Transformer (for NLP) Text-to-Image Creation Vision Transformer (for CV)

Lecture by Margrit Betke, CS 585, April 16, 2024 with many slides from Steve Seitz' videos:

Part $1 \&$ Part 2

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Bob Dylan, Tangled up in Blue

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Language Model

Early

Early one

Early one morning

Early one morning the sun was

Early one morning the sun was shining

Early one morning the sun was shining I

Early one morning the sun was shining I was

Early one morning the sun was shining I was laying in bed

Early one morning the sun was shining I was laying in bed Wondering

Early one morning the sun was shining I was laying in bed Wondering if

Early one morning the sun was shining I was laying in bed Wondering if she had changed at

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

the sun was still

the sun was still red

the sun was still red
her

the sun was still red
 her hair

the sun was still red
 her hair was

the sun was still red
 her hair was shining

the sun was laying

the sun was laying in

the sun was laying in bed

I was shining I was shining

I was shining I was shining I was still red

she was standing on the side of my mind
side of my shoes heading out of my face one of my chair said our lives together

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Early one morning

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Early one morning one morning the

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Early one morning one morning the morning the sun

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Early one morning one morning the morning the sun the sun was

$P\left(x_{n} \mid x_{n-1}, x_{n-2}\right)$

```
Early one }\longrightarrow\mathrm{ morning
one morning }->\mathrm{ the
morning the }->\mathrm{ sun
the sun \longrightarrow
sun was }\longrightarrow\mathrm{ shining
was shining }\longrightarrow\mathrm{ l
shining I L was
I was }\longrightarrow\mathrm{ laying
```

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

$$
P\left(x_{n} \mid x_{n-1}, x_{n-2}, x_{n-3}, x_{n-4}, x_{n-5}, x_{n-6}, x_{n-7}, x_{n-8}, x_{n-9}, x_{n-10}, x_{n-11}, x_{n-12}, x_{n-13}\right)
$$

10^{70}
 combinations

Function Approximation

Fourier Series:

$$
f(x)=\Upsilon+\sim \sim+\cdots m+{ }^{m m m n}+\ldots
$$

Taylor Series:

Neural Network:

$$
P\left(x_{n} \mid x_{n-1}, x_{n-2}, x_{n-3}, x_{n-4}, x_{n-5}, x_{n-6}, x_{n-7}, \ldots\right)
$$

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still red

red

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still

red I

neural network

word2vec

[Collobert \& Weston 2008; Mikolov et al. 2013]
house, where the professor lived without his wife and child; or so he said jokingly sometimes: "Here's where I live. My house." His daughter often auded, witheut rer antr ent, fs. the risitor's information, "It started out to $i=$ fo: nee, har $i t$'s really his." And she might reach in to bring forth an inch-high table lamp with fluted shade, or a blue dish the size of her little fingernail, marked "Kitty" and half full of eternal ixilic; tut she was sure to replace these, after they had been admir:d, pretty near exactly where they had been. The little house was very orderly, and just big enough for all it contained, though to some tastes the bric-à-brac in the parlor might seem excessive. The diughter's preference was for the store-bought gimmicks and appliances, the toasters and carpet sweepers of Lilliput, but she knew that most adult visitors would

Word Embedding (e.g., word2Vec, GloVe)

red 1

neural network

Early one morning the sun was shining I was laying in bed Wondering if she had changed at all if her hair was still ?

Two roads diverted in a yellow wood And sorry I could not travel both And be one traveler, long I stood And looked down as far as I could To where it bent in the undergrowth;

red

Transformer

in bed Wondering if she had changed at all if her hair was still
slide from Steve Seitz's video

slide from Steve Seitz's video

slide from Steve Seitz's video

slide from Steve Seitz's video

a	the	looking	possible	getting
0.4	0.3	0.1	0.1	0.1

slide from Steve Seitz's video

The 16th President was?
The capital of Zimbabwe is?
Frank Zappa's middle name is?
Napoleon was born on this date?
The prime factorization of 19456721434 is?
Queen Victoria's maiden name was?
US per-capita income in 1957 was?
The lat long coordinates of Rome are?

