Image Registration
(=Absolute Orientation)
for 2D Images or 3D Medical Scans
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BU Today, April 14, 2020: Life on the Front Lines —
Stories of Doctors at BU Medical Center

s - ==  Evan Berg, BMC ER physician:
R ] “There is a lot of uncertainty
P = =l 20 about the [COVID-19] disease

¥ T | process. [..]

- et Charitable Foundation

Our understanding around the [..]
best practices around treatment,
and the outcomes for those
needing hospitalization continue
to evolve as we learn more and
gain experience.”
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Image = 2D
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CT scan

3D Dataset of

3D voxels that can
be visualized in the
axial plane (as here)
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or in the

coronal plane (frontal view)
or

sagittal plane (side view)
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rsnagram Radiology: Cardiothoracic Imaging -
COVID-19 Infection Presenting with CT Halo Sign

February 12, 2020

Nonenhanced axial chest CT images in a 27-year-old
woman. A, Image shows a solid nodule (*)
surrounded by a ground-glass halo in the posterior
right upper lobe segment (arrows). B, Image at the
same level as in A, obtained 4 days after, shows
increase in size of the solid nodule (*), with
development of small peripheral air bronchograms.
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CT Image

of COV-19
Patient

]

A Respiratory physician John Wilson explains the range of Covid-19 impacts. This image shows a CT scan from a
man with Covid-19. Pneumonia caused by the new severe acute respiratory coronavirus 2 can show up as distinctive
hazy patches on the outer edges of the lungs, indicated by arrows. Photograph: AP
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Scan 1:

COVID-19

disease
progression  scan2
visualized

on

consecutive

CT scans

A and B, Initial CT images obtained show small round areas of mixed ground-glass opacity and

consolidation (rectangles) at level of aortic arch (A) and ventricles (B) in right and left lower lobe
posterior zones. C and D, Follow-up CT images obtained 2 days later show progression of
abnormalities (rectangles) at level of aortic arch (C) and ventricles (D), which now involve right

upper and right and left lower lobe posterior zones.
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Scan 1:

Definition:

A pulmonary
consolidation is a
region of lung tissue
that has filled with
liquid instead of air.

Scan 2:

Normally soft tissue
found in the aerated

lung has hardened e

(Wh |te reg|ons |n A and B, Initial CT images obtained show small round areas of mixed ground-glass opacity and
. consolidation (rectangles) at level of aortic arch (A) and ventricles (B) in right and left lower lobe
images).

posterior zones. C and D, Follow-up CT images obtained 2 days later show progression of
abnormalities (rectangles) at level of aortic arch (C) and ventricles (D), which now involve right
upper and right and left lower lobe posterior zones.
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COV-19 ¢ \ -
Patient o -
Improves Rav 2

Lungs of a 54-year-old woman who presented with fever on day 2 of symptoms.

O n fo | | O W_ u p WU Y, XIC Y-, WANG X. LONGITUDINAL CT FINDINGS IN COVID-19 PNCUMONIA: CASC PRCSCNTING ORGANIZING PNCUMONIA
PATTERN. RADIOLOGY: CARDIOTHORACIC IMAGING DOI: 10.1148/RYCT.20202000031. PUBLISHED ONLINE FEBRUARY 1, 2020.

© RADIOLOGICAL SOCIETY OF NORTH AMERICA.

” ~ ‘
Ground- 6‘ ’ g,
g s> Day 11
O D a C | t I e S A follow-up CT on day 11, three days after initiation of antiviral treatment, showed significant improvement of the ground-glass
opacities.

WU 'Y, XIE Y-I, WANG X. LONGITUDINAL CT FINDINGS IN COVID-19 PNEUMONIA: CASE PRESENTING ORGANIZING PNEUMONIA
PATTERN. RADIOLOGY: CARDIOTHORACIC IMAGING DOI: 10.1148/RYCT.20202000031. PUBLISHED ONLINE FEBRUARY 1, 2020.
© RADIOLOGICAL SOCIETY OF NORTH AMERICA.

ES&EESE CS 585: Image and Video Computing © Betke



Ground-glass opacities

on CT are hazy regions

that do not obscure the H _
underlying bronchial . g
structures or pulmonary

vessels. Day 2

Lungs of a 54-year-old woman who presented with fever on day 2 of symptoms.

