}^{MN} (I_k - m_k(\mathbf{a}))^2\right)$$

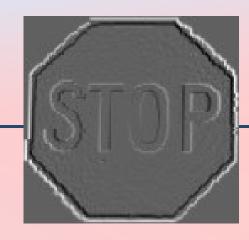
General Camer-Rao lower bound:

$$E[(\hat{\mathbf{a}} - \mathbf{a})(\hat{\mathbf{a}} - \mathbf{a})^T] \ge \mathbf{J}^{-1}$$

Betke, Makris, IJCV 2001

Fisher Information Matrix J

$$J_{ij} = -E \left[\frac{\partial^2}{\partial a_i \partial a_j} \ln P(\mathbf{I} \mid \mathbf{a}) \right]$$
$$= \frac{1}{\sigma^2} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left(\frac{\partial m(x, y; \mathbf{a})}{\partial a_i} \frac{\partial m(x, y; \mathbf{a})}{\partial a_j} \right)$$



a₄ = S change in scale

a₁ = X horizontal shift

vertical shift

 $a_3 = \theta$ in-plane rotation

Object Coherence

Computer Science

CRLB:
$$E[(\hat{a}_i - a_i)^2] \ge [\mathbf{J}^{-1}]_{ii} = \frac{\sigma^2}{E} \ell_i^2$$

Energy for object q:

$$E = \sum_{(x,y)\in O} |q(x, y; \mathbf{a})|^2$$

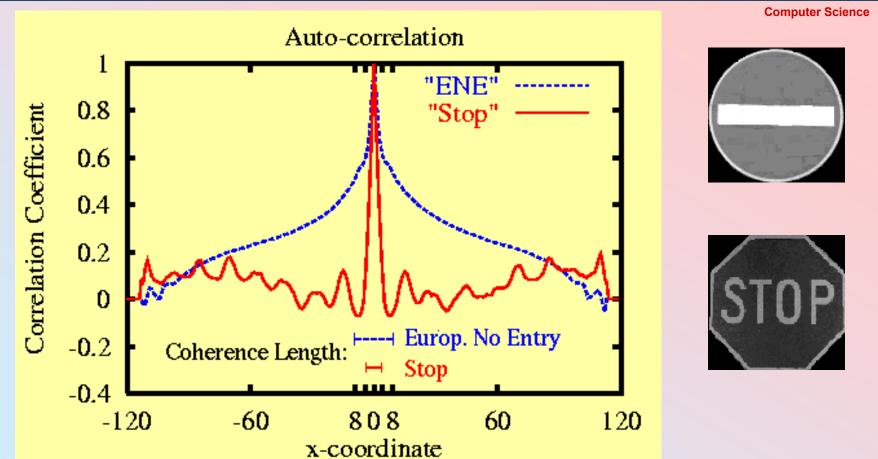
Coherence scale and volume:

$$\ell_i = \left([\mathbf{J}^{-1}]_{ii} \frac{E}{\sigma^2} \right)^{\frac{1}{2}} \qquad V = \left(\frac{E}{\sigma^2} \right)^{\frac{n_a}{2}} |\mathbf{J}|^{-\frac{1}{2}}$$

$$V = \left(\frac{E}{\sigma^2}\right)^{\frac{n_a}{2}} |\mathbf{J}|^{-\frac{1}{2}}$$

Affine: $n_a = 6$

Coherence Length Scale ex



Since coherence length of Stop sign < No-Entry Sign, resolving location (x-coordinate) of Stop sign is easier

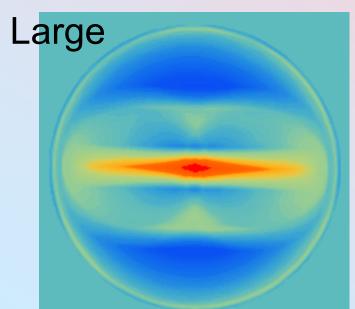
Coherence Area

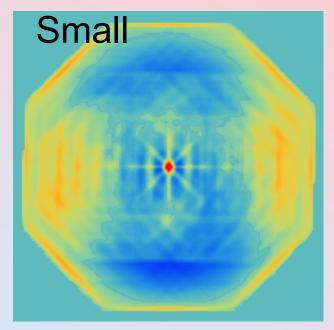
Computer Science

Betke, Makris, IJCV 2001

$$V = \left(\frac{E}{\sigma^2}\right)^{\frac{n_a}{2}} |\mathbf{J}|^{-\frac{1}{2}}$$

$$\mathsf{n_a} = 2$$

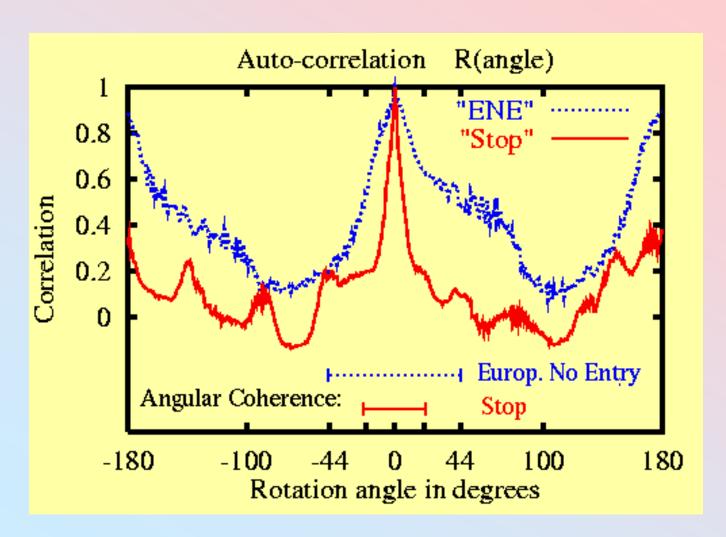




Resolving (x,y) location is easier for Stop sign

Angular Coherence Scale

Computer Science



Peaks at ~45, 90, ... degrees

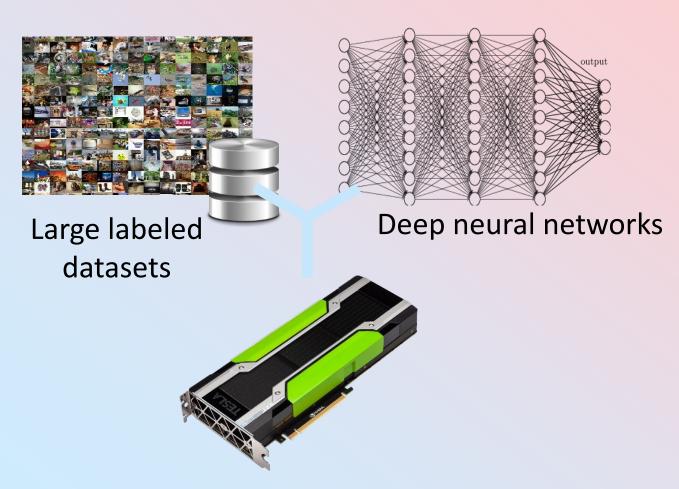
Betke, Makris, IJCV 2001

Conclusions on Coherence

Computer Science

- Using the Fisher Information matrix, we can compute the coherence scales of objects
- Coherence scales define the recognizability of object parameters
- Intuitively, coherence areas = "cells" = "interconnected parts" = "degrees of freedom"
- Coherence scales can be visualized with autocorrelations, i.e., "object convolution with itself"
- Neural nets compute many convolutions and memorize coherence scales of objects

