Camera Calibration,
Binocular Stereo, Part 2
Multiview Stereo
“pipolar Geometry
Methods for Binocular Scene Reconstruction

Lecture by Margrit Betke, CS 585, March 21, 26, & 28, 2024




Camera Transformation Problems

1. Interior Orientation = Camera Calibration = Intrinsic Calibration:
What kind of camera?

Simple version: Find focal length f and principal point p (= point where optical axis
intersects image plane)

Better: Correct for lens distortion, check if angle between x & y axes is 90°

2. Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in
Robotics:

Where is the camera? Find center of projection of camera, and orientation of
camera coordinate system in world coordinate system

3. Absolute Orientation = Alignment of 2 Cameras or 2 Medical Scans
Find relationship between cameras. 3D coordinates of points are known

4. Relative Orientation = Alignment of 2 Cameras
Find relationship between cameras. 3D coordinates not known, only rays known
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Camera Transformation Problems: Unknown rotation R & translation r,

Transformation equation: Rr +t =r

camera world

2. Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in
Robotics:

Where is the camera? Find center of projection of camera and orientation of
camera coordinate system in world coordinate system

Transformation equation: Rr ., +ry = Fright

3. Absolute Orientation = Alignment of 2 Cameras or 2 Medical Scans
Find relationship between cameras. 3D coordinates of points are known

4. Relative Orientation = Alignment of 2 Cameras
Find relationship between cameras. 3D coordinates not known, only rays known
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How can we represent rotation?

e Euler angles: roll, yaw, pitch (3 degrees of freedom)

* Quaternions (more later, to prepare, review imaginary numbers)

e Axis and angle: Axis is a unit vector o (2 degrees of freedom)
Angle: O

,
Rodriguez’ Formula: 9

A~ r

r' =rcosf + (w.r)w(l —cosh) + (w x r)sinf

Wal'3 — W32
W XT=| WwW3gr —wirs
wWiTg — WoT
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Most popular representation: Rotation Matrix

Derivation of Rotation Matrix:

Rotation in the image plane by angle O :

Original 1 T COS g

Position: 1 | = | rsinm
21 |

Rotated To T COS (vp

Position: Yy | = | rsinas
29 |
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y 4 T2 T COS (ro

12 = ' Sin (o
29 1
o, =o,+0
rcos(ay + 0) 7 cos oy cos ) — rsin o sin f
= | rsin(a; +0) | = | rsinag cosf + rcosag sind
IV.-.....-.....-.....-.....l.....l...~ 1 1
y ——————————————— .0.
2 r1cosf — yp sinf
Image = | y1cosf + zysinf
y1 Plane 1
X, X, X cosf@ —sinf 0 X1
= | sinf cosf O |
0 0 1 1

R'R= RRT=|

R is an orthonormal matrix = columns (or rows) add up to 1 and are perpendicular to each other (dot product = 0)
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Camera Transformation Problems: Unknown rotation R & translation r,

Transformation equation: Rr +t =r

camera world

2. Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in
Robotics:

Where is the camera? Find center of projection of camera and orientation of
camera coordinate system in world coordinate system

Transformation equation: Rr ., +ry = Fright

3. Absolute Orientation = Alignment of 2 Cameras or 2 Medical Scans
Find relationship between cameras. 3D coordinates of points are known

4. Relative Orientation = Alignment of 2 Cameras
Find relationship between cameras. 3D coordinates not known, only rays known
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Relative Orientation for Binocular Stereo

Goal: Recovery of position and orientation of one imaging system
relative to another from correspondences between rays

— (xright 'yright)

(xleft ,yleft)

(Xleft ,Yleft ,Zleft) (Xrlght 'Yright ’Zright)

Given: 2D coordinates of image points of same world point
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Special Case o

point
/,

light rays from
scene to
image planes

depth
R

left image
plane K

depth

right image
j plane

Y

Baseline b =
Distance between
Center of Projections (CoPs)

Z=Dbf/ o
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Relative Orientation = General Binocular Stereo

(Xright 'yright)
(Xieft Viefe)
Mefe = (Xiet Yiere Zieft) Fight = (Xiignt Yright Zright)
Use perspective projection equations:
Xiett/ frert = Xiett /Ziett Viett/fiert = Yiett/Ziett
xright/ fright = Xright / Zright yright/ fright = Yright / Zright

Transformation equation: Rr . +ry =1,  R=rotation matrix, ry, = translation
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Relative Orientation for Binocular Stereo

Transformation equation: Rr,+ry = Fright

Unknown: Rotation matrix R, translation ry, Z coordinates of r,_,, Fright

ZIeft lq ?
\D
R & ‘.
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Relative Orientation for Binocular Stereo
Zi ht

_ / ’“Ew
R Nt ¥ Fo = rright R - lefL—

is equivalent to: g ro

F11 Xiefe ¥ F12 Yiere ¥ F13 Lierct F1a = Xiighe
r'21 Xleft+ r22 Yleft+ r23 Zleft+ r24 = Yright Insert Perspective Projection Equations:
f =X /2Z Vit T =Y or /2
oo X e 0 YAl Zi et = 7. Xjeft/ left / “left left left / Sleft
31 left 32 left 33 Tleft 34 rlght Xright/f = Xright /Zright yright/f = Yright /Zright

r11 Xiett Ziefe/T + V12 Yiert Ziett /T + T13 Ziest T14 = Xright Zright /T
F21 Xiett Ziee /T + 122 Viete Ziefe /T + V23 Zietet Y22 = Yright Zright /

r31 Xiett Zieft /T + 32 Vieft Ziest /T + V33 et M3 = Z

right Multiply by f/ Z,.,
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Relative Orientation for Binocular Stereo
Zi ht