. WU Y, XIC Y-, WANG X. LONGITUDINAL CT FINDINGS IN COVID-19 PNCUMONIA: CASC PRCSENTING ORGANIZING PNCUMONIA
A groun d—glass opacity PATTERN. RADIOLOGY: CARDIOTHORACIC IMAGING DOI: 10.1148/RYCT.20202000031. PUBLISHED ONLINE FEBRUARY 1, 2020.

Indlcates 3 partla| fllllng Of © RADIOLOGICAL SOCIETY OF NORTH AMERICA.

air spaces in the lungs by 7~ Ry > A
exudate (seeped out fluid)

or transudate (pushed out _

fluid), as well as > -

interstitial thickening or

alveoli (tiny air sacs of the A follow-up CT on day 11, three days after initiation of antiviral treatment, showed significant improvement of the ground-glass

N

partial collapse of lung Day 11

: opacities.
l u n_gs W h ICh d l lOW fO r WU Y, XIE Y-, WANG X. LONGITUDINAL CT FINDINGS IN COVID-19 PNEUMONIA: CASE PRESENTING ORGANIZING PNEUMONIA
ra p | d ga sSeous exc h an ge) . PATTERN. RADIOLOGY: CARDIOTHORACIC IMAGING DOI: 10.1148/RYCT.20202000031. PUBLISHED ONLINE FEBRUARY 1, 2020

© RADIOLOGICAL SOCIETY OF NORTH AMERICA.
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Al-supported Evaluation of Consecutive CT
Scans requires

*2D Absolute Orientation = Image Registration =
Image Alighment

* 3D Absolute Orientation = 3D Registration = 3D
Scan Alignment

CS 585: Image and Video Computing © Betke



Alignment of 2D Images vs 3D scans

B

Comparison more accurate if done in 3D
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COVID-19 CT Scan Evaluation Process:
Given a pair of corresponding images:
Compute Alignment

Semi-automatic Evaluation:

1. Radiologist annotates region of interest
with consolidation in scan 1. Al system
finds all pixels (voxels) with consolidation
in scan 2

OR:

Automatic Evaluation:

Al system detects & measures the volume
of the consolidation in scan 1 and scan 2

Al system evaluates change in size of
region: Increase: Patient fares worse
Decrease: Patient is getting better

BOSTON
UNIVERSITY

CAPTION

A and B, Initial CT images obtained show small round areas of mixed ground-glass opacity and

consolidation (rectangles) at level of aortic arch (A) and ventricles (B) in right and left lower lobe
posterior zones. C and D, Follow-up CT images obtained 2 days later show progression of
abnormalities (rectangles) at level of aortic arch (C) and ventricles (D), which now involve right

upper and right and left lower lobe posterior zones.

CREDIT
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Additional Terminology:

e 2D Landmarks = 2D Feature Locations in Image (pixels)
e 3D Landmarks = 3D Feature Locations in 3D Scan (voxels)

ESEEEQTNY Computer Vision, Margrit Betke
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Other Use Cases

Photogrammetry = Analysis of
images (often photographs) to
extract geometric information
(often for map building) about
(typically) physical objects and
their environment

Biomedical Image Analysis =
Computer Vision for Medicine
(diagnosis, prognosis, treatment,
and prevention of disease)

]Sgég{gg Computer Vision, Margrit Betke © Betke



2D Alignment (= Absolute Orientation in 2D)

Definition:
Compute the parameters that describe a “2D rigid body alignment”

= Compute an angle that describes the rotation of the object in the image plane
and a 2D translation vector that moves the object into the desired location.

Practical Use Cases:

e Registration of anatomical structures on images of the same patient taken at
different times for measuring response to treatment

Lung cancer patients (Patent: "Method and system for the detection, comparison and
volumetric quantification of pulmonary nodules on medical computed tomography scans."
Inventors Margrit Betke and Jane P. Ko., US Patent 7,206,462, issued on April 17, 2007.)

* Match left and right images in a stereo camera system
* Photogrammetry = Build maps from overlapping photographs
* Compute rigid body motion of objects under the microscope

ESEEESTNY Computer Vision, Margrit Betke © Betke




Absolute Orientation in 2D

Specific Definition:
Compute the parameters that describe a 2D rigid body alignment
= Compute a rotation angle 6 and a 2D translation vector (x,, y,)'
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Example: Registration of Lung Images
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Registration of lung images of a cancer patient taken
three months apart to measure nodule growth

Scan 1 Scan 2
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2D Absolute Orientation

Unknowns: Rotation angle 8 and translation vector (x,, y,)"
Number of unknowns: 3

—> We need at least 3 equations and 3 landmarks
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How about these three landmarks?
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Angle difficult to discern:
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Better these three landmarks:
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Better these three landmarks:
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Algorithm Idea for 2D Alignment

First translation, then rotation:

© Betke



How can we represent rotation?