Back to Neural Nets & their Success in Solving Computer Vision Problems



GPU technology

Convolutional Neural Networks (CNN, ConvNet, DCN)

- CNN = a multi-layer neural network with
 - Local connectivity:
 - Neurons in a layer are only connected to a small region of the layer before it
 - Share weight parameters across spatial positions:
 - Learning shift-invariant filter

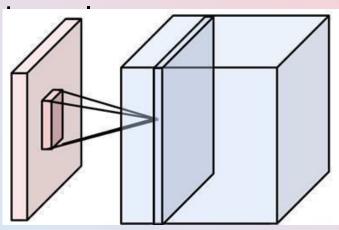
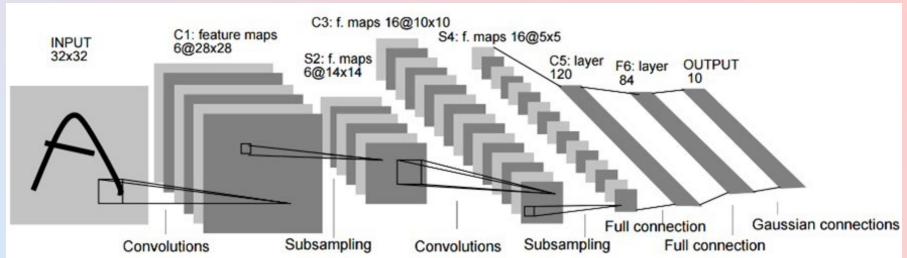


Image credit: A. Karpathy

LeNet [LeCun et al.]



1990: Zipcode recognition

http://yann.lecun.com/exdb/lenet/multiples.html

Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998]

LeNet-1 from 1993

LeCun Interview, Oct. 5, 2023

Computer Science

https://www.rsipvision.com/ICCV2023-Thursday/

Yann LeCun

- VP and Chief Al Scientist, Facebook
- Silver Professor of Computer Science, Data Science, Neural Science, and Electrical and Computer Engineering, New York University
- ACM Turing Award Laureate
- Member, National Academy of Engineering

LeCun's 2023 Focus: Predict Content of Masked-out Images/Video Frames

Computer Science

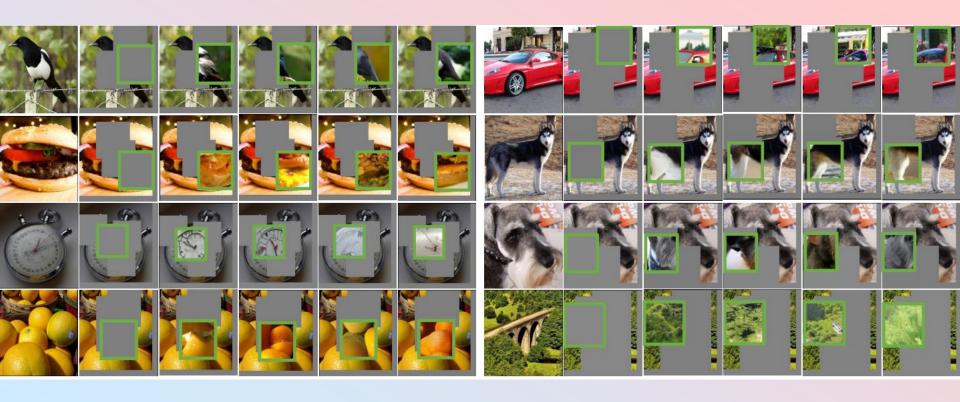
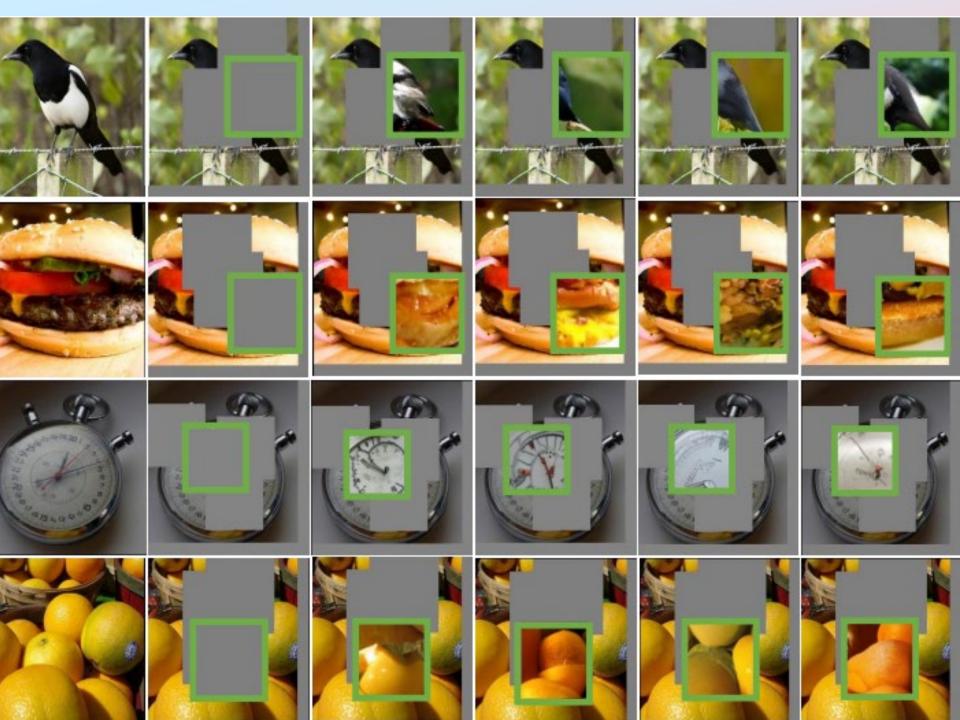
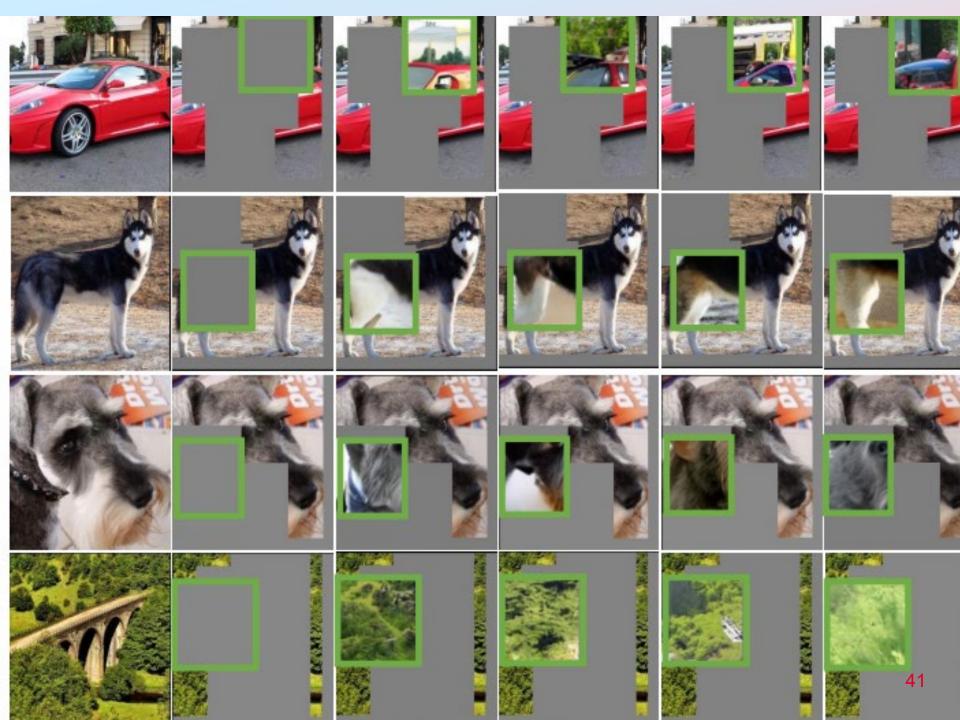