_ / ’—gﬂw
R Nt ¥ Fo = rright R - lefL—

is equivalent to: g ro
r11 X|eft t r12 Yleft t rl13 f+ r14 f/ ZIeft = Xright Zright/zleft
Mo Xt + T2 Viere o3 T+ Vg T/ Z1te = Viignt Zright! Zieft

F31 Xt M3 Vit Fa3 T+ 3 T/ 2100= T Zigni/ Ziest

One measurement pair (Xq,Yer) and (X0 Y0  => 3 equations

with 14 unknowns ry, ry; , .., 34, and Zopi, Ziest
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R r.Ieft + r.O = r.right

Relative Orientation

F11 Xefe ¥ F12 Vieret T13 T+ Mg T/ Zieee = Xiigne Zright! Ziest Zle e Zright
F21 Xeret T2 Viese ¥ 23 T+ s /Ziese = Viigne Ziight! Ziest R D —y
r31 Xere* 132 Vier+ 133 T+ F3g /2= T Zigni/ Zies ? r

0

One measurement pair (X, Yier) aNd (XignoYrigne) => 3 €quations

with 12 unknown ryy, 1y, , ..., I3y and 2 unknown Z ..., Z ¢

Trick: To solve for 14 unknowns:
Use n measurements => 3n equations

Find additional equations
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R Fleft + o = r.right

Relative Orientation

F11 Xefe ¥ F12 Vieret T13 T+ Mg T/ Zieee = Xiigne Zright! Ziest Zle e Zright
F21 Xeret T2 Viese ¥ 23 T+ s /Ziese = Viigne Ziight! Ziest R D —y
r31 Xere* 132 Vier+ 133 T+ F3g /2= T Zigni/ Zies ? r

0

One measurement pair (X, Yier) aNd (XignoYrigne) => 3 €quations

with 12 unknown ryy, 1y, , ..., 34, @and 2. unknown Z .., Z,oq

One extra equation:

Scale factor ambiguity ry, Zgne Zes: KZ ight
<:> krO' kzright' kZIeft \f> et ﬁ
Force r, to be unit vector R V
=> |ry|=1 kr,
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Relative Orientation

F11 Xefe ¥ F12 Vieret T13 T+ Mg T/ Zieee = Xiigne Zright! Ziest
F21 Xeret T2 Viese ¥ 23 T+ s /Ziese = Viigne Ziight! Ziest R O

R r.Ieft + r.O = r.right

Zright

Zleft L . = -

F31 Xefe ¥ F32 Viefe+ M3z T+ 1aq /2= T Ziigne/ Ziest ? r
0

One measurement pair (X, Yier) aNd (XignoYrigne) => 3 €quations

with 14 unknowns ry, 1y, , .., 34, and Zopi, Ziest

# unknowns: 12 for R, r,

2n for Z ony Zier, fOr each of n pairs of measurements

12 + 2n unknowns
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: : . Rretlo =T,

Relative Orientation e Yo = Fren

F11 Xefe ¥ F12 Vieret T13 T+ Mg T/ Zieee = Xiigne Zright! Ziest Zle e Zright

F21 Xeret T2 Viese ¥ 23 T+ s /Ziese = Viigne Ziight! Ziest R D —y

F31 Xiefe + F32 Vier * M33 T+ M3 /2= T Zigni/Ziese ¢ r

0

One measurement pair (X, Yier) aNd (XignoYrigne) => 3 €quations

with 14 unknowns ry, 1y, , .., 34, and Zopi, Ziest
Number of equations: 6 for orthonormal R (columns sum to 1, dot products 0)

1 for unit length translation: |[r,|=1
3n for 3 equations per measurement pair
7+ 3n equations
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: : . Rret+ry =7,
Relative Orientation e To = Frigh
F11 Xefe ¥ F12 Vieret T13 T+ Mg T/ Zieee = Xiigne Zright! Ziest Zle et Zright
F21 Xeret T2 Viese ¥ 23 T+ s /Ziese = Viigne Ziight! Ziest R D —y
F31 Xiefe + F32 Vier * M33 T+ M3 /2= T Zigni/Ziese ¢ r
0
One measurement pair (X, Yierr) aNd (XighwYrighe) => 3 €quations
with 14 unknowns ry,, 1y, , .., F34, AN Zjjope, Ziegt
# unknowns: 12 for R, r,
2n for Zi.nw Zie, fOr each of n pairs of measurements
Number of equations: 6 for orthonormal R (columns sum to 1, dot products 0)
1 for unit length translation r,
3n for 3 equations per measurement pair
Need at least n = ? measurement pairs: 12+2*n =7+ 3%*n
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. . . Rrptry =1,
Relative Orientation e To = Fren
M1 Xefe ¥ 112 Vieret T3 T+ 114 T/ Zieee = Xigne Ziight/ Ziest Zleft Zright
(1 Xefet 120 Yiese ¥ 23 T4 Tos /Z1ere = Viigne Ziight! Ziest R D —y
(31 Xiefe + M32 Vier  M33 T+ 130 /2= T Zigni/Ziese ¢ r
0
One measurement pair (X, Yierr) aNd (XighwYrighe) => 3 €quations
with 14 unknowns ry, 1y, «., F34, ANd Zjiope, Zigy
# unknowns: 12 for R, r,
2n for Zi.nw Zie, fOr each of n pairs of measurements
Number of equations: 6 for orthonormal R (columns sum to 1, dot products 0)
1 for unit length translation |r,|=1
3n for 3 equations per measurement pair
Need at least 5 measurement pairs: 12+2*5=22=7+ 3*5
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R rleft+ o = rright

