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Computer Science

Learning Objectives 
for this Lecture
 Understand differences and similarities between pre-2012 “traditional 

computer vision” and post-2012 neural-network-based computer vision 
& see examples

 Understand why convolution is powerful
 Understand the connection between convolution and correlation
 Understand how tools from estimation theory can be used to measure 

recognizability of objects in images
 Understand template matching with image pyramids
 Understand CNNs as a learning hierarchy of features
 Learn about early CNN used in computer vision: LeCun’s work on 

recognizing handwritten numbers 
 Understand CNN concepts, e.g., convolution layers, fully connected 

(dense) layers, non-linearity (ReLU), pooling (downsampling) 
 Learn about breakthrough dataset ImageNet
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Computer Science

Today’s Computer Vision:
Mostly (but not all) Neural Networks

 Deep convolutional neural networks
 Transformers
 Diffusion models

+ traditional computer vision algorithms,  
representations, geometry, and tricks

Deep learning does not work well for:
Multi-view geometry, i.e., 3D object pose and 3D 
scene representation



Computer Science

1D Discrete Convolution

1D Convolution:
Time signal f and shifted time signal g are multiplied 
and added:
 

2D generalization: 
f = input image,  g = template image
                               (or CNN function)



Computer Science

2D Convolution Example

Image Credit: Nvidia



Computer Science

f(x,y) g(x,y)

f*g
Image Credit: Madhushree Basavarajaiah



Computer Science

Why is Convolution Powerful?



Computer Science

Signal Processing:

Convolution is used to define a  
“matched filter” for locating 
“targets” in time signals 

Template matching is optimal 
algorithm if noise is Gaussian.



Computer Science

Optimality of Template 
Matching

Betke, Makris, IJCV 2001
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https://www.cs.bu.edu/fac/betke/papers/betke-makris-ijcv2001.pdf


Computer Science

1D Position Estimation: Σ object*background

Betke, Makris,
IJCV 2001



Computer Science

Another 1D convolution example:

= convolution/std-devs

Betke, Makris,
IJCV 2001



Computer Science

2D Position 
Estimation
Convolution of one-way
 sign with itself

Betke, Makris,
IJCV 2001



Computer Science

2 D Position 
Estimation
Convolution of one-way
sign with scene
(NCC)

Peak in 
performance surface 
(= negative loss fct)
at correct location

Betke, Makris,
IJCV 2001



Computer Science

2 D Position 
Estimation
Convolution of one-way
sign with scene
(NCC)

This performance 
surface is computed for 
correct size of one-way 
sign

Different surfaces for 
different sizes of object



Computer Science

Sample Performance Surfaces 



Image Credit:  Efros/Freeman



Convolving template with subimage

Image Credit:  Efros
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What if object in image appears in a range of sizes?

Image Credit:  Efros



Image Credit:  Efros



Image Credit:  Efros



Computer Science

Multi-Resolution Matching
Normalized correlation coefficient over 

multi-resolution search space:

Template 
matched over all 
resolutions 

r  = 
1/n Σi (si - mean(s)) (mi - mean(m))     

(σs σm) 



Computer Science

Finding the Face and its Movement  by 
Locating the Best Match of a Face Template  

23

You can apply 
template matching 
to a small version 
of your input image 
and use that 
search result to 
start searching for 
a match in the 2nd 
smallest images.  
Repeat until the 
original size is 
processed.



Computer Science

Face Detection

Large Face Small Face

Shadows
Cluttered background

Data Variability
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Computer Science

f(x,y) g(x,y)

f*g
Image Credit: Madhushree Basavarajaiah



Computer Science

Object Recognition =
Parameter Estimation
Affine parameterization     x’ = Ax + b   => estimate  a

Betke, Makris,
IJCV 2001

2D translation

scale, sheer in x & y, rotation 



Computer Science

Object Recognition =
Parameter Estimation

Likelihood function

Affine parameterization     x’ = Ax + b   => estimate  a

General Camer-Rao lower bound:

Betke, Makris,
IJCV 2001



Computer Science

Fisher Information Matrix J

a1 = x

a2 = y

a3 = θ

a4 = s

horizontal shift vertical shift in-plane rotation

change in scale



Computer Science

Object Coherence 

CRLB:

Energy for object q:

Coherence scale and volume:

Affine:
na = 6



Computer Science

Coherence Length Scale lx

Since coherence length of Stop sign < No-Entry Sign,
resolving location (x-coordinate) of Stop sign is easier



Computer Science

Coherence Area

Large                                    Small

Resolving (x,y) location is easier for Stop sign

Betke, Makris,
IJCV 2001

na = 2



Computer Science

Angular Coherence Scale

Peaks at ~45, 90, …
degrees

Betke, Makris,
IJCV 2001



Computer Science

Conclusions on Coherence

 Using the Fisher Information matrix, we can 
compute the coherence scales of objects