Syntax
slide from Steve Seitz's video

Semantics

How much data to train?

All of it...

All text on the internet?

Is that legal?

AI \& Ethics!

All text on the internet?

Is that legal?

John Grisham, other top US authors sue OpenAl over copyrights

By Blake Brittain

September 21, 2023 6:34 AM EDT • Updated 7 months ago
D $A a<$

AI \& Ethics!

All text on the internet?

Is that legal?

AI \& Ethics!
December 27, 2023

The Times Sues OpenAI and Microsoft Over A.I. Use of Copyrighted Work

Millions of articles from The New York Times were used to train chatbots that now compete with it, the lawsuit said.

All text on the internet?

Is that legal?

BUSINESS

ChatGPT-maker OpenAl signs deal with AP to license news stories

AI \& Ethics!

Training the 175 billion parameters of GPT-3 on
 "all text on the internet"
 on a single GPU or computer would take 355 years and \$4,600,000

How long did it take OpenAl to train GPT-3?

a month

What did OpenAl train on?

GPT-3 training data ${ }^{[1] \text {]:9 }}$		
Dataset	\# tokens	Proportion within training
Common Crawl	410 billion	60%
WebText2	19 billion	22%
Books1	12 billion	8%
Books2	55 billion	8%
Wikipedia	3 billion	3%

Source: Wikipedia

What about GPT-4?

- 1 trillion parameters
- Sam Altman stated that the cost of training GPT-4 was more than $\$ 100$ million.

What about GPT-4?

- 1 trillion parameters
- Sam Altman stated that the cost of training GPT-4 was more than $\$ 100$ million.

Why are the lawsuits so costly?

- We don't know how to "untrain" neural networks.
- "Unlearning" is an exciting research area!

The 16th President was
The capital of Zimbabwe is
Frank Zappa's middle name is
Napoleon was born on this date
The prime factorization of 19456721434 is
Queen Victoria's maiden name was
US per-capita income in 1957 was
The lat long coordinates of Rome are

The 16th President was Abraham Lincoln
The capital of Zimbabwe is Harare
Frank Zappa's middle name is Vincent
Napoleon was born on this date 1769
The prime factorization of 19456721434 is $2 \times 3 \times 3 \times 17$
Queen Victoria's maiden name was Alexandrina Victoria
US per-capita income in 1957 was $\$ 2,974$
The lat long coordinates of Rome are 41.894722, 12.48
a haiku about a turtle and a stop sign
a haiku about a turtle and a stop sign

Turtle at the stop sign
waiting for the perfect moment
to cross the busy road

translate "tangled up in blue" to 5 languages

translate＂tangled up in blue＂to 5 languages

1．Spanish：Enredado en azul
2．French：Emmêlé dans le bleu
3．Italian：Intrecciato nel blu
4．German：Verwickelt in blau
5．Japanese：青い糸に絡まって
the number after the number after 37 is 74

I'm heading north. I turn right. Then I turn left. I'm now heading south

the recipe for chocolate guacamole pancakes

Ingredients:
1 ripe avocado, mashed
1/4 cup cocoa powder
1/4 cup all-purpose flour
1 teaspoon baking powder
1/4 teaspoon salt
1/2 cup milk
1 egg
1 tablespoon vegetable oil
1/4 cup chocolate chips
Directions:

1. In a medium bowl, combine the avocado, cocoa powder, flour, baking powder, and salt.
2. In a separate bowl, whisk together the milk, egg, and vegetable oil.
3. Add the wet ingredients to the dry ingredients and mix until well combined.
4. Fold in the chocolate chips.
5. Heat a large skillet over medium heat.
6. Scoop $1 / 4$ cup batter onto the skillet for each pancake.
7. Cook for 2-3 minutes per side, or until the pancakes are golden brown.
8. Serve with your favorite toppings.