Relative Orientation

M1 Xefe ¥ 112 Vieret T3 T+ 114 T/ Zieee = Xigne Ziight/ Ziest Zle e Zright
(1 Xefet 120 Yiese ¥ 23 T4 Tos /Z1ere = Viigne Ziight! Ziest R D —y
F31Xefet M35 Yiese ¥ V33 T+ 13y /2= T 200/ Ziest ? r

0

n measurement pairs (Xer,Yier) aNd (XignoYrighe) => 3n equations +7

with 14 unknowns ry, 1y, , .., 34, and Zop, Ziest

Need at least 5 measurement pairs --

Does that mean 5 pairs are enough?
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Relative Orientation

M1 Xefe ¥ 112 Vieret T3 T+ 114 T/ Zieee = Xigne Ziight/ Ziest
(1 Xefet 120 Yiese ¥ 23 T4 Tos /Z1ere = Viigne Ziight! Ziest R O
F31Xefet M35 Yiese ¥ V33 T+ 13y /2= T 200/ Ziest

14 unknowns ryy, Iy, «o.y P34, AN Zijopy, Ziogy
Need at least 5 measurement pairs
Does that mean 5 pairs are enough? No — the equations are not linear

No — there is likely noise involved

Nonetheless: Computer Vision courses and textbooks make this look like a linear
problem that can be solved using a few measurement pairs. Methods such as the 8-point
algorithm, or computing the “fundamental matrix,” are sensitive to noise and numerically
unstable. They are not used in practice. But the math is elegant...
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“Elegant” Computer Vision Math: Projective Geometry

The idea to use homogeneous coordinates (first used in projective
geometry in 1827) for computer vision comes from computer graphics.

Note that task of computer graphics generally is to create images, and
of computer vision to interpret images, i.e., inverse tasks.

In computer graphics, using homogeneous coordinates is convenient
because operations such rotation, scaling, translation, and perspective
projection can be represented as matrices. A sequence of such
operations can be represented as a sequence of matrix multiplications,
enabling fast processing. Using Cartesian coordinates, perspective
projection and translation cannot be expressed as matrix
multiplications.
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Recall: Perspective Projection

3D
scene
point
Projection Equation:
= light ray from X/Z= X/f
_ scene to
L image plane
through pinhole
focal length f { image plane
Coordinate System Origin = Center of Projection (CoP) = Pinhole X = f X/Z

y=fY/Z
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“Elegant” Computer Vision Math: Projective Geometry

Cartesian coordinates (=“heterogeneous” coordinates):
Image point (x,y)" = (f X/Z, fY/Z)T

Homogeneous coordinates add a dimension 2D->3D, 3D->4D:

Image point (x,y,w)" = é (1] 8 8 (X,Y,2,1)"= (X, Y, Z/f)
00 1/f 0

Image point (yw)"= (10 1 () (x¥2,1)7= (X, fY, 2"
0O 0 1 0
Both map back to (x,y)’
CS 585: Image and Video Computing © Betke



Projective Geometry: Projection Matrix and PP Shift

Projection matrix: f 000
0 f 0 0
O 0 1 O
Principal Point £ 0 p, 0 £ 0 p\/1 00 0
shifted (p,,p,)" : 0 f p, 0)J=(0 f p,|{O 1 O O)=K[I|]O]
0O 0 1 0 0 0 1 0 01 O
\ ] |\ )
|
K= _ General 3D to 2D
2D to 2D transformation perspective projection with
accounting for shift p and same image & camera
focal length f coordinate origins, z=1
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Projective Geometry: Projection Matrix and PP Shift

Projection matrix: f 0 00
0 f 0 0
O 0 1 O
Principal Point £ 0 p, 0 £ 0 p,\/1 00 0
shifted (p,,p,)" : 0 f p, 0)J=(0 f p,|{O 1 O O)=K[I|]O]
O 0 1 O 0 0 1 O 0 1 0
| e
Camera Calibration B |
= Intrinsic Calibration K= . General 3D to 2D
- Find K 2D to 2[_) transformatlon perspective projection with
= Fin accounting for shift p and same image & camera
= Find pp and f focal length f coordinate origins, z=1
CS 585: Image and Video Computing © Betke



Camera Transformation Problems

1. Interior Orientation = Camera Calibration = Intrinsic Calibration:
What kind of camera?

Simple version: Find focal length f and principal point p (= point where optical axis
intersects image plane)

Better: Correct for lens distortion, check if angle between x & y axes is 90°

2. Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in
Robotics:

Where is the camera? Find center of projection of camera, and orientation of
camera coordinate system in world coordinate system

3. Absolute Orientation = Alignment of 2 Cameras or 2 Medical Scans
Find relationship between cameras. 3D coordinates of points are known

4. Relative Orientation = Alignment of 2 Cameras
Find relationship between cameras. 3D coordinates not known, only rays known
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Camera Transformation Problems

1. Interior Orientation = Camera Calibration = Intrinsic Calibration:
What kind of camera?

Simple version: Find focal length f and principal point p (= point where optical axis
intersects image plane)

Better: Correct for lens distortion, check if angle between x & y axes is 90°

2. Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in
Robotics:

Where is the camera? Find center of projection of camera, and orientation of
camera coordinate system in world coordinate system

Transformation equation: Rr +t =r

camera world
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Camera Transformation Problems

Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in Robotics:

Where is the camera? Find center of projection of camera, and orientation of
camera coordinate system in world coordinate system