Derivation of Rotation Matrix:

Rotation in the image plane by angle O :

Original T r COS (v1

Position: 1 | = | rsinm
21 1

Rotated To T COS (vp

Position: ya | = | rsinas
29 |
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y 4 T2 T COS (ro

12 = ' Sin (o
29 1
o, =o,+0
rcos(ay + 0) 7 cos oy cos ) — rsin o sin f
= | rsin(a; +0) | = | rsinag cosf + rcosag sind
IV.-.....-.....-.....-.....l.....l...~ 1 1
y ——————————————— .0.
2 r1cosf — yp sinf
Image = | y1cosf + zysinf
y1 Plane 1
X, X, X cosf@ —sinf 0 X1
= | sinf cosf O |
0 0 1 1

R'R= RRT=|

R is an orthonormal matrix = columns (or rows) add up to 1 and are perpendicular to each other (dot product = 0)

LSO CS 585: Image and Video Computing © Betke
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Right & Left Coordinate Systems

cos@ —sinf 0
R =1 sinf cost 0
0 0 1

Rri+r,=m7,
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Which Equation Describes the 2D Alignment?

cos@ —sinf 0
R =1 sinf cost 0
0 0 1

Rri+r,=m7,
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How Many Unknowns, How Many Equations?

Unknowns: Rotation angle 6 and translation vector r, = (x,, y,)'

Number of unknowns: 3
We need at least 3 equations and 3 landmarks

R = rotation matrix, r,=left landmark. r. = right landmark
Rry+r,=1,

EIS?&EESTNY Computer Vision, Margrit Betke © Betke



2D Absolute Orientation

Unknowns: Rotation angle 8 and translation vector (x,, y,)"
Number of unknowns = 3

] ] cosl —sinf 0
Equation not linear: Rr,+r,=mr, R=|[ sing coso 0
0 0 1

1 equation per landmark pair 7, 7; fori=1,2,and3 ?

ESEEESTNY Computer Vision, Margrit Betke © Betke



Three [andmarks to be found in both scans:
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Use > 3 Landmarks, e.g.:
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2D Absolute Orientation

Unknowns: Rotation angle 6 and translation vector (x,, y,)'
We need at least 3 equations and 3 landmarks

Rr,+7r, =1,

Better: Use n equations
1 equation per landmark pair 7;,7.; fori=1,..,n

How do you combine n versions of the equation above?

ES\?EESTNY Computer Vision, Margrit Betke © Betke



Least Squares Method (LSM)

Unknowns: Rotation angle 8 and translation vector (x,, y,)"
Algorithm to determine unknowns may yield errors in equations:

r.,, - Rr;-ro, = ERROR

Goal of LSM: Minimize the sum of the squared errors:

miﬂxmyﬂﬁ Z.:il HTT',:& T R Tf,’i o TUHQ

ES\?EESTNY Computer Vision, Margrit Betke © Betke



Right (= Scan 1) & Left (= Scan 2) Landmarks

n landmarks Y

n landmark pairs:

i Tri

2 2
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Least Squares Method (LSM)

Minimize the error: N 2
MiNg, o0 D imy |Tri — BT — 70|

ES&EEQTNY Computer Vision, Margrit Betke © Betke



Least Squares Method (LSM)

Minimize the error: N 2
MiNg, o0 D imy |Tri — BT — 70|

which is equivalent to:

2
N _ 2
, Ty cosf) —sinf Tl o
min E — ( 4+ )
ES&EESTNY Computer Vision, Margrit Betke © Betke



Least Squares Method (LSM)

Minimize the error: N 2
MiNg, o0 D imy |Tri — BT — 70|

which is equivalent to:
Ty cosf) —sinf Tl o
UYri sinfl cosf Yl.i Yo

min (2, — (w15 co80 — ypisin @ + x0))? + (yri — (215800 + 5 cos 0 + y5))?)

xo,yo.0 <
i=]

N 2

min E

Iyl n-f}
for =

or

=

BOSTON
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Trick to reduce number of unknowns:

* Compute centroids of landmarks in each image (x, y,)"and (x, y,)'