For more details:
https://jalammar.github.io/illustrated-transformer/ https://jalammar.github.io/illustrated-gpt2/
a pattern of characters that looks like a star
$\bigcirc \bigcirc 0$
. 0 .
a pattern of characters that looks like a vertical line

-

- \bigcirc -
- \bigcirc
- \bigcirc
a pattern of characters that looks like a triangle

white white white white white white white white white green white white white white white
white white white white white white white white green green green white red red white
white white white white red red red red green green brown red red red red
white white white red red red red red brown green red red red red red
white green brown red
green green brown red
white green green brown red white
white white white white red red red black red red red red red white white
white white white white white white white white red red red red white white white
white white white white white white white white white red red white white white white

raspber

Bittio

sunsets
slide from Steve Seitz's video

raspberry

$1,000,000$ s of pixels

32

I

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

 \begin{tabular}{|l|l|lllllllllllllllllllllllllll}
0 \& 0

0 \& 0 \& 0

\hline

\hline 0 \& 0

\hline
\end{tabular}

8	2	2	2	5	5	5	5	5	3	3	5	5	2	2	2	5	5	2	2	5	5	2	3	3	3	5

8	2	2	2	2	2	2	2	3	3	3	2	5	2	2	2	2	2	2	2	5	5	2	2	3	3
	2	2	2	2	2	6																			
8	2	2	2	2	2	2	2	3	3	3	3	2	2	2	5	2	2	2	5	2	2	5	5	5	5
2	2	2	5	2	6																				

squirrel reaching for a nut

11111771111111111

squirrel reaching for a nut

squirrel reaching for a nut

squirrel reaching for a nut

squirrel reaching for a nut


```
squirrel reaching for a nut
```


squirrel reaching for a nut

squirrel reaching for a nut

111111111111111116661166444999999
11111771111111116

squirrel reaching for a nut

$\begin{array}{llllllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 6 & 1 & 1 & 6 & 6 & 4 & 4 & 4 & 9 & 9 & 9 & 9 & 9 & 9\end{array}$
$1 \begin{array}{lllllllllllllllllllllllllllllll} & 1 & 1 & 1 & 7 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 4 & 1 & 4 & 9 & 9 & 9 & 9 & 9 & 9\end{array}$
1171111111111111262662262999999999
111111122222212666262620999999999
21111221222212666662649999999888
$1 \begin{array}{lllllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 0 & 0 & 0 & 0 & 0 & 4 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9\end{array}$
1111111111117152220000000499999999989
11117222112265502999999999999999
1101221211111111100000440000400000099998
$\begin{array}{lllllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 7 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 9 & 9 & 9 & 8 \\ 8\end{array}$
$1 \begin{array}{lllllllllllllllllllllllllllllll} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 & 9 & 9 & 9 & 8 \\ 9\end{array}$
$1 \begin{array}{lllllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 7 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 & 9 & 9 & 5 & 5\end{array}$
33834333338888843388433888888888883838

squirrel reaching for a nut

$\begin{array}{llllllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 6 & 1 & 1 & 6 & 6 & 4 & 4 & 4 & 9 & 9 & 9 & 9 & 9 & 9\end{array}$
$1 \begin{array}{lllllllllllllllllllllllllllllll} & 1 & 1 & 1 & 7 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 4 & 1 & 4 & 9 & 9 & 9 & 9 & 9 & 9\end{array}$
1171111111111111262662262999999999
111111122222212666262620999999999
21111221222212666662649999999888
$1 \begin{array}{lllllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 6 & 6 & 0 & 0 & 0 & 0 & 0 & 4 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9\end{array}$
1111111111117152220000000499999999989
11117222112265502999999999999999
1101221211111111100000440000400000099998
$\begin{array}{lllllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 7 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 9 & 9 & 9 & 8 \\ 8\end{array}$
$1 \begin{array}{lllllllllllllllllllllllllllllll} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 & 9 & 9 & 9 & 8 \\ 9\end{array}$
$1 \begin{array}{lllllllllllllllllllllllllllllll}1 & 1 & 1 & 1 & 7 & 7 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 & 9 & 9 & 5 & 5\end{array}$
33834333338888843388433888888888883838