 Coherence scales define the recognizability of 
object parameters  

 Intuitively, coherence areas = “cells” = 
“interconnected parts” =“degrees of freedom”

 Coherence scales can be visualized with 
autocorrelations, i.e., “object convolution with itself”

 Neural nets compute many convolutions and 
memorize coherence scales of objects
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Large labeled 
datasets

Deep neural networks

GPU technology

Back to Neural Nets & their Success in 
Solving Computer Vision Problems 

Slide credit: Dinesh Jayaraman



Convolutional Neural Networks 
(CNN, ConvNet, DCN)

 CNN = a multi-layer neural network with
Local connectivity:

- Neurons in a layer are only connected to a small 
region of the layer before it 

Share weight parameters across spatial 
positions:

- Learning shift-invariant filter kernels

Image credit: A. Karpathy 
Jia-Bin Huang and Derek Hoiem, UIUC



LeNet [LeCun et al.]

Gradient-based learning applied to document 
recognition [LeCun, Bottou, Bengio, Haffner 1998] LeNet-1 from 1993

Jia-Bin Huang and Derek Hoiem, UIUC

1990: Zipcode recognition

http://yann.lecun.com/exdb/lenet/multiples.html

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/lenet/multiples.html


Computer Science

LeCun Interview, Oct. 5, 2023

 https://www.rsipvision.com/ICCV2023-Thursday/

Yann LeCun
VP and Chief AI Scientist, Facebook
Silver Professor of Computer Science, Data 

Science, Neural Science, and Electrical and 
Computer Engineering, New York University
ACM Turing Award Laureate
Member, National Academy of Engineering
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https://www.rsipvision.com/ICCV2023-Thursday/


Computer Science

LeCun’s 2023 Focus: Predict Content of 
Masked-out Images/Video Frames 

39Image Credit: 2301.08243.pdf (arxiv.org)

https://arxiv.org/pdf/2301.08243.pdf


Computer Science

LeCun’s focus: Predict Content of Masked-
out Images/Video Frames 

40Image Credit: 2301.08243.pdf (arxiv.org)

https://arxiv.org/pdf/2301.08243.pdf


Computer Science
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Computer Science
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GT



Computer Science

43

Masked Siamese Networks
Assran et al., ECCV 2022

GT



Another example of 2D Convolution
 Weighted moving sum

Input Feature Activation Map

.

.

.

slide credit: S. Lazebnik



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Convolutional Neural Networks

Feature maps

slide credit: S. Lazebnik



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Input Feature Map

.

.

.

Convolutional Neural Networks

slide credit: S. Lazebnik



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Convolutional Neural Networks

Rectified Linear Unit (ReLU)

slide credit: S. Lazebnik



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Max pooling

Convolutional Neural Networks

slide credit: S. Lazebnik

Max-pooling: a non-linear down-sampling

Provide translation invariance



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Convolutional Neural Networks

slide credit: S. Lazebnik



Traditional versus NN-based Computer Vision:
Engineered versus Learned Features

Image

Feature extraction

Pooling

Classifier

Label

Image

Convolution/pool

Convolution/pool

Convolution/pool

Convolution/pool

Convolution/pool

Dense

Dense

Dense

Label

Convolutional 
filters are 
trained in a 
supervised 
manner by 
back-
propagating 
classification 
error

Jia-Bin Huang and Derek Hoiem, UIUC



SIFT Descriptor

Image 
Pixels Apply

oriented filters

Spatial pool 
(Sum) 

Normalize to unit 
length

Feature 
Vector

Lowe [IJCV 2004]

Slide credit: R. Fergus



Visualizing what was learned

 What do the learned filters look like?

Typical first layer filters
Image Credit: Kristen Grauman



Computer Science

The CNN Explainer

Thanks to CS640 
classmate Mao Mao, 
we have a link to the 
CNN Explainer:
https://poloclub.github.i
o/cnn-explainer/
by Jay Wang, Robert Turko, Omar 
Shaikh, Haekyu Park, Nilaksh Das, 
Fred Hohman, Minsuk Kahng, and 
Polo Chau, a result of a research 
collaboration between Georgia 
Tech and Oregon State University

53

https://poloclub.github.io/cnn-explainer/
https://poloclub.github.io/cnn-explainer/


ImageNet –
The Data Set that Mattered and Still Matters!