T
Left centroid . and right centroid: _
T = Z T g r, = Z Tri
i—1 i=1
° . - No Error! -
Assume: Fr = (Zr0c) g ™= (T, )"
 That means: r.— Rr—1rg=0

* Or: .
T, — (Z;cosf — y;sinf + xy) =0

Y — (Zysin@ + 4, cos 0 + 1) = 0

ES&EESTNY CS 585: Image and Video Computing © Betke



Centroids = Origin of New Coordinate Systems

% 2D Landmark

BOSTON
UNIVERSITY
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Centroids = Origin of New Coordinate Systems
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Centroids = Origin of New Coordinate Systems
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Reaching Landmarks in New Coordinate Systems

y)l * r i ﬁ :L'Z — '/El —|— .’L'E

=1+

- /
T, =Tp + T,

* * o yr=§?~+y:,
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Reaching Landmarks in New Coordinate Systems
T =T+ 2]

=1+

— /
T, =Tp + T,

* * o yr=§r+y:,

ES&ETRQE CS 585: Image and Video Computing © Betke



Reaching Landmarks in New Coordinate Systems

V'| * r i ﬁ :L'l — :E‘l —|— .’L'E

=1+

- /
T, =Tp + T,

* * o yr=§r+y§,
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Convert Original LSM into Coordinate-
Transformed LSM:

N

ES&EEQTNY CS 585: Image and Video Computing © Betke



Advantage? No translation vector (x,, y,)'
Only one unknown variable ©

N

i — (27, cos0 — y, ;sin 0))* + (yr.; — (2, sin 6 + y; ; cos 0))?

min » ((z),

ES&EEQTNY CS 585: Image and Video Computing © Betke



Solve Transformed LSM Problem:

* Take derivative with respect to 0.

* Set result equal to zero.

* The terms with factors sinBcos0, sin?0, and cos?0 cancel each other.
* The only remaining terms include sin® and cos6.

* Collect the terms that include sin© on one side of the equation and
cosO on the other.

* Divide by cos0 to yield an expression with tan0:
Equation 2:

* Equation 1: P
rog =7, — RT

fan 0 — ;:1(9:—.537;.; - 13:;?!;;)
> i1 (T YY)

ESEEESTNY CS 585: Image and Video Computing © Betke




Algorithm for Image Alignment in 2D

Input: Landmarks in two images

1. Determine corresponding point pairs.
2. Compute centroids of landmarks in each image (x, y,)"and (x, y,)’

3. Transform point coordinates into coordinate systems with centroids
serving as the origins.

4. Compute O with Equation 1 (above)
5. Compute (x,, y,)" with Equation 2 (above)

Output: Rotation angle 6 and translation vector (x_, y,)'

EIS?&EESTNY CS 585: Image and Video Computing © Betke



Absolute Orientation in 3D

Definition:

Compute the parameters that describe a 3D rigid body alignment

= Determine 3 rotation angles and a 3D translation vector or

= Determine a 3x3 rotation matrix R and a 3D translation vector r_ or

Rr,+7r, =7,

= Determine a unit quaternion 8| and a 3D translation vector

EIS?&EESTNY CS 585: Image and Video Computing © Betke



What you need to know about Quaternions:

e Vector with 4 components: 1 scalar, 3 “imaginary” parts
* How multiplications of i, j, and k work
 How multiplications of quaternions work (not commutative)

* How represent a quaternion multiplication by a 4x4 orthogonal skew-
symmetric matrix

 What is the magnitude of a quaternion? The conjugate?

* The dot product of two quaternions is the regular 4D dot product.
 What is a unit quaternion? Why does it represent a 3D rotation?
* Rotation preserves length of 3D vectors and angles between them
* Composition of rotations = multiplications of quaternions

 How to compute a rotation matrix from a quaternion

EIS?%ESTNY CS 585: Image and Video Computing © Betke



Algorithm for Absolution Orientation in 3D

Input: Landmarks in two 3D scans

1.
2.

4.
5.

Determine corresponding point pairs.

Compute centroids of landmarks in each image (x, vy, z,)"and (x, y,
)7

Transform point coordinates into coordinate systems with centroids
serving as the origins.