squirrel reaching for a nut

squirrel reaching for a nut

Up-sampled 4x

squirrel reaching for a nut

squirrel reaching for a nut
Parti, https://parti.research.google/

squirrel reaching for a nut underwater

fossil of a squirrel reaching for a nut

squirrel made of toothpicks wearing sunglasses reaching for a nut

DLSR photograph of a whimsical fantasy house shaped like a squirrel with windows and a door, in the forest

Squirrel reaching for a nut.
by Leonardo da Vinci

Squirrel reaching for a nut. Van Gogh painting

Intricately carved cathedral door of a squirrel reaching for a nut

Squirrel reaching for a nut. Woodcut tessellation pattern by M.C. Escher
slide from Steve Seitz's video

Squirrel reaching for a nut. Latte art

Vaswani et al., 2017

Attention Is All You Need

Ashish Vaswani* Google Brain	Noam Shazeer* Google Brain	Niki Parmar* Google Research	Jakob Uszkoreit * Google Research
avaswani@google.com	noam@google.com	nikip@google.com	usz@google.com

Llion Jones*
Google Research llion@google.com
Aidan N. Gomez* \dagger
University of Toronto aidan@cs.toronto.edu

Lukasz Kaiser*
Google Brain lukaszkaiser@google.com

Illia Polosukhin*
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

Vaswani et al., 2017

Attention Is All You Need

Ashish Vaswani* Google Brain	Noam Shazeer* Google Brain	Niki Parmar* Google Research	Jakob Uszkoreit * Google Research
avaswani@google.com	noam@google.com	nikip@google.com	usz@google.com

> Llion Jones*
> Google Research
> llion@google.com
Aidan N. Gomez* \dagger
University of Toronto aidan@cs.toronto.edu

Lukasz Kaiser*
Google Brain Iukaszkaiser@google.com

Illia Polosukhin*
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 201 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 201 English-to-French ranslation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

Sequence 2 Sequence models in language

Encoder

Decoder

Attention and Context in language

Self-Attention

- Content-based querying
- Retrieves similar items
- Weighted sum of similarities
- Constant path length between any two positions
- Variable-sized perceptive field
- Gating/multiplication enables crisp error propagation
- Trivial to parallelize (per layer)
- Can replace sequence-aligned recurrence entirely

Self-Attention Order in Machine Translation

- Encoder-Decoder Attention:
- from output attending to words in input sequence
- Encoder Self-Attention:
- attention to words in input sequence (all directions)
- Masked Decoder Self-Attention
- in output attending only to words that come before

Self-Attention Order in Machine Translation

- Encoder-Decoder Attention:
- from output attending to words in input sequence
- Encoder Self-Attention:
- attention to words in input sequence (all directions)

You cannot use this if you are predicting the output

- Masked Decoder Self-Attention
- in output attending only to words that come before

Self-Attention Order in Machine Translation

- Encoder-Decoder Attention:
- from output attending to words in input sequence
- Encoder Self-Attention:
- attention to words in input sequence (all directions)

You cannot use this if you are predicting the output

- Masked Decoder Self-Attention
- in output attending only to words that come before Use this instead! BUT with word-by-word processing this would take a very long time to train!

Transformer Architecture

Vaswani et al., 2017

Figure 1: The Transformer - model architecture.

Transformer Architecture

Feed forward network processes every English word

Figure 1: The Transformer - model architecture.

Transformer Architecture

 every English word

Output

Figure 1: The Transformer - model architecture.

Transformer Architecture

 every English word

Figure 1: The Transformer - model architecture.