Transformation equation: Rr_ ..+t =1, .4
R Fcamera = Fworld ~ ¢
R'R Fcamera = R (rworld o t)
Fcamera = R (rworld - t) R here is RT
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Camera Transformation Problems

Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in Robotics:

Where is the camera? Find center of projection of camera, and orientation of
camera coordinate system in world coordinate system

Transformation equation: Rr +t =r heterogenous (= ‘regular’)

camera world
3D vectors Fcamera, Fworld, t
R Fcamera = Fworld ~ t
T — RT -
R'R Fcamera = R (rworld t)
- RT _ . T
Fomera = R (Fuorig — ) R hereis R,
In homogeneous coordinates: f., . = (Rm—Rt) Foora OF
~ T ~ ~
r = R t r 01x3 1
world camera
0 1 homogeneous 4D vectors
‘ ' CWZC rcamera,’\r‘.world, :E,
C2W
¢ CS 585: Image and Video Computing © Betke



Projective Geometry:
Mapping World Coordinates to Image Coordinates

Interior calibration Interior calibration exterior calibration
f 0 p2\ /1 00 0\/R —Rt
Fcamera™ 8 g ply 8 (1) (1] 8 (0 1 )rworld

~

=K[I]0]C%YCr, g

e
3

Q

oQ

)

|

O ~+
~ O
NS
e R
A
o O =
o = O
_ O O
o O O

image

~

r =Pr

image (also written as rt(r,,,4) for projection)

world

Warning: This notation is dangerous... This is NOT a linear equation.

See also: Horn’s “Projective Geometry Considered Harmfu
https://people.csail.mit.edu/bkph/articles/Harmful.pdf

III
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Triangulation: Computing World Coordinates e

Assumptions:
e At least 2 cameras

* Intrinsic camera parameters are known (f, pp)

 Extrinsic camera parameters are known (mapping from each camera to the
world coordinate system or mapping from one camera to the other)

Using these parameters, we can plug into the binocular stereo eq’s to compute

3D coordinates of r,,,, from a matching pair of image points r;...; & 200
If no error: |Tci (rworld)_ rimage,i |=O

But likely errors, so use a least squares approach:

rworld,best = argmin Z |Tci (rworld)- rimage,i |2

BOSTON



Stereoscopic 3D Reconstruction with Triangulation

3D position
of bat

\\

left camera right camera

BOSTON
UNIVERSITY



Camera Transformation Problems:

Transformation equation: Rr +t =r

camera world

2. Exterior Orientation = Extrinsic Calibration = Hand-Eye Calibration in
Robotics:

Where is the camera? Find center of projection of camera and orientation of
camera coordinate system in world coordinate system

Transformation equation: R+ ry =1
4. Relative Orientation = Alignment of 2 Cameras

Find relationship between cameras. 3D coordinates not known, only rays known

If 2. or 4. are solved, you can use triangulation to compute 3D points
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Methods to Solve the Problem of General
Binocular Stereo Reconstruction = Relative Orientation

* Longuet-Higgins’ 8-point Algorithm (1981):
(Xleft'yleftil )T F (Xright'yrightfl) =0

F is called the 3x3 “fundamental matrix” (use homogeneous coordinates)
Algorithm is sensitive to how accurate point pairs were located ( = numerically unstable)

* Variations of the 8-point Algorithm
e.g. Hartley’s Normalized 8-point algorithm (1997)

e Horn's Iterative Relative Orientation Method, 1990. Does not use
homogeneous coordinates

* Bundle Adjustment: Bundles of light rays, originating from 3D points, used
to adjust estimates of camera parameters and depths

ES\?EESTNY CS 585: Image and Video Computing © Betke


https://people.csail.mit.edu/bkph/articles/Relative_Orientation_Revisited_TeX.pdf

BOSTON : ) _ s 7 N Ly
UNIVERSITY . T\ : o s A X | 6 gette




]
Xz
o+
()
om
©

S

BOSTON
UNIVERSITY



Multi-Camera Stereo

View 4

from 3

above: 2;

Z axis = T 11

direction 2 0O

of e i

gravity @ _o|
o

e =3

4.

_5_

-6

=4 -2 0 2 4
X Position (m)
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Multi-Camera Stereo
4.

O -~ N W

Y Position (m)
|

i, could be projection of scene point G,
i, could projection of scene point G,

% 2 0 2
X Position (m)
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C C

1 3

, , . . 3'd Camera resolves the ambiguity:
-4 =g _0 2 4 G, and G, are “ghosts” (non-existing points)
X Position (m) P, and P, are the true scene points
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C _— C

1 3

, . , Green line is ray from P, into camera C.

-4 =g 0 2 4 It appears as an “epipolar line” in the image
X Position (m) of camera C,
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=4 =2
X Position (m)

* W orange in'C1 represent?
What do the green/red lines in C2 represent?
What do the red/orange lines in C3 represent?
Why do the lines in C1, C2, and C3 intersect in

i, igandic? C C

1 3
ES&EES%\YI CS 585: Image and Video Computing © Betke




5 0 7.

The orange line is the ray from P,
into the 2"d camera.
C

They appear as “epipolar lines”
in the image of camera C, and

1

-4 - must intersect at the same image
X Position (m) point i,.
CS 585: Image and Video Computing © Betke



C

3 P,is imaged in the intersection C1 C3

The green and red epipolar lines in the camera C,
. ' intersect at image point I..