Compute quaternion & rotation matrix
Compute translation

Output: Rotation matrix R and translation vector (x,, y,, z,)"

BOSTON
UNIVERSITY
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COVID-19 CT Scan Evaluation Process:

Given a pair of CT scans:
Compute 3D Alignment

Semi-automatic Evaluation:

1. Radiologist annotates regions of interest
with consolidation in scan 2. Al system finds
all voxels with consolidation in scan 2

OR:

Automatic Evaluation:

Al system detects & measures the volume of
the consolidation in scan 1 and scan 2

Al system evaluates change in volume of
region: Increase: Patient fares worse
Decrease: Patient is getting better

BOSTON
UNIVERSITY

CAPTION
A and B, Initial CT images obtained show small round areas of mixed ground-glass opacity and

consolidation (rectangles) at level of aortic arch (A) and ventricles (B) in right and left lower lobe
posterior zones. C and D, Follow-up CT images obtained 2 days later show progression of
abnormalities (rectangles) at level of aortic arch (C) and ventricles (D), which now involve right

upper and right and left lower lobe posterior zones.

CREDIT
American Journal of Roentgenology (AJR)



“Devil’s Advocate:” Such an Al system may not matter — the radiologist
can glance at the two CT scans and diagnose the patient’s status.

Arguments for Al system:

* Al could quantify the (partial) filling of air spaces more accurately and
timely

* Al may be able to predict patient outcome from scan 1 alone, helping
to assess COVID severity and guide treatment

* Al may be able to combine the interpretation of CT scans with other
features (patient’s age, preexisting conditions, symptoms, etc)

* Al system could also be applied to cancer quantification and change
in cancer quantification

EIS?%ESTNY CS 585: Image and Video Computing © Betke



Quantification of Growth of Cancer Nodules

ES\?EESTNY Computer Vision, Margrit Betke © Betke



What are Quaternions?

Complex numbers versus quaternions

To define complex numbers: To define quaternions:
2D vector space over reals: 4D vector space over reals:
Elements have the form x + iy, Elements have the form gy + q17 + ¢27 + g3k,
where x is scalar and y 1s imaginary part where ¢ 1s scalar and ¢, ¢»2. g3 are imaginary parts
One more axiom required: i* = -1. Six more axioms:

ES\?ETRQE CS 585: Image and Video Computing ki = J



Quaternion Properties

We can write a quaternion several ways:

q=qo+ qi+ qJ+ gk
q = (qo,q1,q2,q3)
q=qy+4q

where q 1s the scalar part and q 1s the vector part

]SS\?ETRSTNY CS 585: Image and Video Computing © Betke



Quaternion Properties

We can write a quaternion product several ways:

Po + pit + p2j + p3k)(qo + @i + @2J + @3k)

(

(pogo — P1q1 — P22 — P3q3) + . ..i+...J+... k
(po +P)(q + q)

(Pogo + Poq + qop + Pq)

So what is pq? Cross product? Dot product?

Both! Cross product minus dot product!

pq = (Pogo —P-q+pog+ qp+pxq)

ES\?ETRSTNY CS 585: Image and Video Computing © Betke



Quaternion Properties Quaternion conjugate:
¢ =qo— @1t — q2J — g3k
Note that

qq" = (90 +q)(q — q)
= q) + ¢og — 9q — 99q
=q+q-q—qxq
=@+ G +aG+aG

Quaternion length:

lal = Vg = \/Q§+Qf+q§+Q§

BOSTON
CS 585: Image and Video Computing © Betke



How do we
compute
rotation
matrix R

from
guaternion g°?

BOSTON
UNIVERSITY

A rotation specified by a quaternion q transforms a 3D vector x into a

3D vector x, .+ according to:

T'rot = (0 + wr'ot) — Q(O + iﬂ)q* = qrq* — (Q T)q* — QT@ r

( q0 qx dy q. \ ( 90 —4x —4qy —4: \
@T@ _ —dz Qo 4. —qy qr 4o q: —Qy
—qy —4: qo 4z qQy —4= 4o qx
\ —¢: 4 —% G ) \ ¢ 4 —4 D )
/ q.q 0 0 0 \
0 G+ —G—a¢ 2qae—qp) 2006+ q00)

0 2(@1@’2 + Q(]Q:s) q% - Q% + qﬁ - fﬁ 2(@2(]3 - fﬁ)Ql)

\ 0 20— qd)  2Aaet+aon) G- -G+ )

Q5 + Q% — q% — q;? 2(q1q2 — q0q3) 2(q1q3 + q0q2)

R=| 2qep+ap) ¢—¢+a6—-6¢ 20— qn)
2(q193 — qoq2) 2(q2q3 + qoq1) qS - Q% — Q’% + fﬁ

© Betke



What you need to know about Quaternions:

e Vector with 4 components: 1 scalar, 3 “imaginary” parts
* How multiplications of i, j, and k work
 How multiplications of quaternions work (not commutative)

* How represent a quaternion multiplication by a 4x4 orthogonal skew-
symmetric matrix

 What is the magnitude of a quaternion? The conjugate?