Masking Attention

Attention $(Q, K, V)=\operatorname{softmax}\left(Q K^{\top}\right) V$

Q = query vector = current English (or French) word
K key and V value $=$ memory of words seen before
Goal: Find key(s) most similar to query and retrieve value(s) that correspond to this/these key(s)
Softmax $=\Sigma_{i} \mathrm{e}^{q k i} \Sigma_{\Sigma_{\mathrm{j}} \mathrm{e}^{q \mathrm{k}}} \mathrm{V}_{\mathrm{i}}$ produces probability distribution over keys with peaks for keys similar to query

Masking Attention

Attention $(Q, K, V)=\operatorname{softmax}\left(Q K^{\top}\right) V$
Acts as a weight mask over V
$\mathrm{Q}=$ query vector = current English (or French) word
K key and V value $=$ memory of words seen before
Goal: Find key(s) most similar to query and retrieve value(s) that correspond to this/these key(s)
Softmax $=\Sigma_{i} \mathrm{e}^{\mathrm{qki}} \Sigma_{\Sigma_{\mathrm{i}} \mathrm{e}^{9 k j}} \mathrm{v}_{\mathrm{i}}$ produces probability distribution over keys with peaks for keys similar to query

Masking Attention

Attention $(\mathrm{Q}, \mathrm{K}, \mathrm{V})=\operatorname{softmax}\left(\mathrm{Q} \mathrm{K}^{\top}\right) \mathrm{V}$
Acts as a weight mask over V
$\mathrm{Q}=$ query vector = current English (or French) word
K key and V value $=$ memory of words seen before
Goal: Find key(s) most similar to query and retrieve value(s) that correspond to this/these key(s)
Softmax $=\Sigma_{i} \mathrm{e}^{q k i} \Sigma_{\Sigma_{\mathrm{j}} \mathrm{e}^{q \mathrm{k}}} \mathrm{V}_{\mathrm{i}}$ produces probability distribution over keys with peaks for keys similar to query

Masking Attention

Attention $(\mathrm{Q}, \mathrm{K}, \mathrm{V})=\operatorname{softmax}\left(\mathrm{Q} \mathrm{K}^{\top} / \operatorname{sqrt}\left(\mathrm{d}_{\mathrm{k}}\right)\right) \mathrm{V}$

Acts as a weight mask over V

Technical detail:

sqrt(d_{k}) normalization needed
for training

Q = query vector = current English (or French) word
K key and V value $=$ memory of words seen before
Goal: Find key(s) most similar to query and retrieve value(s) that correspond to this/these key(s)
Softmax $=\Sigma_{i} \mathrm{e}^{\mathrm{qki}} \Sigma_{\Sigma_{\mathrm{j}} \mathrm{e}^{\mathrm{akj}}} \mathrm{v}_{\mathrm{i}}$ produces probability distribution over keys with peaks for keys similar to query

Why Multi-Head Attention?

Prediction

Output branch

Matrix multiply:
e.g. processed English words by processed French words

Masking: Matrix multiply:
e.g. 2000 French words by 2000 French words but masking words that come afterwards with zero

Figure 1: The Transformer - model architecture.

Why Multi-Head Attention?

- Multiple attention layers (heads) in paraellel
- Each head uses different linear transformation
- Different heads can learn different relationships

Attention Visualizations

Figure 3: An example of the attention mechanism following long-distance dependencies in the encoder self-attention in layer 5 of 6 . Many of the attention heads attend to a distant dependency of the verb 'making', completing the phrase 'making...more difficult'. Attentions here shown only for the word 'making'. Different colors represent different heads. Best viewed in color.