Image Credit: 2301.08243.pdf (arxiv.org)





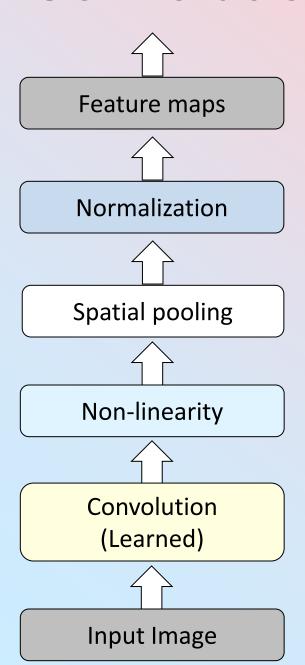
Another example of 2D Convolution

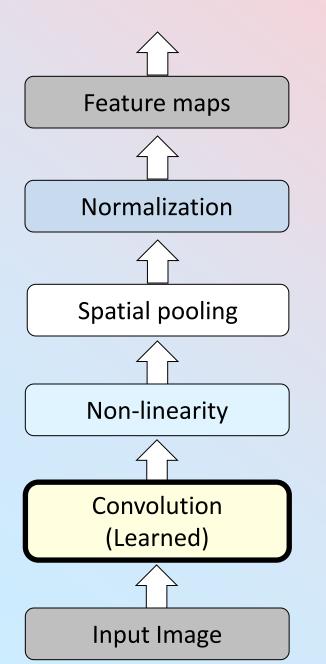
Weighted moving sum

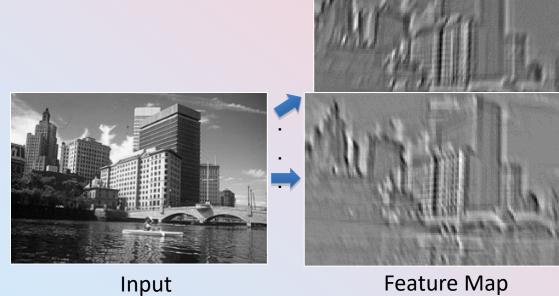




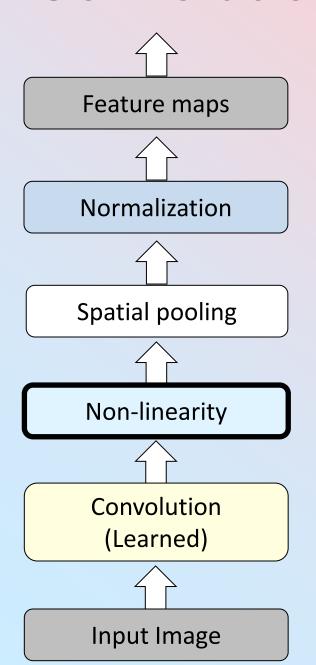
Feature Activation Map slide credit: S. Lazebnik