* The dot product of two quaternions is the regular 4D dot product.
 What is a unit quaternion? Why does it represent a 3D rotation?
* Rotation preserves length of 3D vectors and angles between them
* Composition of rotations = multiplications of quaternions

 How to compute a rotation matrix from a quaternion

EIS?%ESTNY CS 585: Image and Video Computing © Betke



Least Squares Method (LSM)

Unknowns: Rotation angle 8 and translation vector (x,, y,)"
Algorithm to determine unknowns may yield errors in equations:
- Rr;-ro = ERROR

I’r,,-

Goal of LSM: Minimize the error:

n

min Z H?"r.; — Rry; — "'OHQ

R.r
s 17() i—1

ESEEESTNY Computer Vision, Margrit Betke © Betke



LSM for 3D Absolute Orientation

Same trick as in 2D: Use coordinate transform:

T
. 2
From min E |7, — Ry — 7ol
Riry “
o=l
I
# f f 2
To = min E H’r” — R 7 i.-’
s i y
] =

Advantage: The only unknown is R. Translation can be solved for later.

ESEEEQTNY CS 585: Image and Video Computing © Betke



Centroid = Origin of New Coordinate Systems

T
\ , f-r — E Ty
Y i=1
> |
TL
r = E T
i=1

See 2D case for details.

]SS\?ETRSTNY CS 585: Image and Video Computing © Betke



Simplifying the Minimization Problem:

Convert ! 5
: / /
min H’r?_ -— R ,,L,-|
I § i
To:

| +ZH’P” —QZ R‘r,?

—mm E Hfr”

since RT' R = I is true for an orthonormal matrix

Then convert min to max:

Since the first two sums are fixed.

ES&EESTNY CS 585: Image and Video Computing © Betke



Simplifying the Maximization Problem:

Convert from 3D vectors
= maxz ... Rr, subject to R orthonormal

to 4D quaternions:
= maxZ’r:.j g7y q") subject to q.q=1
q

Simplify further:
= Inaxz rq). (qr];) since (ab).c = a.(cb¥)

= 111(?:( Z(q 1) - ( ?":1,3: q) commutative

=1
BOSTON © Betke
UNIVERSITY



Simplifying the Maximization Problem Further:
= mqax Z(I@.M q) . (R,;q)
1=1
. T T
= max ;(q R
max q ZR Ry, )

— max ¢’ N g
q

ES&EESTNY CS 585: Image and Video Computing © Betke



B Syz = Szy

Szx — Suzz

\ S:I:y T Syﬂ:
where

.,
Suz = ) Ly Ly s

_ / /
S-T?/ o Z xl?iyr,i’

T = (3751: yf,z‘a Zf,?:)

_ / / /
rr,i _ (ajni? y'r,z'? Zr,z’)

Syz — Szy Szx — Szz

S:x T+ Szz Syz + Szy

—Sgr — Syy + Szz /

Syr — Szz

Syz — Szy

BOSTON
UNIVERSITY
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N — Sy:z o Szy Sxx Syy — S22 Sry -+ Sy:r Szx — Szz
Szx — Suzz Sy + Syz Sz T Syy Szz Syz — Sy
\ Szy — Sy Szx + Szz Syz T Szy Sgr — Syy + Szz /
where
Spr = » X2 :
TE Lir,io Matrix N can be computed from
Szy = DT Yri» the transformed landmark
coordinates

! / / /
T = (xz,«;;a Yiis Zl,-i)

/

T

. / / / )
T (x?‘,:i? y?:;i? Z-r,-i
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Since N is symmetric, 4 eigenvalues A\, ..., Ay are real, where Ne; =

A\;e;. Eigenvectors are orthogonal.

Solving the q=aier+ ...+ ey
Maximization

Problem by

Taking

Advantage of

the Symmetry

of Matrix N:
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Since N is symmetric, 4 eigenvalues A\, ..., Ay are real, where Ne; =

A\;e;. Eigenvectors are orthogonal.

Solving the g=oer+ ...+ e
MaXimization Nq: @1N€1‘|‘ +@4N€4:a1)\1€1+a4)\4€4
Problem by ("N g=a\ +...+ad\

Ta klng since e;.¢; = 1 and e;.e; = 0.