Training a Transformer

- ADAM optimizer
- Dropout during training at every layer
- Label smoothing
- Auto-regressive decoding with beam-search
- Checkpoint-averaging
- Library available: https://github.com/tensorflow/tensor2tensor

Transformer Architecture Complexity

- $n=$ number of words in sequence
- $d=$ network depth

Number of operations: $\mathrm{n}^{2} \mathrm{~d}$
Number of activations: $n^{2}+n d$

Much better than CNNs or RNNs with number of operations $n d^{2}$

Transformer Architecture Complexity

- $n=$ number of words in sequence (<70 words per sentence)
- d= network depth (maybe 1000)

Every word attends to every word

Number of operations: $\mathrm{n}^{2} \mathrm{~d}$
e.g., $70 \times 70 \times 1000=4.9$ mill

Number of activations: $\mathrm{n}^{2}+\mathrm{nd}$

Much better than CNNs or RNNs with number of operations $n \mathrm{~d}^{2}$

$$
\text { e.g., } \quad 70 \times 1000 \times 1000=70 \mathrm{mill}
$$

Vaswani et al., 2017

Attention Is All You Need

Ashish Vaswani* Google Brain	Noam Shazeer* Google Brain	Niki Parmar* Google Research	Jakob Uszkoreit * Google Research
avaswani@google.com	noam@google.com	nikip@google.com	usz@google.com

Llion Jones*
Google Research llion@google.com
Aidan N. Gomez* \dagger
University of Toronto aidan@cs.toronto.edu

Lukasz Kaiser*
Google Brain lukaszkaiser@google.com

Illia Polosukhin*
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

Dosovitskiy et al., 2020

Vision

Transformer

An Image is Worth 16x16 Words:
 Transformers for Image Recognition at Scale

Alexey Dosovitskiy*, ${ }^{\dagger}$, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*, Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
\section*{Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby ${ }^{*} \dagger$}
*equal technical contribution, ${ }^{\dagger}$ equal advising
Google Research, Brain Team
\{adosovitskiy, neilhoulsby\}@google.com

Abstract

While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train. ${ }^{1}$

ViT
Architecture

Vision Transformer (ViT)

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them, add position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder. In order to perform classification, we use the standard approach of adding an extra learnable "classification token" to the sequence. The illustration of the Transformer encoder was inspired by Vaswani et al. (2017).

Vision Transformer

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86 M
ViT-Large	24	1024	4096	16	307 M
ViT-Huge	32	1280	5120	16	632 M

Table 1: Details of Vision Transformer model variants.

Vision Transformer Results

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	$\mathbf{8 8 . 5 5} \pm 0.04$	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	$88.4 / 88.5^{*}$
ImageNet ReaL	$\mathbf{9 0 . 7 2} \pm 0.05$	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	$\mathbf{9 9 . 5 0} \pm 0.06$	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	-
CIFAR-100	$\mathbf{9 4 . 5 5} \pm 0.04$	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	-
Oxford-IIIT Pets	$\mathbf{9 7 . 5 6} \pm 0.03$	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	-
Oxford Flowers-102	99.68 ± 0.02	$\mathbf{9 9 . 7 4} \pm 0.00$	99.61 ± 0.02	99.63 ± 0.03	-
VTAB (19 tasks)	$\mathbf{7 7 . 6 3} \pm 0.23$	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	-
TPUv3-core-days	2.5 k	0.68 k	0.23 k	9.9 k	12.3 k

Table 2: Comparison with state of the art on popular image classification benchmarks. We report mean and standard deviation of the accuracies, averaged over three fine-tuning runs. Vision Transformer models pre-trained on the JFT-300M dataset outperform ResNet-based baselines on all datasets, while taking substantially less computational resources to pre-train. ViT pre-trained on the smaller public ImageNet-21k dataset performs well too. ${ }^{*}$ Slightly improved 88.5% result reported in Touvron et al. (2020).

Vision Transformer Results

Vision

 Transformer

Dosovitskiy et al., 2020

Vision

Transformer

An Image is Worth 16x16 Words:
 Transformers for Image Recognition at Scale

Alexey Dosovitskiy*, ${ }^{\dagger}$, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*, Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
\section*{Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby ${ }^{*} \dagger$}
*equal technical contribution, ${ }^{\dagger}$ equal advising
Google Research, Brain Team
\{adosovitskiy, neilhoulsby\}@google.com

Abstract

While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train. ${ }^{1}$

[a]

[teddy]

[bear]
[sitting]

[in]

[a]

[blue]

[chair]

[with]

[a]

[laptop]