-4 -2 O 2 = The orange and red epipolar lines in the camera C,
X Position (m) intersect at image point i.
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How to use epipolar lines for bat tracking:
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Temporal Calibration

Used a lighter to register the
two cameras in time
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Y (meters)

20 2

Z (meters) 10 -2 X (meters)

BOSTON
UNIVERSITY
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Epipolar Geometry

left image right image

Image Credit: OpenCV.org
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. Formal Definition:

E p | pO | ar G eom et ry 3D scene 1. All possible scene points M (M’, M”, ...) that
. produce image m,, are on a half line through

point M
M and CoP,
2. All possible images m_of M are images of this
half line called “ !

3. The image of CoP, in the right image plane is
called “epipole” i.e., e

right_epipole

, eright_epipole
122
mr” m,
left image — _/ right image
plane I plane
Baseline b =
Distance between
Center of Projections (CoPs)
Eﬁ&EESTNY CS 585: Image and Video Computing © Betke



Using Epipolar Geometry to Estimate Camera Motion &

parallel
lines

vanishing
| E point
! ’

¢ camera
centre

Camera
Motion:

Epipole
Sideway

Camera

Focus of
Motion: Expansion
Epipole .ii : v '

Vanishing

Fig. 9.7. Under a pure translational camera motion, 3D points appear to slide along parallel rails. The Fig. 9.8. Pure translational motion. (a) under the motion the epipole is a fixed point, i.e. has the same
images of these parallel lines intersect in a vanishing point corresponding to the translation direction. ]

The epipole e is the vanishing point.

coordinates in both images, and points appear to move along lines radiating from the epipole. The
epipole in this case is termed the Focus of Expansion (FOE). (b) and (c) the same epipolar lines are
overlaid in both cases. Note the motion of the posters on the wall which slide along the epipolar line

Image Credit: Hartley & Zisserman, 2004
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Remember from Linear Algebra:

* The dot product of two perpendicular vectors is zero.

* The cross product of two co-planar vectors computes a vector
perpendicular to the plane the vectors span.

* The vector cross product can be expressed as the product of a skew-
symmetric matrix and a vector: tx b =[t], b

0 —t3 1
tl.=1| t;5 0 —t
—ty t; O
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Derivation of the “Fundamental Matrix:”

P ight =K[R | ]

era,right

camera,right

Here both 3D heterogeneous or
4D homogeneous coordinates
can be used

These three vectors are
in the same plane:

t,r r

camera,left? " camera,right
T -
r.camera,left (t X rcamera,left) =0

\ J
1

Cross product

\ J
1

Dot product

(rcamera,left -t )T (t X r.camera,left) =0
r

TR(t Xr

camera,left) =0

UNIVERSITY

- rcamera,right T R ([t]x rcamera,left) =0
I"camera,right =R (rcamera,left - t) or
(r -t)T =r TR r T(R[tl)r =0
camera,left camera,right camera,right x | Tcamera,left
BOSILON CS 585: Image and Video Computing © Betke



Here use 4D homogeneous coordinates

Derivation of the “Fundamental Matrix:” ¢ y

rcamera,right T (R [t]x ) rcamera’|eft = O

“Essential matrix” E

“’Aorld ’Fcamera,right ' E Fcamera,left =0
P \\ PrightzK[th] . _
” < rimage,right ' Kright-T E Kleft-1 rimage,left =0
”
\ |
“Fundamental matrix” F
t
?image,right T F rimage,left =0
Epipolar lines: Epipoles:
eright= E rcamera,left E eIeft =0 t'E=0
— ET % p T —
I‘Ieft_ E rcamera,right eright E=0

F is of rank 2

ES&EESTNY CS 585: Image and Video Computing © Betke



Methods to Solve the Problem of
General Binocular Stereo Reconstruction

* Longuet-Higgins’ 8-point Algorithm (1981):
(Xleft'yleftil )T F (Xright'yrightfl) =0

F is called the 3x3 “fundamental matrix” (use homogeneous coordinates)
Algorithm is sensitive to how accurate point pairs were located ( = numerically unstable)

* Variations of the 8-point Algorithm
e.g. Hartley’s Normalized 8-point algorithm (1997)

e Horn's Iterative Relative Orientation Method, 1990. Does not use
homogeneous coordinates

e Bundle Adjustment: Bundles of light rays, originating from 3D points, used
to adjust estimates of camera parameters and depths

ES\?EESTNY CS 585: Image and Video Computing © Betke


https://people.csail.mit.edu/bkph/articles/Relative_Orientation_Revisited_TeX.pdf

Methods to Solve the Problem of
General Binocular Stereo Reconstruction

Longuet-Higgins’ 8-point Algorithm (1981):

Ju Siz fi3 L]
f'g;mera,rjghtF i:cahmera,left — (.’L',r, Yr, 1) f21 f22 f23 Y =0
f31 f32 f33 1

(T T To Yty Ty Yr L, YrYis Yrs Tt Yty 1)

Algorithm is sensitive to how accurate point pairs were
located ( = numerically unstable)

ESEEESTNY CS 585: Image and Video Computing

fi1))
/flz
J13
f21
Joo | =0
J23
/31
/32

\ /3
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Longuet-Higgins’ 8-point Algorithm for Binocular Stereo Reconstruction

Use 8 matching points in both views to create matrix U:

Ut= |z zoyr o wvexr vett ¥ o1 Yy 1

Compute fas arg Hrfr_llinl |Uf||*> by finding an Eigenvector of UTU

n

f12
J13
far
fa2
fa3
f31
fs2

\ /33

Result likely produces a matrix F that is not singular. Trick: To enforce rank 2, take the
single-value decomposition UXVT of F and remove the smallest eigenvalue of X.