[Deng et al. CVPR 2009]

• 14 million labeled images 
• 20 thousand object classes

• Images collected from the
Internet

• Human labels obtained by 
crowdsourcing with Amazon
Turk

• Still very important in 2024 
because it is widely used for 
pretraining of “backbone 
neural nets” of current 
models



Analysis of Large Scale Visual 
Recognition

Adapted for BU CS 440/640 by M. Betke

Fei-Fei Li and Olga Russakovsky

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-Fei
Detecting avocados to zucchinis: what have we done, and where are we going? 
ICCV 2013              http://image-net.org/challenges/LSVRC/2012/analysis



Backpack



Backpack

Flute Strawberry Traffic light

Bathing capMatchstick

Racket

Sea lion



Large-scale recognition



Large-scale recognition

Need benchmark datasets



PASCAL VOC 2005-2012

Classification: person, motorcycle
Detection Segmentation

Person

Motorcycle

Action: riding bicycle

Everingham, Van Gool, Williams, Winn and Zisserman.
The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

20 object classes  22,591 images



Large Scale Visual 
Recognition Challenge (ILSVRC) 2010-2012

20 object classes  22,591 images

1000 object classes  1,431,167 images

Dalmatian

http://image-net.org/challenges/LSVRC/{2010,2011,2012}



Variety of object classes in ILSVRC



Variety of object classes in ILSVRC



ILSVRC Task 1: Classification

Steel drum



ILSVRC Task 1: Classification

Output:
Scale

T-shirt
Steel drum
Drumstick
Mud turtle

Steel drum

✗
Output:

Scale
T-shirt

Giant panda
Drumstick
Mud turtle

Allowed system output:  5 predictions per image
Goal:    Get 1 of the 5 predictions correct

Indicator Function:  
1[System output correct on this image]        = 1                                          =  0 



ILSVRC Task 1: Classification

Output:
Scale

T-shirt
Steel drum
Drumstick
Mud turtle

Steel drum

✗

Accuracy = 

Output:
Scale

T-shirt
Giant panda
Drumstick
Mud turtle

Σ
100,000
images

1[correct on image i]1
100,000



ILSVRC Task 1: Classification

Accuracy (5 predictions/image)

# 
Su

bm
iss

io
ns

0.72

0.74

0.85

2010

2011

2012



ILSVRC Task 2: Classification + Localization

Steel drum



Foldin
g chair

Persian 
cat

Loud 
speaker

Steel 
drumPicket 

fence

OutputSteel drum

ILSVRC Task 2: Classification + Localization



Foldin
g chair

Persian 
cat

Loud 
speaker

Steel 
drumPicket 

fence

Output

✗ Foldin
g chair

Persian 
cat

Loud 
speaker

Steel 
drumPicket 

fence

Output (bad localization)

✗ Foldin
g chair

Persian 
cat

Loud 
speaker

Picket 
fence

King 
penguin

Output (bad classification)

Steel drum

ILSVRC Task 2: Classification + Localization



Foldin
g chair

Persian 
cat

Loud 
speaker

Steel 
drumPicket 

fence

OutputSteel drum

ILSVRC Task 2: Classification + Localization

Accuracy = Σ
100,000
images

1[correct on image i]1
100,000



ILSVRC Task 2: Classification + Localization
Ac

cu
ra

cy
  

(5
 p

re
di

ct
io

ns
)

ISI=Uni. Tokyo Team

VGG=Uni. Oxford Team

SuperVision =
University of Toronto Team

Led by 
Geoffrey Hinton,          

Turing Award Winner



What happens under the hood?



What happens under the hood
on classification+localization?

Preliminaries:
• ILSVRC-500 (2012) dataset
• Leading algorithms

• A closer look at small objects
• A closer look at textured objects

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-Fei
Detecting avocados to zucchinis: what have we done, and where are we going? 
ICCV 2013               http://image-net.org/challenges/LSVRC/2012/analysis



Easy to localize Hard to localize

1000 object classes

ILSVRC (2012)



Easy to localize Hard to localize

500 classes with smallest objects

ILSVRC-500 (2012)



Easy to localize Hard to localize

ILSVRC-500 (2012) 500 object categories 25.3% 
PASCAL VOC (2012) 20 object categories 25.2%

Object scale (fraction of image area occupied by target object)

ILSVRC-500 (2012)
500 classes with smallest objects



Level of clutter
Steel drum

- Generate candidate object 
regions using method of
 Selective Search for Object Detection
 vanDeSande et al. ICCV 2011

- Filter out regions inside 
object
- Count regions

ILSVRC-500 (2012) 500 object categories 128 ± 35
PASCAL VOC (2012) 20 object categories 130 ± 29



SuperVision = AlexNet
Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton    (Krizhevsky NIPS12)

Image classification: Deep convolutional neural networks
• 7 hidden “weight” layers, 650K neurons, 60M parameters, 