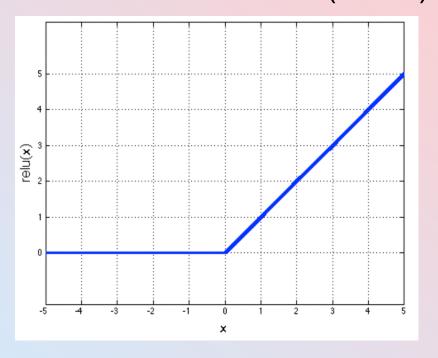


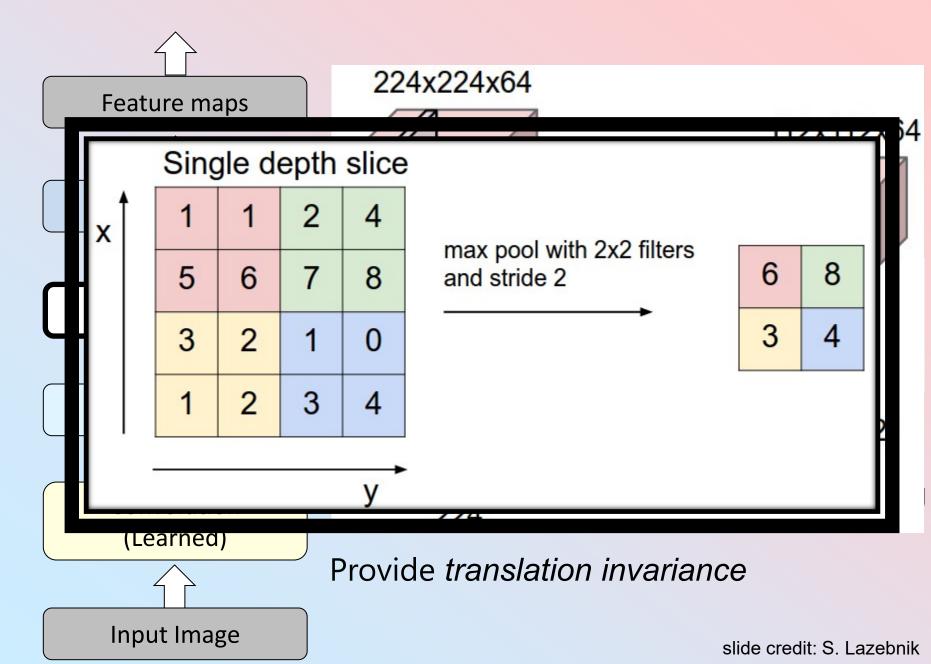


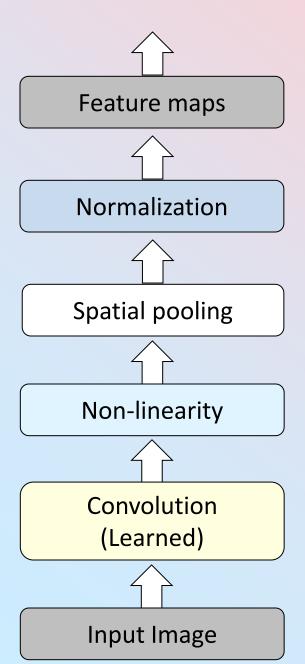
slide credit: S. Lazebnik



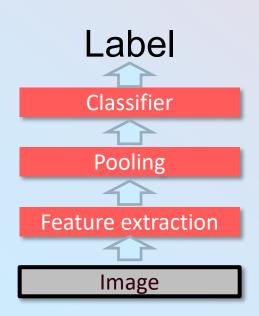
Rectified Linear Unit (ReLU)



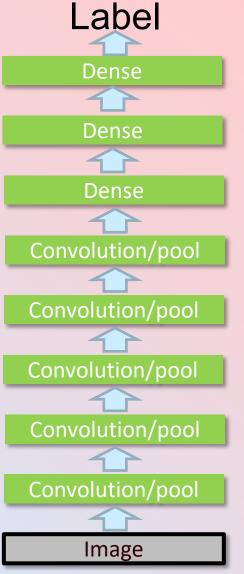




Traditional versus NN-based Computer Vision: Engineered versus Learned Features



Convolutional filters are trained in a supervised manner by back-propagating classification error



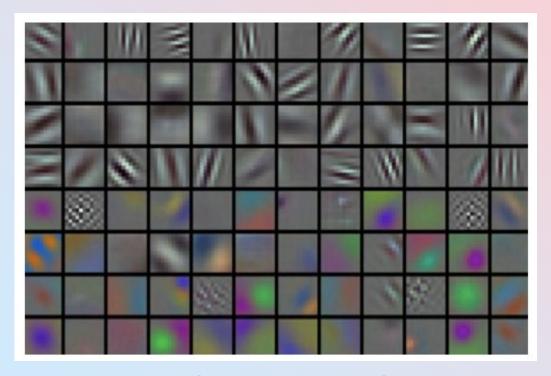
SIFT Descriptor

Lowe [IJCV 2004] **Image Apply Pixels** oriented filters Spatial pool (Sum) **Feature** Normalize to unit Vector length

Slide credit: R. Fergus

Visualizing what was learned

What do the learned filters look like?



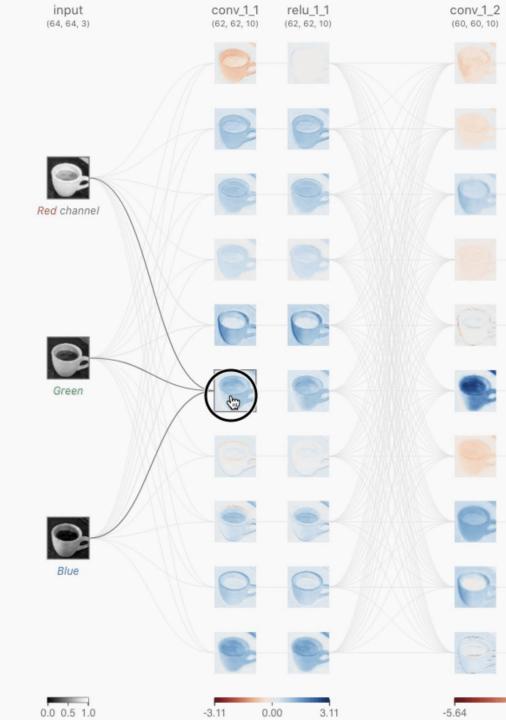
Typical first layer filters

The CNN Explainer

Thanks to CS640 classmate Mao Mao, we have a link to the CNN Explainer:

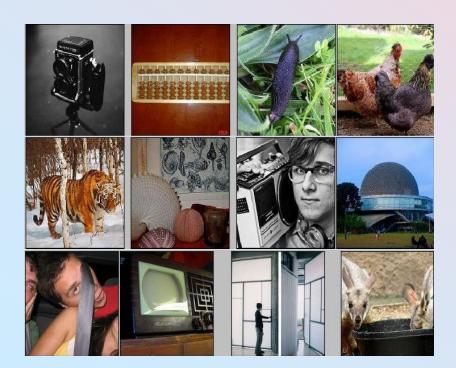
https://poloclub.github.io/cnn-explainer/

by Jay Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das, Fred Hohman, Minsuk Kahng, and Polo Chau, a result of a research collaboration between Georgia Tech and Oregon State University



ImageNet – The Data Set that Mattered and Still Matters!

[Deng et al. CVPR 2009]

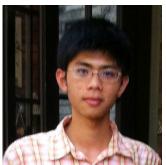


- 14 million labeled images
- 20 thousand object classes
- Images collected from the Internet
- Human labels obtained by crowdsourcing with Amazon Turk
- Still very important in 2024
 because it is widely used for
 pretraining of "backbone
 neural nets" of current
 models

Analysis of Large Scale Visual Recognition

Adapted for BU CS 440/640 by M. Betke

Fei-Fei Li and Olga Russakovsky



Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-Fei
Detecting avocados to zucchinis: what have we done, and where are we going?
ICCV 2013 http://image-net.org/challenges/LSVRC/2012/analysis