Advantage of
the Symmetry
of Matrix M:
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Since N is symmetric, 4 eigenvalues A\, ..., Ay are real, where Ne; =

A\;e;. Eigenvectors are orthogonal.

Solving the q= e+ ...+ ase
MaXimization Nq: @1N€1‘|‘ +@4N€4:a1)\1€1+a4)\4€4
Problem by ("N g=a\ +...+ad\

Ta klng since e;.¢; = 1 and e;.e; = 0.

Advantage of  Sinceqq=1 wehaveai+...ai=1.
th e Sym Mm etry Say A1 > ... > A4, which means )\ is largest eigenvalue:

Of Matrlx M: GNg< M+ ... +ah =(af+...+a)) =\
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Since NV 1s symmetric, 4 eigenvalues Ay, . . ., Ay are real, where Ne; =

4 4

A\;e;. Eigenvectors are orthogonal.

Solving the q= e+ ...+ ase
MaXimization Nq: @1N€1‘|‘ +@4N€4:a1)\1€1+a4)\4€4
Problem by ("N g=a\ +...+ad\

Ta klng since e;.¢; = 1 and e;.e; = 0.

Advantage of  Sinceqq=1 wehaveai+...ai=1.
th e Sym Mm etry Say A1 > ... > A4, which means )\ is largest eigenvalue:

of Matrix M: ;

GNg<ai\+...+ah =(aj+...+ai)) =\

Maximum is attained if &; = 1 and oo = a3 = a4 = 0 and ¢ = e;.
Unknown quaternion ¢ is the eigenvector e that corresponds to the most

positive eigenvalue of N
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How do we
compute
rotation
matrix R

from
guaternion g°?

BOSTON
UNIVERSITY

A rotation specified by a quaternion q transforms a 3D vector x into a

3D vector x, .+ according to:

T'rot = (0 + wr'ot) — Q(O + iﬂ)q* = qrq* — (Q T)q* — QT@ r

( q0 qx dy q. \ ( 90 —4x —4qy —4: \
@T@ _ —dz Qo 4. —qy qr 4o q: —Qy
—qy —4: qo 4z qQy —4= 4o qx
\ —¢: 4 —% G ) \ ¢ 4 —4 D )
/ q.q 0 0 0 \
0 G+ —G—a¢ 2qae—qp) 2006+ q00)

0 2(@1@’2 + Q(]Q:s) q% - Q% + qﬁ - fﬁ 2(@2(]3 - fﬁ)Ql)

\ 0 20— qd)  2Aaet+aon) G- -G+ )

Q5 + Q% — q% — q;? 2(q1q2 — q0q3) 2(q1q3 + q0q2)

R=| 2qep+ap) ¢—¢+a6—-6¢ 20— qn)
2(q193 — qoq2) 2(q2q3 + qoq1) qS - Q% — Q’% + fﬁ
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Algorithm for Absolution Orientation in 3D (Horn 1987)

Input: Landmarks in two 3D scans

1.
2.
3.

4.
5.

Determine corresponding point pairs.
Compute centroids of landmarks in each image (x, vy, z,)"and (x, y,z)’

Transform point coordinates into coordinate systems with centroids
serving as the origins.

Compute quaternion & rotation matrix (previous slide)
Compute translation: ro =7, — R 7y

Output: Rotation matrix R and translation vector (x,, y,, z,)"

BOSTON
UNIVERSITY
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A New, More Difficult Problem:

* Horn’s Algorithm assumes that corresponding points are given in the
two datasets.

2 Input Images ) : Horn’s Absolute Orientation
P g Detect Corresponding Points : —>
or Scans Algorithm

* What if you need to find both the correspondence and the rigid body
alignment (rotation & translation) together?

