Image and Video Computing

Photometric Stereo and Shape from Shading

Lecture by Margrit Betke
April 4, 2024

Problem Definitions

Shape from Shading
Find 3D shape in scene from a single 2D image
Photometric Stereo \neq binocular stereo Find 3D shape in scene from a set of 2D images that are taken under different lighting conditions
"stereo" = "solid" in Greek, used to refer to solidity, three-dimensionality

2 Algorithms

Photometric Stereo

Example:

Find 3D shape in scene from these images of faces

Photometric Stereo

$3 D$ shape visualized with texture from $1^{\text {st }}$ image

© Betke
Image Credit: Adrian N. Evans

Approach

Light reflected at surface patch depends on

Approach

Light reflected at surface patch depends on

- surface orientation
- reflectance properties of surface
- distribution of light sources illuminating surface

Approach

Light reflected at surface patch depends on

- surface orientation
- reflectance properties of surface
- distribution of light sources illuminating surface

Reconstruction Method:
Determine surface reflectance properties and direction of light source(s)
Compute surface orientation

Connection to Computer Graphics

Computer Vision: Image $E(x, y)$ given

- Determine surface reflectance properties of object in image
- Determine directions of light source \& viewer
- Compute 3D surface orientation of object at each $z(x, y)$

Computer Graphics: 3D object shape $z(x, y)$ given

- Determine surface reflectance properties of object
- Determine directions of light source and viewer
- Find intersection of ray along viewer direction with surface point $z(x, y)$ ("ray tracing")
- Create realistic-looking image $E(x, y)$ for $z(x, y)$

Image credit: Farry

What is wrong here?
Light direction
Surface reflectance

Image credit: Marauder 09

What do we need to consider for image E to look right?

light source direction s

© Betke

Surface-centered Definition

light source surface normal n

 direction s

Brightness

$E=\operatorname{fct}\left(\theta_{i}, \theta_{e}\right)$
or fct(n,s,v)

Surface Reflectance

$$
\begin{aligned}
\text { fct }(\mathrm{n}, \mathrm{~s}, \mathrm{v})= & \mathrm{BRDF}= \\
& \text { Bidirectional Reflectance Distribution Function }
\end{aligned}
$$

Diffuse

Glossy

Mirror

Three elemental components that can be used to model a variety of light-surface interactions. ${ }^{[8]}$ The incoming light ray is shown in black, the reflected ray(s) modeled by the BRDF in gray.

Diffuse reflecting surface = Lambertian

Ideal Lambertian surface looks equally bright from all directions

Brightness
$\mathrm{E}=\operatorname{fct}\left(\theta_{i}, \theta_{\mathrm{e}}\right)$ or fct($\mathrm{n}, \mathrm{s}, \mathrm{v}$)
$\mathrm{E}=\cos \theta_{\mathrm{i}}=\mathbf{n} . \mathbf{s}$

surface

normal n
direction s
tangent plane
surface

Examples of Lambertian Surfaces

Computer Science

© Betke

(b)

Poll:

Which
objects are
Lambertian?

Image

credit:
Fleming, 2013
© Betke
(a)

Specular
(b)
(c)

Computer Science
(not quite ideal) Lambertian (d)

Image

credit:
Fleming, 2013
© Betke

Lambertian reflectance model used:

Reflectance Properties of Moon

$$
E=\cos \theta_{i}=\mathbf{n} . \mathbf{s}
$$

Brightness depends on longitude and latitude

Lommel-Seeliger

$$
E=\sqrt{\frac{\cos \theta_{i}}{\cos \theta_{e}}}=\sqrt{\frac{n . s}{n \cdot v}}
$$

Brightness depends only on longitude

Surface Orientation

© Betke

Surface Orientation

Computer Science

Reflectance Map

Two different projections can create maps of the surface gradients on "Gaussian" (or unit) sphere:

Stereographic plane:
Whole sphere is projected
Includes occluding boundary of sphere

Reflectance map: -- we'll use this projection
Upper hemisphere of sphere is projected Isobrightness lines extend to infinity

Reflectance Map

A reflectance map $R(p, q)$ is a function that gives scene radiance as a function of surface orientation.

Scene radiance = light reflected from surface patch and measured by camera.
Given at a pixel (which is the image of the center of the patch) as a normalized gray value [0..1].