Backpack

Flute

Matchstick

Sea lion

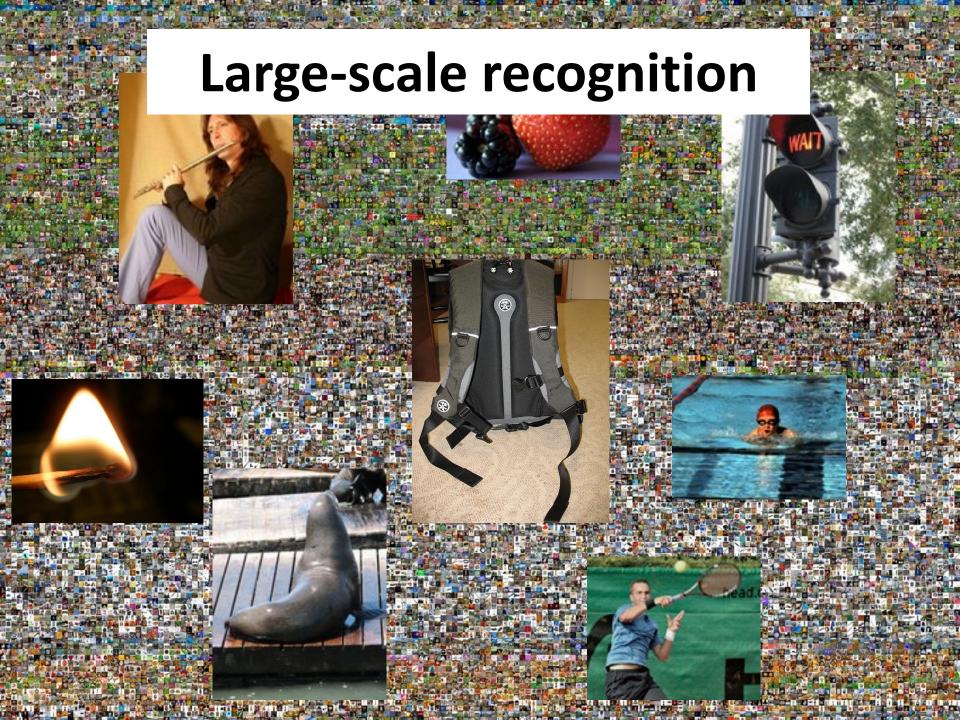
Strawberry

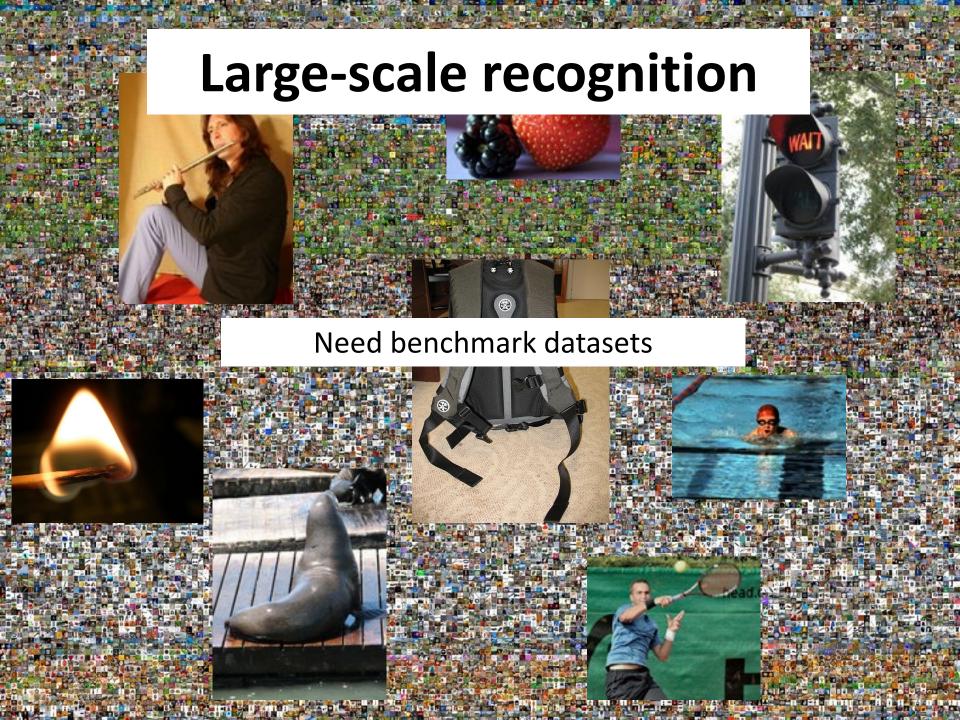
Backpack

Traffic light

Bathing cap

Racket



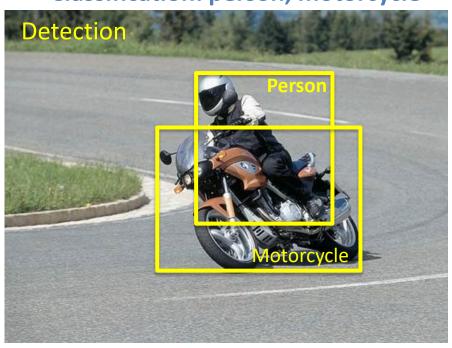


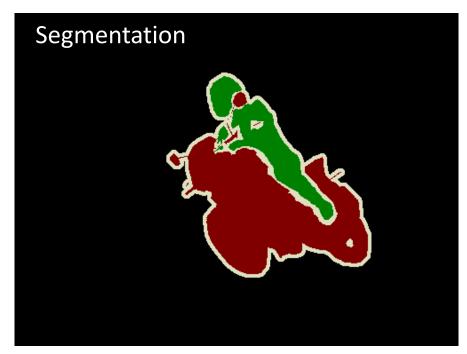
PASCAL VOC 2005-2012

20 object classes

22,591 images

Classification: person, motorcycle





Action: riding bicycle

Everingham, Van Gool, Williams, Winn and Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

IM GENET Large Scale Visual Recognition Challenge (ILSVRC) 2010-2012

20 object classes 22,591 images

1000 object classes **1,431,167** images

http://image-net.org/challenges/LSVRC/{2010,2011,2012}

Variety of object classes in ILSVRC

PASCAL

bird

bottle

car

ILSVRC

flamingo

cock

ruffed grouse

quail

partridge

pill bottle

beer bottle wine bottle water bottle pop bottle

race car

wagon

minivan

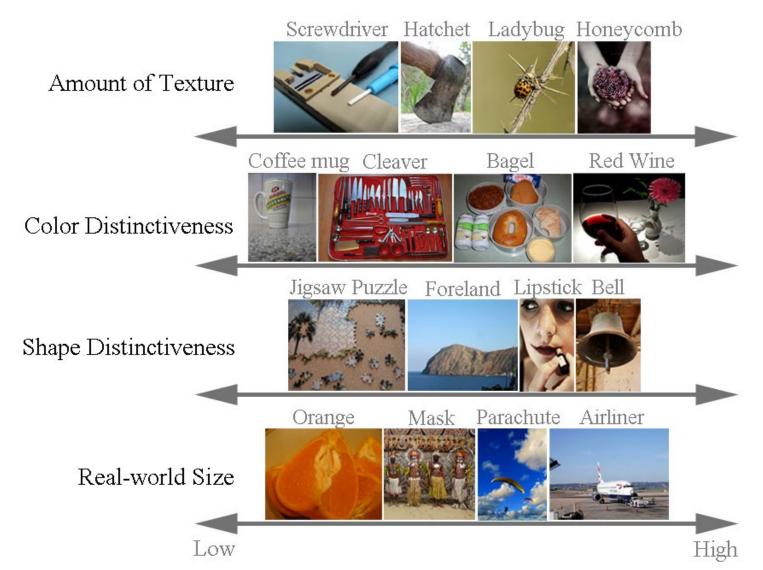
jeep

cab

birds

bottles

Variety of object classes in ILSVRC



Steel drum

Allowed system output: 5 predictions per image

Goal: Get 1 of the 5 predictions correct

Steel drum

Output:

Scale
T-shirt
Steel drum
Drumstick
Mud turtle

Output:

Scale
T-shirt
Giant panda
Drumstick
Mud turtle

Indicator Function:

Steel drum

Output:

Scale
T-shirt
Steel drum
Drumstick
Mud turtle

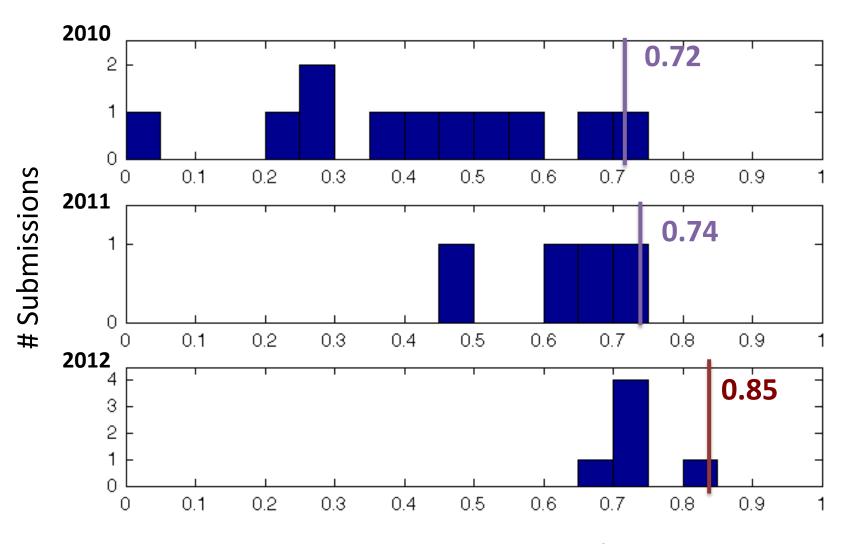
Output:

Scale T-shirt Giant panda Drumstick Mud turtle

Accuracy =
$$\frac{1}{100,000}$$

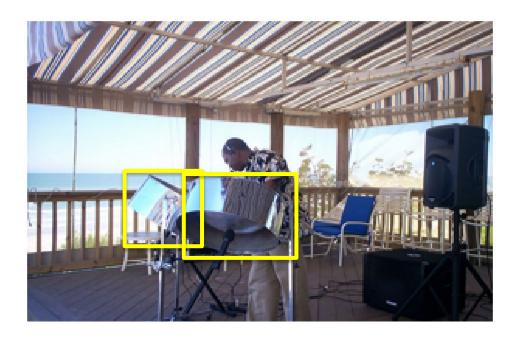
100,000 images

1[correct on image i]

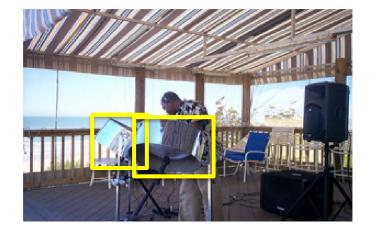


Accuracy (5 predictions/image)

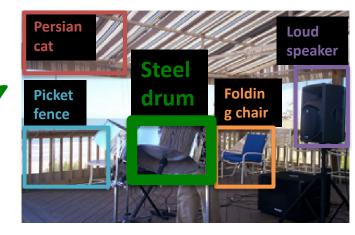
Steel drum



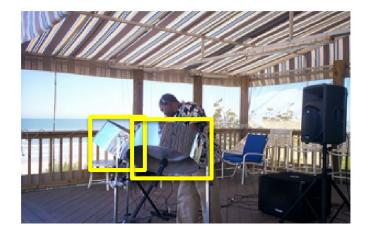
Steel drum



Output



Steel drum



Output (bad localization)

Output



Output (bad classification)

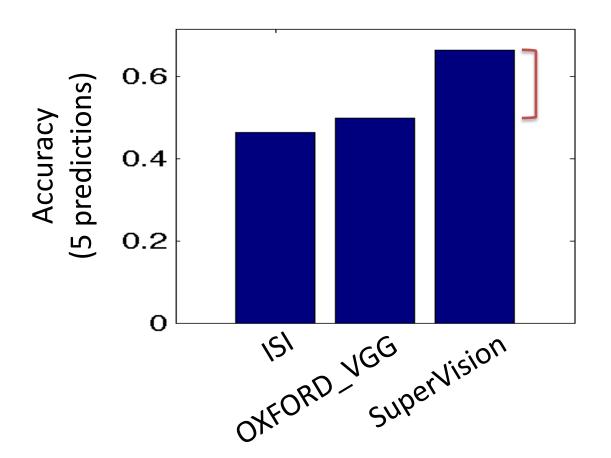
Steel drum



Accuracy =
$$\frac{1}{100,000}$$

100,000 images

1[correct on image i]



ISI=Uni. Tokyo Team

VGG=Uni. Oxford Team

SuperVision =
University of Toronto Team
Led by
Geoffrey Hinton,
Turing Award Winner

What happens under the hood?

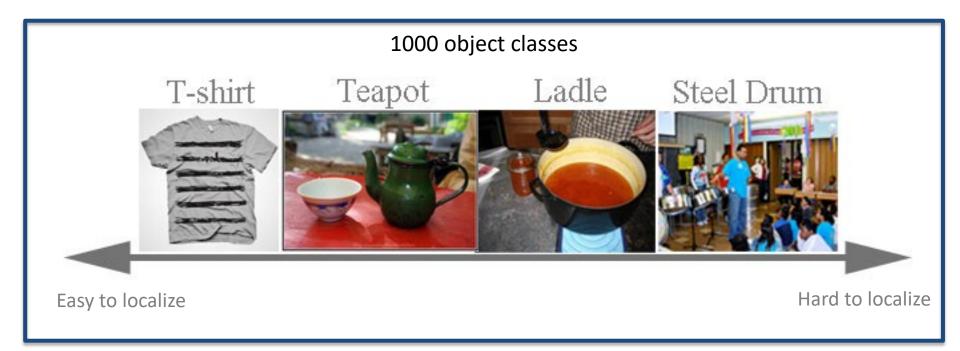
Preliminaries:

- ILSVRC-500 (2012) dataset
- Leading algorithms

What happens under the hood on classification+localization?