630M connections 
• Rectified Linear Units, max pooling, dropout trick
• Randomly extracted 224x224 patches for more data
• Trained with Stochastic Gradient Descent on two GPUs for 

a week, fully supervised (50x speed-up over CPU)

Localization: Regression on (x,y,w,h)

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf


AlexNet
• Similar to the model proposed by LeCun in 1998 but:

• Larger model (7 hidden layers, 650,000 units, 60,000,000 params)
• More data (106 vs. 103 images)

A. Krizhevsky, I. Sutskever, and G. Hinton, 
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Jia-Bin Huang and Derek Hoiem, UIUC

http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf


Details of the Oxford VGG 
This is not the neural net VGG but uses traditional computer vision techniques!

Karen Simonyan, Yusuf Aytar, Andrea Vedaldi, Andrew Zisserman

Image classification: Fisher vector + linear SVM (Sanchez CVPR11)
• Root-SIFT (Arandjelovic CVPR12), color statistics, augmentation 

with patch location (x,y) (Sanchez PRL12)
• Fisher vectors: 1024 Gaussians, 135K dimensions 
• No SPM, product quantization to compress
• Semi-supervised learning to find additional bounding boxes
• 1000 one-vs-rest SVM trained with Pegasos SGD

• 135M parameters!

Localization: Deformable part-based models (Felzenszwalb 
PAMI10),  without parts (root-only)

http://image-net.org/challenges/LSVRC/2012/oxford_vgg.pdf



Alex Net VGG
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54.3%
45.8%

Results on ILSVRC-500



What happens under the hood
on classification+localization?

Preliminaries:
• ILSVRC-500 (2012) dataset – similar to PASCAL
• Leading algorithms: Alex Net and VGG

• Alex Net always great at classification, but VGG 
does better than Alex Net localizing small objects

• A closer look at textured objects

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-Fei
Detecting avocados to zucchinis: what have we done, and where are we going? 
ICCV 2013               http://image-net.org/challenges/LSVRC/2012/analysis



Cumulative accuracy across scales

Alex Net

VGG
Alex Net

VGG

Object scale
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Cumulative accuracy across scales

Alex 
Net

VGG
Alex Net

Object scale
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m
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Classification-only Classification+Localization

Cu
m

ul
at

iv
e 

cl
s+

lo
c 

ac
cu

ra
cy

Object scale
0.24

205 smallest 
object classes

VGG



Textured objects (ILSVRC-500)

Amount of textureLow High



No texture Low texture Medium texture High texture
# classes 116 189 143 52

Object scale 20.8% 23.7% 23.5% 25.0%

Textured objects (ILSVRC-500)

Amount of textureLow High



No texture Low texture Medium texture High texture
# classes 116 189 149 143 115 52 35

Object scale 20.8% 23.7% 20.8% 23.5% 20.8% 25.0% 20.8%

Textured objects (416 classes)

Amount of textureLow High



Level of texture

Lo
ca

liz
at

io
n 

ac
cu

ra
cy

On correctly classified images
Alex Net VGG

Localizing textured objects 
(416 classes, same average object scale at each level of texture)



Conclusions on analysis of 
classification+localization results

• Alex Net always great at classification, but VGG 
does better than Alex Net localizing small objects

• Textured objects:  VGG broadly successful.  Alex 
Net better at higher textures, worse at smaller.

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-Fei
Detecting avocados to zucchinis: what have we done, and where are we going? 
ICCV 2013               http://image-net.org/challenges/LSVRC/2012/analysis



ImageNet Classification Challenge

http://image-net.org/challenges/talks/2016/ILSVRC2016_10_09_clsloc.pdf

AlexNet



Recap of NN-based Computer Vision

 Neural networks
View of neural networks as learning hierarchy of 

features
 Convolutional neural networks
Architecture of network accounts for image 

structure
“End-to-end” recognition from pixels 
Together with large labeled datasets and lots of 

computation  major success on benchmark 
ImageNet, i.e., object classification and 
localization



Computer Science

Learning Objectives 
for this Lecture
 Understand differences and similarities between pre-2012 “traditional 

computer vision” and post-2012 neural-network-based computer vision 
& see examples

 Understand why convolution is powerful
 Understand the connection between convolution and correlation
 Understand how tools from estimation theory can be used to measure 

recognizability of objects in images
 Understand template matching with image pyramids
 Understand CNNs as a learning hierarchy of features
 Learn about early CNN used in computer vision: LeCun’s work on 

recognizing handwritten numbers 
 Understand CNN concepts, e.g., convolution layers, fully connected 

(dense) layers, non-linearity (ReLU), pooling (downsampling) 
 Learn about breakthrough dataset ImageNet

93
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