Surface orientation $n=(-p,-q, 1)^{\top}$

$$
\hat{n}=(-p,-q, 1) / \operatorname{sqrt}\left(p^{2}+q^{2}+1\right)
$$

Reflectance map of matte surface

Ideal Lambertian surface looks equally bright from all directions
$\boldsymbol{\operatorname { c o s }} \theta=\hat{\mathbf{n}} . \hat{\mathbf{s}}$

p

$R(p, q)$ of Lambertian Surface: Here: Light Source near Viewer

Nalwa, 1993
Where on the sphere are all points such that
(a) $E=1$?
(b) $\mathrm{E}=0.2$?
(c) $\mathrm{E}=0.7$?

$R(p, q)$ of Lambertian Surface: Here: Light Source near Viewer

Nalwa, 1993
Where on the sphere are all points such that
(a) $\mathrm{E}=1$ because brightest spot on sphere is facing viewer = source direction

$$
\cos \theta=\cos 0^{\circ}=1
$$

$R(p, q)$ of Lambertian Surface: Here: Light Source near Viewer

Where on the sphere are all points such that
(a) $\mathrm{E}=1$ because brightest spot on sphere is facing viewer = source direction

$$
\cos \theta=\hat{n} . \hat{\mathbf{s}}=(-p,-q, 1) / \operatorname{sqrt}\left(p^{2}+q^{2}+1\right) \cdot(0,0,1)=\cos 0^{\circ}=1
$$

$R(p, q)$ of Lambertian Surface: Here: Light Source near Viewer

Where on the sphere are all points such that
(a) $\mathrm{E}=1$ because brightest spot on sphere is facing viewer = source direction

$$
\cos \theta=\hat{n} \cdot \hat{s}=(-p,-q, 1) / \operatorname{sqrt}\left(p^{2}+q^{2}+1\right) \cdot(0,0,1)=\cos 0^{\circ}=1
$$

(a) $\mathrm{E}=0.2$?
(b) $\mathrm{E}=0.7$?

$\mathrm{R}(\mathrm{p}, \mathrm{q})$ of Lambertian Surface: Here: Light Source near Viewer

Nalwa '93
Where on the sphere are all points such that
(a) $\mathrm{E}=1 \quad$ because $\cos \left(0^{\circ}\right)=1$
(b) $\mathrm{E}=0.2 \quad \cos \left(78.5^{\circ}\right)=0.2$
(c) $\mathrm{E}=0.7 \quad \cos \left(45^{\circ}\right) \sim 0.7$

$R(p, q)$ of Lambertian Surface: Here: Light Source near Viewer

Where on the sphere are all points such that
(a) $\mathrm{E}=1$
(b) $\mathrm{E}=0.2$
(c) $\mathrm{E}=0.7$
because $\cos \left(0^{\circ}\right)=1$

$$
\cos \left(78.5^{\circ}\right)=0.2
$$

$$
\cos \left(45^{\circ}\right) \sim 0.7
$$

$R(p, q)$ of Lambertian Surface: Here: Light Source near Viewer

Where on the sphere are all points such that
(a) $\mathrm{E}=1$
(b) $\mathrm{E}=0.2$
(c) $\mathrm{E}=0.7$
because $\cos \left(0^{\circ}\right)=1$

$$
\cos \left(78.5^{\circ}\right)=0.2
$$

$$
\cos \left(45^{\circ}\right) \sim 0.7
$$

$R(p, q)$ of Lambertian Surface: Here: Light Source near Viewer

Nalwa '93

Where on the sphere is
(a) $p=0, q=0$
(b) $p=-5, q=0$
(c) $p=0, q=-1$
(d) $\mathrm{p}=-0.707, \mathrm{q}=-0.707$

How bright?
E=
E=
E=
E=

$R(p, q)$ of Lambertian Surface: Here: Light Source near Viewer

Where on the sphere is
(a) $p=0, q=0$
(b) $\mathrm{p}=-5, \mathrm{q}=0$?
(c) $p=0, q=-1$?
(d) $\mathrm{p}=-0.707, \mathrm{q}=-0.707$?

How bright?
$E=n . s=(0,0.1)(0,0,1)=1$

Nalwa '93

$R(p, q)$ of Lambertian Surface: Here: Light Source near Viewer

Where on the sphere is
(a) $p=0, q=0$
(b) $p=-5, q=0$
(c) $p=0, q=-1$?
(d) $\mathrm{p}=-0.707, \mathrm{q}=-0.707$?