- A closer look at small objects
- A closer look at textured objects

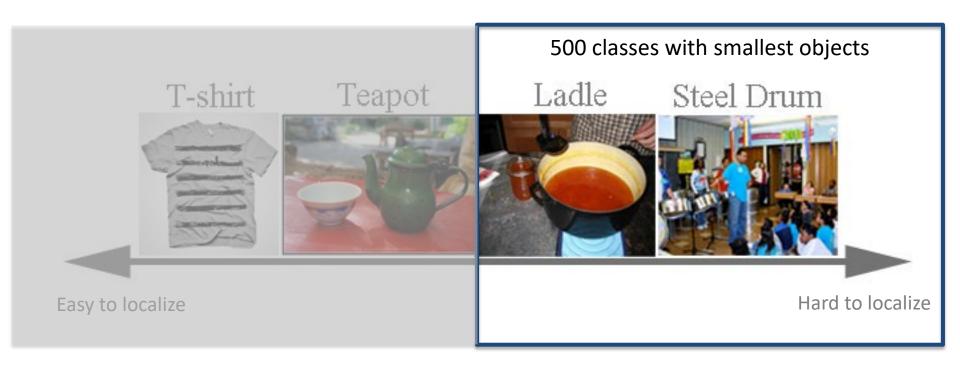
ILSVRC (2012)



ILSVRC-500 (2012)



ILSVRC-500 (2012)

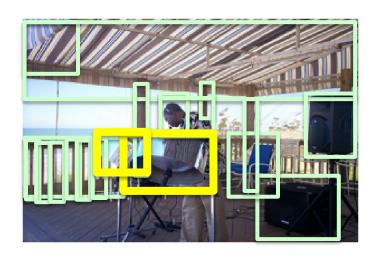


Object scale (fraction of image area occupied by target object)

ILSVRC-500 (2012)	500 object categories	25.3%
PASCAL VOC (2012)	20 object categories	25.2%

Level of clutter

Steel drum



- Generate candidate object regions using method of
 - Selective Search for Object Detection vanDeSande et al. ICCV 2011
- Filter out regions inside object
- Count regions

ILSVRC-500 (2012)	500 object categories	128 ± 35
PASCAL VOC (2012)	20 object categories	130 ± 29

SuperVision = AlexNet

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton (Krizhevsky NIPS12)

Image classification: Deep convolutional neural networks

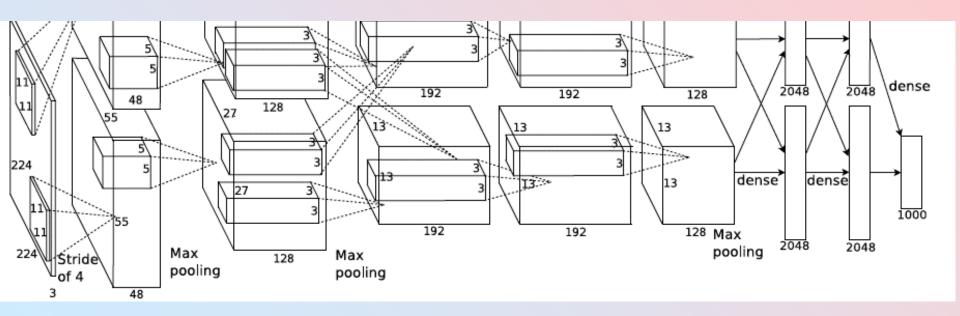
- 7 hidden "weight" layers, 650K neurons, 60M parameters,
 630M connections
- Rectified Linear Units, max pooling, dropout trick
- Randomly extracted 224x224 patches for more data
- Trained with Stochastic Gradient Descent on two GPUs for a week, fully supervised (50x speed-up over CPU)

Localization: Regression on (x,y,w,h)

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

AlexNet

- Similar to the model proposed by LeCun in 1998 but:
 - Larger model (7 hidden layers, 650,000 units, 60,000,000 params)
 - More data (10⁶ vs. 10³ images)



A. Krizhevsky, I. Sutskever, and G. Hinton,

Details of the Oxford VGG

This is **not** the neural net VGG but uses traditional computer vision techniques!

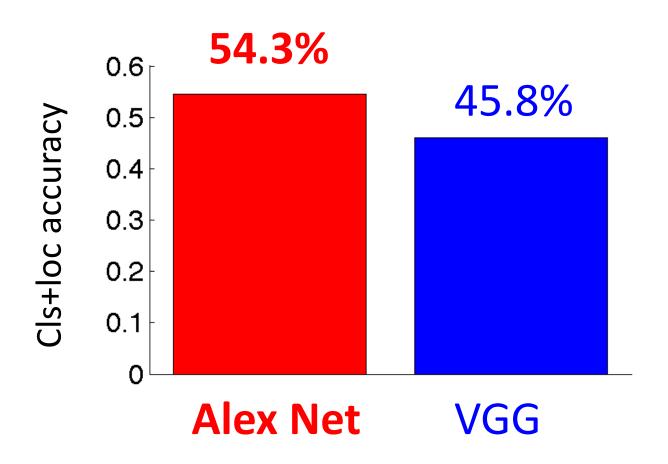
Karen Simonyan, Yusuf Aytar, Andrea Vedaldi, Andrew Zisserman

Image classification: Fisher vector + linear SVM (Sanchez CVPR11)

- Root-SIFT (Arandjelovic CVPR12), color statistics, augmentation with patch location (x,y) (Sanchez PRL12)
- Fisher vectors: 1024 Gaussians, 135K dimensions
- No SPM, product quantization to compress
- Semi-supervised learning to find additional bounding boxes
- 1000 one-vs-rest SVM trained with Pegasos SGD
 - 135M parameters!

Localization: Deformable part-based models (Felzenszwalb PAMI10), without parts (root-only)

Results on ILSVRC-500



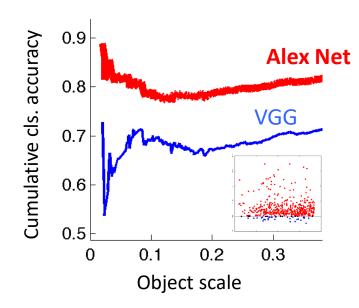
Preliminaries:

- ILSVRC-500 (2012) dataset similar to PASCAL
- Leading algorithms: Alex Net and VGG

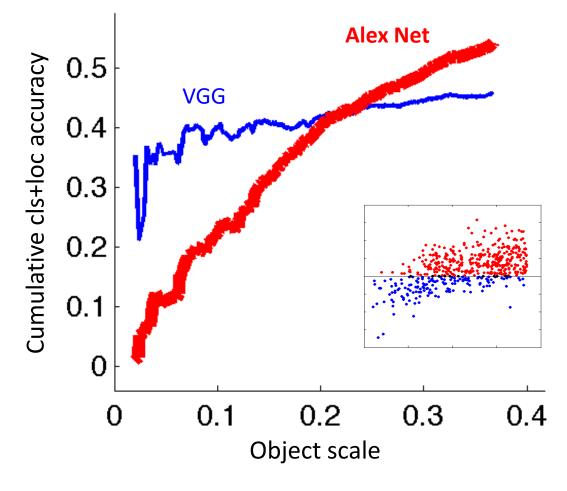
What happens under the hood on classification+localization?