BOSTON
UNIVERSITY
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Hartley’s Normalized 8-point algorithm

Note that the entries in matrix U vary by orders of magnitude:

106 106 103 1 (S
J12
J13
: Jo1
Ut = |z vy 2 v yet ¥ 20 0 1] | J2 | =0

; Jo3
/31
This causes numerical instability. f32

Trick: Rescale pixels so that mean squared difference is 2. \f33)
Compute F. Enforce singularity. Scale back entries. Compute R&t.
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Horn’s Method -- “Relative Orientation” for Binocular
Stereo Reconstruction: Compute R & t

Horn's Iterative Relative Orientation Method, 1990, computes R & t from
corresponding rays. It does not use homogeneous coordinates (or F).

Also uses co-planarity of vectorst,r to define an error

function to minimize

r

camera,left’ " camera,right

Uses a least squares approach to include n matching 2D point pairs
Uses a quaternion representation (we will see more about quaternions later)

Minimization is constrained by equations that express the physical properties
of the problem (i.e., constraints on rotation matrix)

Resulting algorithm iteratively improves error (usually < 10 iterations needed)

ESEEESTNY CS 585: Image and Video Computing © Betke
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Special Case Parallel Optical Axes: R & t given

left image right image

Image Credit: Scharstein, 2014
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left image

BOSTON
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right image

Image Credit: OpenCV.org
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Finding Matching Points: Follow Epipolar Lines & Template Match

left image right image

Epipolar lines are parallel = along image rows (epipoles are at infinity)

Algorithm: Find corresponding points in same image rows via template matching (use normalized correlation

coefficient to compute the match)

]SQ\ESTNY CS 585: Image and Video Computing © Betke



Result of Binocular Stereo Matching:
Depth Map

http://vision.middlebury.edu/stereo/data/scenes2014/
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Parallel Optical Axes & Active Stereo with Structured Light

Hluminant [lluminant on Scene

L. Zhang, B. Curless, and S. M. Seitz.
Rapid Shape Acquisition Using Color
Structured Light and Multi-pass Dynamic
Programming. 3DPVT 2002

BOSTON
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Parallel Optical Axes & Active Stereo with Structured Light

Hluminant [lluminant on Scene

Active depth sensors that use IR:
Kinect and iPhone, starting with

iPhOne X L. Zhang, B. Curless, and S. M. Seitz.

Rapid Shape Acquisition Using Color
Apple Face ID Structured Light and Multi-pass Dynamic
Programming. 3DPVT 2002

BOSTON
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Active stereo with structured light

camera 1

projector

camera 2

Image credit: Li Zhang
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Active stereo with structured light

camera 1
. . :
View without
structured light
1
camera 2
Image credit: Li Zhang



Active stereo with structured light

camera 1

]

projector

]

camera 2

Project “structured” light patterns onto the object
simplifies the correspondence problem Image credit: Li Zhang
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Active stereo with structured light

camera 1

]

projector

]

camera 2

Image credit: Li Zhang
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With the special case geometry —i.e., parallel optical axes, scene
reconstruction is so much easier.

Why don’t we use it instead of the general case?

BOSTON
UNIVERSITY
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Rectification of Binocular Stereo Images: Undo Foreshortening

Why?

Epipolar lines are

now parallel,

enabling a simple

search for corresponding
points along image

rows

Image Source:

Loop and Zhang, CVPR 1999



https://ieeexplore.ieee.org/document/786928

Rectification of Binocular Stereo Images: Undo Foreshortening

How?
Ilterative Scheme

We want
IIeft (X + 6/21y) = Iright (X —6/2,Y)

Least Squares Method:
ming Zp [ere (X +8/2,y) - ligne (X —0/2,y) 1°

p = patch

size of patch p: tradeoff
too small instability
too large smearing

Algorithm:

Use current estimate of disparity 0
to warp

Then solve LSM & update disparity




Debevec, Taylor, & Malik. Modeling and Rendering Architecture from Photographs. SIGGRAPH 1996.

key image offset image
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https://www.pauldebevec.com/Research/debevec-siggraph96-paper.pdf

Debevec, Taylor, & Malik. Modeling and Rendering Architecture from Photographs. SIGGRAPH 1996.

key image warped offset image

f |
¥
depth map
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Binocular Stereo Solution Paths: 2 Alternatives

1. “Weak Calibration”

* |f needed: Use rectification to ensure epipolar lines are along image rows
* Find corresponding points in both views and calculate disparity o
 Compute depth: Z = bf/d

2. “Strong Calibration”
» Calibrate each camera (= interior orientation): f, pp
* Find geometric transformation of cameras (= relative orientation): R, t
* Find 3D coordinates

EIS?&EESTNY CS 585: Image and Video Computing © Betke



Binocular Stereo Solution Paths: 2 Alternatives

1. “Weak Calibration”

* |f needed: Use rectification to ensure epipolar lines are along image rows
* Find corresponding points in both views and calculate disparity o
 Compute depth: Z = bf/d

2. “Strong Calibration”
» Calibrate each camera (= interior orientation): f, pp
* Find geometric transformation of cameras (= relative orientation): R, r,
* Find 3D coordinates via triangulation

In our animal tracking research, “strong calibration” was the better solution

EIS?&EESTNY CS 585: Image and Video Computing © Betke



Binocular Stereo Solution Path: “Strong Calibration”

Wand = calibration deect

Throw wand in the air several times
(mark out bird flying space)

Identify wand position in all views
Take advantage of knowing the
dimensions of the wand

Images & Method:

' Estimate Rand r,
Theriault et al. 2014

ESEEESE CS 585: Image and Video Computing © Betke



Binocular Stereo Solution Path: “Strong Calibration”
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Binocular Stereo for 3D Bird Flight Analysis

E
 —
2
2
Images & Method: N 8— | | |
Theriault et al. 2014 p¥4 A¢ o

3 0 % -12 © Betke
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Calibration tool for thermal infrared cameras &
Large Observation Spaces

Calibration tool with heat and ice packs

BOSTON Images & Method: . i
Theriault et al. 2014 CS 585: Image and Video Computing © Betke




Boston University
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Binocular Stereo Solution Path: “Strong Calibration”

Qimagel (1-4] Rl FF

Indoor scenario is much easier:

Instead of wand, use “checker board”
as calibration device

Take many images at different
positions & orientations

Lt imagel1d [1:4.. M= E3

"
- L
5
- -
L

e

.