Nalwa '93

How bright?

$$
\begin{aligned}
& \mathrm{E}=\hat{\mathrm{n}} . \mathrm{s}=(0,0.1)(0,0,1)=1 \\
& \mathrm{E}=\hat{\mathrm{n}} . \mathrm{s}=(5,0,1) / \mathrm{sqrt}(25+1) \cdot(0,0,1)=0.2
\end{aligned}
$$

$R(p, q)$ of Lambertian Surface: Here: Light Source near Viewer

Nalwa ‘93

Where on the sphere is
(a) $p=0, q=0$
(b) $p=-5, q=0$
(c) $p=0, q=-1$
(d) $\mathrm{p}=-0.707, \mathrm{q}=-0.707$

How bright?

$$
\begin{aligned}
& E=\hat{n} . s=(0,0,1)(0,0,1)=1 \\
& E=\hat{n} \cdot s=(5,0,1) / \operatorname{sqrt}(25+1) \cdot(0,0,1)=0.2 \\
& E=\hat{n} . s=(0,1,1) / \operatorname{sqrt}(1+1) \cdot(0,0,1) \sim 0.707
\end{aligned}
$$

$R(p, q)$ of Lambertian Surface: Here: Light Source near Viewer

Where on the sphere is
How bright?
(a) $p=0, q=0$

$$
\mathrm{E}=\mathrm{n} . \mathrm{s}=(0,0.1)(0,0,1)=1
$$

(b) $p=-5, q=0$
$\mathrm{E}=$ ก̂. $. \mathrm{s}=(5,0,1) /$ sqrt $(25+1) \cdot(0,0,1)=0.2$
(c) $p=0, q=-1$
(d) $\mathrm{p}=-0.707, \mathrm{q}=-0.707$

$$
\begin{gathered}
E=\text { n.s }=(0,1,1) / \text { sqrt }(1+1) \cdot(0,0,1) \sim 0.707 \\
E=\text { n.s }=(1 / \text { sqrt(} 2), 1 / \text { sqrt(} 2), 1) / \text { sqrt }\left(2^{*} 0.5+1\right) . s=0.707
\end{gathered}
$$

$R(p, q)$ of Lambertian Surface: Here: Light Source near Viewer

Nalwa '93

Where on the sphere is
(a) $p=0, q=0$
(b) $p=-5, q=0$
(c) $p=0, q=-1$
(d) $p=-1, q=-1$

How bright?

$$
\begin{aligned}
& E=1 \\
& E=0.2 \\
& E=0.707 \\
& E=0.707
\end{aligned}
$$

$\mathrm{R}(\mathrm{p}, \mathrm{q})$ of Lambertian Surface:

Here: Light Source top right

Nalwa '93
Where is the brightest spot on the sphere?

$\mathrm{R}(\mathrm{p}, \mathrm{q})$ of Lambertian Surface:

Here: Light Source top right

$$
\mathbf{s}=(-1,-0.5,1)^{\top}
$$

Where is the brightest spot on the sphere?
$\mathrm{E}=1=\mathrm{n} . \hat{s}=\left(p^{2}+q^{2}+1^{2}\right) /\left(p^{2}+q^{2}+1^{2}\right)$

$\mathrm{R}(\mathrm{p}, \mathrm{q})$ of Lambertian Surface:

 Here: Light Source top right

$\mathbf{s}=(-1,-0.5,1)^{\top}$

Where are the points on the sphere with brightness $\mathrm{E}=0.707$?

$\mathrm{R}(\mathrm{p}, \mathrm{q})$ of Lambertian Surface:

 Here: Light Source top right
$\mathbf{s}=(-1,-0.5,1)^{\top}$

Where are the points on the sphere with brightness $\mathrm{E}=0.707$?
$E=n . \hat{s}=(-p,-q, 1) / s q r t\left(p^{2}+q^{2}+1^{2}\right) \cdot s=\cos \left(45^{\circ}\right)$

$\mathrm{R}(\mathrm{p}, \mathrm{q})$ of Lambertian Surface:

 Here: Light Source top right

Nalwa ‘93
$\mathbf{s}=(-1,-0.5,1)^{\top}$

Where are the points on the sphere with brightness $\mathrm{E}=0.707$?
$E=n . \hat{s}=(-p,-q, 1) / s q r t\left(p^{2}+q^{2}+1^{2}\right) . s=\cos \left(45^{\circ}\right)$

$R(p, q)$ of Lambertian Surface

Nalwa ‘93

Reflectance Maps

- How to obtain reflectance maps? Library or own experiment.
\square One reflectance map per light source direction.
\square For teaching purposes, we used a sphere in the previous slides. The goal is not to reconstruct the surface of a sphere but the unknown surface of a planet or face etc. The reflectance maps are valid for any object with Lambertian surface reflectance properties.
\square Algorithms use the reflectance maps by looking up p and q. Input: brightness E, Output: $n=(-p,-q, 1)^{\top}$

Photometric Stereo

Goal: Given images E_{1} and E_{2} under 2 lighting conditions $\left(p_{1}, q_{1}\right)$ and (p_{2}, q_{2}), find surface orientation $\mathbf{n}=(-p,-q, 1)^{\top}$, i.e., find p \& q.

2 nonlinear equations:
$\mathrm{E}_{1}=\mathrm{R}_{1}(\mathrm{p}, \mathrm{q})$
$\mathrm{E}_{2}=\mathrm{R}_{2}(\mathrm{p}, \mathrm{q})$
If $\left(p_{1}, q_{1}\right)=\left(p_{2}, q_{2}\right)$
infinite number of solutions else 0,1 , or 2 solution(s)

Better, use N images \& least-squares method

LSM for Photometric Stereo

Number of images $=$ source directions $=i$ Gray value at a specific pixel in ith image: E_{i}

$$
\min _{\mathbf{n}} \sum_{i=1}^{n}=\left(\mathbf{n} \cdot \mathbf{s}_{i}-E_{i}\right)^{2}
$$

Take derivative with respect to unknown normal \boldsymbol{n} of surface patch imaged at this pixel

$$
2 \sum_{i=1}^{n}\left(\mathbf{n} \cdot \mathbf{s}_{i}-E_{i}\right) \frac{d\left(\mathbf{n} \cdot \mathbf{s}_{i}-E_{i}\right)}{d \mathbf{n}}=0
$$

How do you take a derivative of a dot product with respect to a vector?

$$
\frac{d}{d \mathbf{a}}(\mathbf{a} \cdot \mathbf{b})=\mathbf{b}
$$

Solve this linear equation for surface normal \boldsymbol{n} :

$$
\begin{gathered}
\sum_{i=1}^{n}\left(\mathbf{n} . \mathbf{s}_{i}-E_{i}\right) \mathbf{s}_{i}=0 \\
\sum_{i=1}^{n}\left(\mathbf{n} . \mathbf{s}_{i}\right) \mathbf{s}_{i}=\sum_{i=1}^{n} E_{i} \mathbf{s}_{i} \\
\sum_{i=1}^{n}\left(\mathbf{s}_{i} \mathbf{s}_{i}^{T}\right) \mathbf{n}=\sum_{i=1}^{n} E_{i} \mathbf{s}_{i} \\
\text { outer product } \\
\qquad \mathbf{n}=\mathbf{E} \\
\mathbf{n}=S^{-1} \mathbf{E}
\end{gathered}
$$

Mars
 Viking Lander I 1977

Shape from Shading

Find 3D shape in scene from a single 2D image

Horn's Algorithm, 1989

Least-squares method:
Minimize sum of squared error

Derivation of error function?

Brightness Constraint

The measured brightness E should not vary much from the brightness $R(p, q)$ at each pixel (i, j).
\Rightarrow Values for p and q should lie on the isobrightness curve labeled with E in reflectance map R.