Rotation
Translation

2 Input Images Find Both Corresponding Point Pairs and the Rotation
. . ﬁ .
or Scans Absolute Orientation Translation
ES&EESTNY CS 585: Image and Video Computing © Betke



Finding Corresponding Points on Curves or
Surfaces

Curve in Scan 1 Curve in Scan 2

L V.. ¥
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Finding Corresponding Points on Curves or
Surfaces

CurveC;inScan 1 Curve C, in Scan 2

D B .. @

L B -

Compute minimum Euclidean distance d(p,C,) = min ||p m3||
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Correspondence based on shortest Euclidean distance

m ;\;

d(p,C1) = min |[p—mi|
m;eCo

Finding Correspondence and rotation/translation together is a
“chicken and egg problem:”
1. If correspondence given: Use Horn’87 to solve for rotation/translation

2. If rotation/translation given: Use shortest Euclidean distance (as in
picture above) to obtain correspondence

Solution: Iterative Scheme
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iterative Closest Point Algorithm:
Besl, McKay 1992

* Input: Curves C, and C,

Initialize R=l, r, =0 (no rotation & translation), k=1

Compute closest points for C; and C,

Compute absolute orientation and update R and r, (Use Horn 87)
Transform C, with R and r,

Compute squared error in kth iteration

If error(k-1) — error(k) is less than a threshold: terminate

N o U s W DNhPRE

Otherwise go back to step 2
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https://graphics.stanford.edu/courses/cs164-09-spring/Handouts/paper_icp.pdf

Betke et al., 2003
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Landmark detection in the chest and registration of lung surfaces with
an application to nodule registration

Margrit Betke”*, Harrison Hong®, Deborah Thomas®, Chekema Prince”, Jane P. Ko”

*Computer Science Department, Boston University, Boston, MA 02215, USA
" Department of Radiology, New York University Medical Schaol, New York, NY 10016, USA
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Abstract

We developed an automated system for registering computed tomography (CT) images of the chest temporally. Our system detects
anatomical landmarks, in particular, the trachea, sternum and spine, using an attenuation-based template matching approach. It computes
the optimal rigid-body transformation that aligns the corresponding landmarks in two CT scans of the same patient. This transformation
then provides an initial registration of the lung surfaces segmented from the two scans. The initial surface alignment is refined step by step
in an iterative closest-point (ICP) process. To establish the correspondence of lung surface points, Elias’ nearest neighbor algorithm was
adopted. Our method improves the processing time of the original ICP algorithm from O(kn log n) to O(kn), where k is the number of
iterations and 1 the number of surface points. The surface transformation is applied to align nodules in the initial CT scan with nodules in
the follow-up scan. For 56 out of 58 nodules in the initial CT scans of 10 patients, nodule correspondences in the follow-up scans are
established correctly. Our methods can therefore potentially facilitate the radiologist’s evaluation of pulmonary nodules on chest CT for
interval growth.
© 2003 Elsevier Science BV. All rights reserved.

Keywords: Computed tomography: Chest; Lung surfaces; Nodule registration

1. Introduction include functional lung imaging to evaluate asthma and
emphysema and detection of primary lung cancer. Lung

Chest computed tomography (CT) has become a well- cancer remains the leading cause of cancer death in the
established means of diagnosing pulmonary metastases of United States, killing 160,000 people a year. The overall
oncology patients and evaluating response to treatment 5-year survival rate is only 15% (Landis et al., 1999), but

regimens. Since diagnosis and prognosis of cancer general- early detection and resection of pulmonary nodules in

© Betke
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Registration Method: Phase 1

Input
2 CT Studies

|

Detect Landmarks

Register Landmarks Segment Lungs
[Horn '87] Lung Surfaces

Translation | Rotation

AL

A\ 4

Register Lungs

Translation | Rotation
Compute Sufficient
Correspondence and > Registration
Error ?
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Register Landmarks

Original
scan

Follow-up
scan
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Registration Method: Phase 2

Input
2 CT Studies

|

Detect Landmarks

v

Segment Lungs

Register Landmarks
[Horn '87] Lung Surfaces

Translation | Rotation

Register Lungs

Translation | Rotation

AL

[BM '92]

Sufficient
Registration

Compute

v

Correspondence and
Error in O(n)

Multi
Level
Approach
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Initial Landmark Registration
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PHASE 111
Multilevel Step - Video

' Lung Registration
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PHASE 111
Multilevel Step - Video

' Lung Registration
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PHASE 111
Multilevel Step - Video

' Lung Registration
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PHASE 111
Multilevel Step - Video

' Lung Registration
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' Lung Registration
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Multilevel Step - Video

' Lung Registration
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PHASE 111
Multilevel Step - Video

' Lung Registration
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Nodule
Registration
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Learning Outcomes

1. Can manipulate quaternions (add, multiply, convert to reals,
convert rotation quaternion to rotation matrix)

Know Horn ‘87 algorithm for 2D & 3D registration
Know Besl, McKay ‘91 algorithm for curve & surface registration
Know how to add multi-level analysis to registration algorithm
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