Image Source: Jean-Yves Bouguet
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Binocular Stereo Solution Path: “Strong Calibration”

Indoor scenario is much easier:

Instead of wand, use “checker
board” as calibration device

Take many images at different
positions & orientations

Use
https://data.caltech.edu/recor

ds/ix9cx-fdh55
Or OpenCV

Image Source: Jean-Yves Bouguet
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Figure S1:

Software packages for easyCamera, easyWand, and easySBA and documentation can be downloaded from
the OpenBU repository at http://hdl.handle.net/2144/8456. The Python SBA source code is also available at
https://bitbucket.org/devangel77b/python-sba and the Python PIP stable release at
https://pypi.python.org/pypi/sba/1.6.0

© Betke
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Reconstruction Uncertainty

Y position (m)

10

-10

-5 0 5 10

G1C, GG

-10

5 0 5 10
X position (m)

Reconstruction uncertainty (cm)

Reconstruction uncertainty due to quantization
effects is shown for six hypothetical camera
configurations. The cameras were simulated to have
a pixel width of 18 um and a field-of-view angle of
40.5 deg, and be positioned at a fixed height Z and
aimed at a common, equidistant fixation point
F=(0,0,Z). Horizontal cuts of the 3D view frustums of
the cameras at height Z and lines at D _,,=20 are
shown from above.

Placing the cameras further apart reduces
reconstruction uncertainty (A versus B).

If the cameras are placed too far apart (C), however,
the view volume is ‘closed’, and there are
unobservable regions of space where the cameras
will be looking past each other.

If the distance between the outermost cameras is
held constant, adding additional cameras may not
decrease the uncertainty due to image quantization
in the common observable region (D versus E).

If the image planes of the cameras are parallel (F),
the common view volume is smaller and further
away from the cameras than in the other
configurations.

These 2D cuts of the 3D view frustrums are at the
level and elevation angle of the cameras; cuts at a
different level or angle would show slightly greater
reconstruction uncertainty but similar trends.

BOSTON
UNIVERSITY
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What is the impact on 3D reconstruction if the
location detector is inaccurate?

Can the impact be quantified?

Field biologists really like to know how accurate
the 3D estimates are!

CS 585: Image and Video Computing © Betke



C?I\J-h-

I I
AN

Y position (m)

Reconstruction uncertainty (cm)

c::mi:-mco; O = N WD O

-10-8 -6 -4 -2 P’Z

X position (m)
Reconstruction uncertainty due to quantization and resolution issues is shown. In a video frame obtained for a
flight study (A), the automatically detected locations of the animals may not be at their centers (colored dots in B).
When estimating reconstruction uncertainty (C,D), we include this effect by corrupting the image projections of
simulated world points, generated throughout the whole space, with Gaussian noise where the standard deviation
is one-sixth of the calculated apparent size of an animal at that location (circles in B). When estimating the
reconstruction uncertainty, including image location ambiguity (D) increases the estimated uncertainty more than
threefold over image quantization alone (C) (note the change in color scale)
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Figure S3: 3D flight trajectories of 28 Brazilian Free-tailed Bats during a 1-s interval are shown in the context of
the spatially-varying reconstruction uncertainty arising due to both image quantization and image localization
ambiguity from an oblique view (A) and from the top (B). The tracks are shown from the point of view of the
cameras (C) and from the side (D). The observation distance between cameras and bats was approximately 10 m (B,

D), chosen so that the nose-to-tail span of a bat in an image was at least 10 pixels. The baseline distance between the
outermost cameras was approximately 6 m, chosen so that the expected uncertainty in reconstructed 3D positions at
the observation distance due to image quantization and image localization ambiguity was less than 10 cm, the length
of a bat. The RMS reconstruction uncertainty for the 1,656 estimated 3D positions shown was 7.8 cm.
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Figure S4: The flight paths of 12 Cliff Swallows during a 2.3-s interval are shown in the context of the spatially-
varying reconstruction uncertainty arising due to both image quantization and image localization ambiguity
from an oblique view (A) and from the top (B). The tracks are shown from the point of view of the cameras (C)
and from the side (D). At an observation distance of approximately 20 m (B,D), the birds, which are approximately

BOSTON 13 cm long, were imaged at an average length of 18 pixels. The baseline distance between the outermost cameras was
UNIVERSITY approximately 11 m. The RMS reconstruction uncertainty for the 2,796 estimated 3D points shown was 5.9 cm, less © Betke

than half the length of a bird.