Smoothness Constraint

The surface orientation, defined by surface normal \mathbf{n}_{ij}
$=\left(-p_{i j},-q_{i j}, 1\right)^{\top}$, at a pixel (i, j) should not vary much from the surface orientation at neighboring pixels $(i+1, j),(i, j+1),(i-1, j),(i, j-1)$.

$$
\text { Error }_{\mathrm{x}}=\mathrm{p}_{\mathrm{ij}}-\mathrm{p}_{\mathrm{ij}}
$$

average

Combining Constraints

Use compromise of isobrightness solution and average-of-neighbors solution.

p

Combining Constraints

Combine two error measures, departure from
brightness: smoothness:

Error $_{\text {brightness }}\left(\mathrm{E}_{\mathrm{ij}}-R\left(\mathrm{p}_{\mathrm{ij}}, \mathrm{q}_{\mathrm{ij}}\right)\right)^{2}$
Error $_{\text {smoothness }}\left(p_{i j}-p_{i j}\right)^{2}+\left(q_{i j}-q_{i j}\right)^{2}$
where p, q are local averages:

$$
\begin{aligned}
& \underline{p}=1 / 4\left(p_{i+1, j}+p_{i, j+1}+p_{i-1, j}+p_{i, j-1}\right) \\
& \underline{q}=1 / 4\left(q_{i+1, j}+q_{i, j+1}+q_{i-1, j, j}+q_{i, j-j}\right)
\end{aligned}
$$

using regularization:
Error $_{\text {smoothness }}+\lambda$ Error $_{\text {brightness }}$

Horn's Shape-from-Shading Algorithm

Minimization Problem:

Error $_{\text {smoothness }}+\lambda$ Error $_{\text {brightness }}$

$\min \left\{\Sigma\left(\left(\mathrm{p}_{\mathrm{ij}}-\mathrm{p}_{\mathrm{ij}}\right)^{2}+\left(\mathrm{q}_{\mathrm{ij}}-\mathrm{q}_{\mathrm{ij}}\right)^{2}\right)+\lambda \Sigma\left(\mathrm{E}_{\mathrm{ij}}-\mathrm{R}\left(\mathrm{p}_{\mathrm{ij}}, \mathrm{q}_{\mathrm{ij}}\right)\right)^{2}\right\}$
$\mathrm{p}_{\mathrm{k} \mid}, \mathrm{q}_{\mathrm{kl}}$
Solution: Iterative Scheme

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{ij}}^{(\mathrm{n}+1)}=\mathrm{p}_{\mathrm{ij}}^{(\mathrm{n})}-\lambda\left(\mathrm{E}_{\mathrm{ij}}-\mathrm{R}\left(\mathrm{p}_{\mathrm{ij}}^{(\mathrm{n})}, \mathrm{q}_{\mathrm{ij}}^{(\mathrm{n})}\right)\right)\left(\frac{\partial R}{\partial p_{i j}}\right)^{(\mathrm{n})} \\
& \mathrm{q}_{\mathrm{ij}}^{(\mathrm{n}+1)}=\mathrm{q}_{\mathrm{ij}}^{(\mathrm{n})}-\lambda\left(\mathrm{E}_{\mathrm{ij}}-\mathrm{R}\left(\mathrm{p}_{\mathrm{ij}}^{(\mathrm{n})}, \mathrm{q}_{\mathrm{ij}}^{(\mathrm{n})}\right)\right)\left(\frac{\partial R}{\partial q_{i j}}\right)^{(\mathrm{n})}
\end{aligned}
$$

Initialization of Algorithm

All non-boundary points:

$$
\mathrm{p}_{\mathrm{ij}}{ }^{(0)}=0 \text { and } \mathrm{q}_{\mathrm{ij}}{ }^{(0)}=0
$$

Silhouette boundaries with smooth edges:
Surface orientation is perpendicular to viewer's line of sight (optical axis of camera) and to silhouette. All such surface orientations project onto circle in p-q-space.

Horn ‘86

Microscope image and needle diagram of reconstructed surface of droplet of flower of Cannabis sativa plant

Input
image

Output image

$2^{\text {nd }}$
image, not input

Pro-

cessed output matches image above

Shape-from-Shading iterative algorithm:
Horn ‘90
?

Spherical cap on plane

Horn '90

Conical

Various programming errors

Propagation of instability at edge of image when penalty term set to zero of penalty term in smoothness

Learning Objectives:

- Shape from shading is a heavily underconstrained problem. Solutions involve iterative schemes \& careful attention to implementation \& testing methodology.
- Photometric Stereo is a problem that can be solved with 2 input images but the more the better (LSM). Ensure sufficiently different light source directions.
- Connection to Computer Graphics: The Lambertian surface reflectance model is convenient (but sometimes not applied properly).
\square Tools learned: Modeling reflectance properties, with $B R D F, E=\cos \theta_{i}$, reflectance map $R(p, q)$, LSM, iterative method