- Alex Net always great at classification, but VGG does better than Alex Net localizing small objects
- A closer look at textured objects

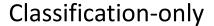
Cumulative accuracy across scales

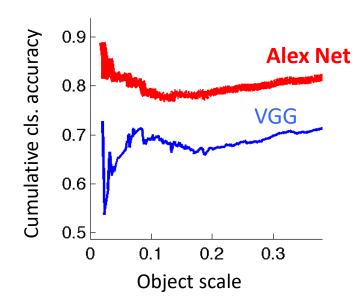


Classification+Localization

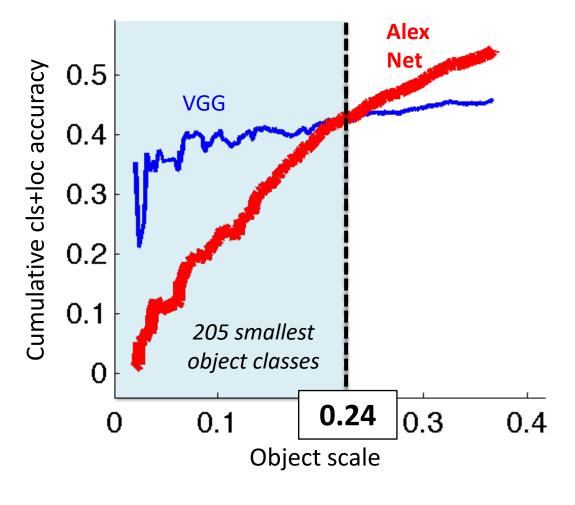


Cumulative accuracy across scales





Classification+Localization



Textured objects (ILSVRC-500)

Amount of texture

Low

High

Textured objects (ILSVRC-500)

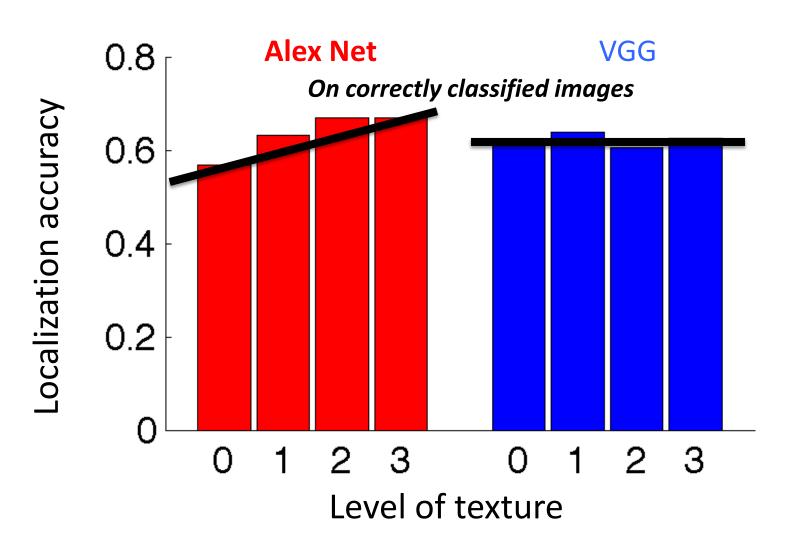
	No texture	Low texture	Medium texture	High texture
# classes	116	189	143	52
Object scale	20.8%	23.7%	23.5%	25.0%

Textured objects (416 classes)

	No texture	Low texture	Medium texture	High texture
# classes	116	189 149	143 115	52 35
Object scale	20.8%	23.7% 20.8%	23.5% 20.8%	25.0% 20.8%

Localizing textured objects

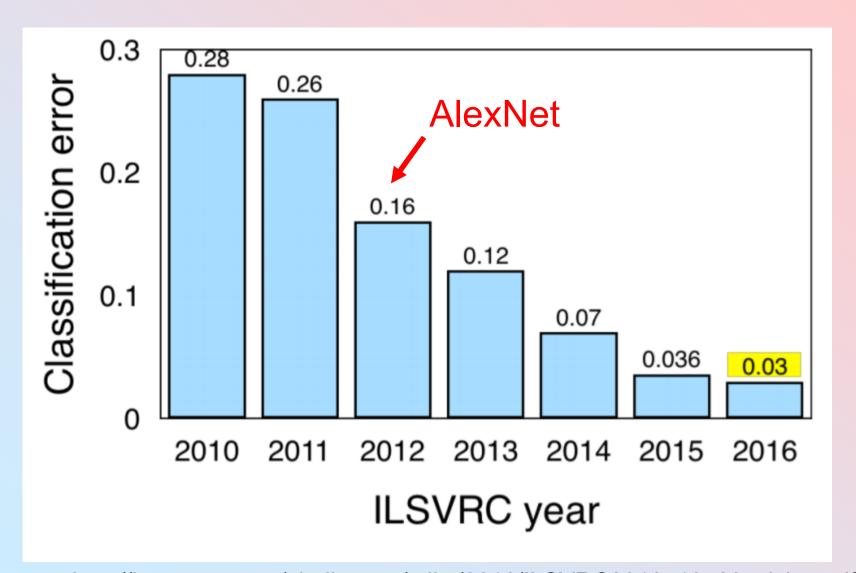
(416 classes, same average object scale at each level of texture)



Conclusions on analysis of classification+localization results

- Alex Net always great at classification, but VGG does better than Alex Net localizing small objects
- Textured objects: VGG broadly successful. Alex
 Net better at higher textures, worse at smaller.

ImageNet Classification Challenge



Recap of NN-based Computer Vision

- Neural networks
 - View of neural networks as learning hierarchy of features
- Convolutional neural networks
 - Architecture of network accounts for image structure
 - "End-to-end" recognition from pixels
 - Together with large labeled datasets and lots of computation → major success on benchmark ImageNet, i.e., object classification and localization

Learning Objectives for this Lecture

Computer Science

- Understand differences and similarities between pre-2012 "traditional computer vision" and post-2012 neural-network-based computer vision & see examples
- Understand why convolution is powerful
- Understand the connection between convolution and correlation
- Understand how tools from estimation theory can be used to measure recognizability of objects in images
- Understand template matching with image pyramids
- Understand CNNs as a learning hierarchy of features
- Learn about early CNN used in computer vision: LeCun's work on recognizing handwritten numbers
- Understand CNN concepts, e.g., convolution layers, fully connected (dense) layers, non-linearity (ReLU), pooling (downsampling)
- Learn about breakthrough dataset ImageNet