First paper on Multiview Stereo and Using Internet Photo Collections to
Reconstruct Scenes

Goesele, Snavely, Curless, Hoppe, Seitz, ICCV 2007

154
B

[ Je

merged model of Venus de Milo

129 Flickrimages taken by 98 photographers
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http://grail.cs.washington.edu/projects/mvscpc/
https://grail.cs.washington.edu/projects/mvscpc/download/Goesele-2007-MVS.pdf

First paper on Multiview Stereo and Using Internet Photo Collections to
Reconstruct Scenes

Goesele, Snavely, et al., ICCV 2007, Snavely PhD thesis 2008

/ e

= . ........................

il

56 Flickrimages taken by 8 photographers merged model of Pisa Cathedral
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https://www.cs.cornell.edu/%7Esnavely/publications/thesis/thesis.pdf

Bundle Adjustment

1950’s photogrammetry technique
Name: Bundles of light rays, originating from 3D points, used to adjust estimates

Goal: Solve simultaneously for 3D scene reconstruction and
intrinsic & extrinsic parameters of each camera
Technigue: Non-linear least squares method (use a package, e.g., ceres-solver.org)

Cost function to minimize: Reprojection error between the image locations of
observed and predicted image points

min Z Z camera i 7T@'( c(:]a)mera 1) H2

1€Cameras j€Points

where T is the mapping from an estimated 3D point into ith camera view
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Bundle Adjustment is used to solve
Structure-from-Motion Problems

Structure-from-Motion Problem:

Find 3D scene coordinates (here called “structure”) from a moving
camera

Camera is usually calibrated (i.e., we have intrinsic parameters f and pp)

Motion of camera yields a video where each frame has transformation
parameters R & t that need to be estimated

ES&EESTNY CS 585: Image and Video Computing © Betke



Schonberger & Frahm, CVPR, 2016: Structure-from-Motion Revisited

Iterative Bundle Adjustment Algorithm:
Input: Images of scene or object taken by different cameras from different viewpoints

Preprocessing:

1. Extract features

2. Match corresponding features

3. Compute “scene graph” (definition: nodes=images, edges=camera transformation is plausible)
4. |Initialize reconstruction based on 2 cameras in dense part of scene graph

Repeat:

1. Register a new image robustly to current 3D reconstruction
2. Add newly triangulated 3D points to current 3D reconstruction
3. Apply Bundle Adjustment to update current 3D reconstruction and camera parameters

Output: 3D reconstruction of scene or object

ESEEESTNY CS 585: Image and Video Computing © Betke


https://openaccess.thecvf.com/content_cvpr_2016/papers/Schonberger_Structure-From-Motion_Revisited_CVPR_2016_paper.pdf

Rome dataset

74,394 images

]SS\?ETRSTNY CS 585: Image and Video Computing Schonberger & Frahm, CVPR 2016


https://openaccess.thecvf.com/content_cvpr_2016/papers/Schonberger_Structure-From-Motion_Revisited_CVPR_2016_paper.pdf

MIT’s 6.8300/6.8301 Advances in Computer Vision: Vincent Sitzmann’s Lection on
Multi-view Geometry in Spring 2023

What has changed since Deep Learning?

By and large, we still rely on conventional Bundle Adjustment to solve
multi-view geometry for us.

While relatively reliable, this has major downsides:
Not online, not robust to scene motion, not amenable to end-to-end learning...

IMO we’re missing the correct way to “learn” multi-view geometry in a self-
supervised way. It should be possible: Build a model that watches video and learns
to reconstruct both pose and a proper 3D scene representation!

Maybe one of you will get there :)

BOSTON
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Deep Learning Attempts at 3D Reconstruction

* Unsupervised Learning of Depth and Ego-Motion from Video, Zhou et
al., CVPR 2017

* Deep Fundamental Matrix Estimation without Correspondences,
Poursaeed et al., 2018

 BARF: Bundle-Adjusting Neural Radiance Fields, Lin et al., ICCV 2021

* The 8-Point Algorithm as an Inductive Bias for Relative Pose
Prediction by ViTs, Rockwell et al., 2022

* Input-level Inductive Biases for 3D Reconstruction, Yifan et al., CVPR
2022

ESEEEQTNY CS 585: Image and Video Computing © Betke


https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhou_Unsupervised_Learning_of_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhou_Unsupervised_Learning_of_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_ECCVW_2018/papers/11131/Poursaeed_Deep_Fundamental_Matrix_Estimation_without_Correspondences_ECCVW_2018_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Lin_BARF_Bundle-Adjusting_Neural_Radiance_Fields_ICCV_2021_paper.pdf
https://arxiv.org/pdf/2208.08988.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Yifan_Input-Level_Inductive_Biases_for_3D_Reconstruction_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Yifan_Input-Level_Inductive_Biases_for_3D_Reconstruction_CVPR_2022_paper.pdf

Parallel Tracking and Mapping for Small AR Workspaces
Klein & Murray, ISMAR 2007

https://www.youtube.com/watch?v=Y9HMn6bd-v8

Uses bundle adjustment

]Sg\g{{gg CS 585: Image and Video Computing © Betke


https://www.robots.ox.ac.uk/%7Egk/publications/KleinMurray2007ISMAR.pdf
https://www.youtube.com/watch?v=Y9HMn6bd-v8

The Fundamental Matrix Song, Daniel Wedge:

ESEEESE CS 585: Image and Video Computing © Betke


https://www.youtube.com/watch?v=DgGV3l82NTk

Learning Objectives
You should be able to explain:

e Camera transformation problems * Projective geometry derivation of the
* Different representations of fundamental matrix F

rotation  Methods to compute F, R & t
* Multiple measurement pairs  Special case of parallel optical axes

(corresponding pixels in left & right

* Active stereo
cameras) are needed to

reconstruct 3D coordinates of * Weak & strong calibration
scene points e Structure from motion
* Triangulation * lterative Bundle Adjustment

* Epipolar geometry

EIS?%ESTNY CS 585: Image and Video Computing
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