Animal Pose Tracking: 3D Multimodal Dataset and Tokenbased Pose Optimization

Patel et al., 2022

Animal Pose Tracking: 3D
 Multimodal Dataset and Token-
 based Pose Optimization

Animal Pose Tracking: 3D
 Multimodal Dataset and Tokenbased Pose Optimization

Patel et al., 2022

Using a Transformer:

Animal Pose
Tracking: 3D
Multimodal
Dataset and
Token-based
Pose
Optimization

Patel et al., $\underline{2022}$

A ConvNet for the 2020s

Zhuang Liu ${ }^{1,2 *}$ Hanzi Mao ${ }^{1}$ Chao-Yuan Wu ${ }^{1}$ Christoph Feichtenhofer ${ }^{1}$ Trevor Darrell ${ }^{2}$ Saining Xie ${ }^{1 \dagger}$

${ }^{1}$ Facebook AI Research (FAIR) $\quad{ }^{2}$ UC Berkeley
Code: https://github.com/facebookresearch/ConvNext

Abstract
The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually "modernize" a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed Con${ }^{\nu} \mathrm{NeXt}$. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8\% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets.

Figure 1. ImageNet-1K classification results for \bullet ConvNets and - vision Transformers. Each bubble's area is proportional to FLOPs of a variant in a model family. ImageNet-1K/22K models here take $224^{2} / 384^{2}$ images respectively. ResNet and ViT results were obtained with improved training procedures over the original papers. We demonstrate that a standard ConvNet model can achieve the same level of scalability as hierarchical vision Transformers while being much simpler in design.
visual feature learning. The introduction of AlexNet [40] precipitated the "ImageNet moment" [59], ushering in a new era of computer vision. The field has since evolved at a rapid speed. Representative ConvNets like VGGNet [64], Inceptions [68], $\operatorname{ResNe}(X) \mathbf{t}$ [28, 87], DenseNet [36], MobileNet [34], EfficientNet [71] and RegNet [54] focused on different aspects of accuracy, efficiency and scalability, and popularized many useful design principles.

A ConvNet for the 2020s

Zhuang Liu ${ }^{1,2 *}$ Hanzi Mao ${ }^{1}$ Chao-Yuan Wu ${ }^{1}$ Christoph Feichtenhofer ${ }^{1}$ Trevor Darrell ${ }^{2}$ Saining Xie ${ }^{1 \dagger}$

${ }^{1}$ Facebook AI Research (FAIR) $\quad{ }^{2}$ UC Berkeley
Code: https://github.com/facebookresearch/ConvNeXt

Abstract
The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to enerat computer vision tasks such as object detection and semantic segmentation. It is the hierarchitcal Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually "modernize" a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed Con$v_{N e X t}$. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8\% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets.

Figure 1. ImageNet-1K classification results for \bullet ConvNets and - vision Transformers. Each bubble's area is proportional to FLOPs of a variant in a model family. ImageNet- $1 \mathrm{~K} / 22 \mathrm{~K}$ models here take $224^{2} / 384^{2}$ images respectively. ResNet and ViT results were obtained with improved training procedures over the original papers. We demonstrate that a standard ConvNet model can achieve the same level of scalability as hierarchical vision Transformers while being much simpler in design.
visual feature learning. The introduction of AlexNet [40] precipitated the "ImageNet moment" [59], ushering in a new era of computer vision. The field has since evolved at a rapid speed. Representative ConvNets like VGGNet [64], Inceptions [68], $\operatorname{ResNe}(X) t$ [28, 87], DenseNet [36], MobileNet [34], EfficientNet [71] and RegNet [54] focused on different aspects of accuracy, efficiency and scalability, and popularized many useful design principles.

Learning Outcomes

Understand

- Concept of attention
- Transformers for NLP ("Attention is All you Need")
- Vision transformers for object recognition ("An image is worth $16 x 16$ Words")
- Vision transformers for image captioning
- Vision transformers for 3D pose optimization and tracking

