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Vision Transformer (for CV)

Lecture by Margrit Betke, CS 585, April 16, 2024
with many slides from Steve Seitz’ videos:
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https://www.youtube.com/watch?v=lnA9DMvHtfI&t=4s
https://www.youtube.com/watch?v=YDiSFS-yHwk

Early one morning the sun was shining | was laying in bed

Wondering if she had changed at all if her hair was still red

Bob Dylan, Tangled up in Blue

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI
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Early one morning the sun was shiring—1Twas laying in bed
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Wondering if she had changed at all if her hair was still red

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI
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Iq);in in bed
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Wondering if she had changed at all if her hair ‘was\s’rill red

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

ying in bed

Early one morning the sun shining |

red

Wondering if she had chqﬁged at all if

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

lefying in bed

Early one morning the sun ad shining
her i still  red
Wondering |if|she had changed at all |if
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slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

lefying bed

Early one morning the sun ad shining |

er hair still red

Wondering |f __

she had chqﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun

er hair still red

Wondering if
53}

she had chqﬁged at all

Language Model

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI
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Early®one morning the sun

shining |

er hair still red

Wondering if

she had chqﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI
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Early one®morning the sun

shining |

er hair still red

Wondering if

she had chou;lged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning

bed
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Early one morning #the sun

shining |

er hair still red

Wondering if

she had chou;lged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was

bed

Early one morning the sun asPshining |

er hair still red

Wondering if

she had chou;lged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining

bed
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shining =

Early one morning the sun

er hair still red

Wondering if

she had chqﬁged at all

slide from Steve Seitz's video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining |

lefying i bed

AN

Early one morning the sun Ava shining |
er hair still  red

Wondering if

she had chqﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining | was

bed

Early one morning the sun shining |

er hair still red

Wondering if

she had chqﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining | was laying in bed

Early one morning the sun shining |

er hair still red

Wondering if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining | was laying in bed

Wondering

bed

Early one morning the sun shining |

er hair still red

Wondering >if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining | was laying in bed
Wondering if

bed

Early one morning the sun shining |

er hair still red

Wondering if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining | was laying in bed

Wondering if she had changed at

Early one morning the sun shining |

er hair still red

Wondering if

she had choﬁged at¥all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining | was laying in bed

Wondering if she had changed at all

Early one morning the sun shining |

er hair still red

Wondering if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining | was laying in bed

Wondering if she had changed at all if

Early one morning the sun shining |

er hair still red

Wondering if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining | was laying in bed

Wondering if she had changed at all if her

Early one morning the sun shining |

er *hair

still red

Wondering if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining | was laying in bed

Wondering if she had changed at all if her hair

Early one morning the sun shining |

er hair still red

Wondering if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining | was laying in bed

Wondering if she had changed at all if her hair was

Early one morning the sun shining |

er hair still red

Wondering if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining | was laying in bed

Wondering if she had changed at all if her hair was still

Early one morning the sun shining |

er hair still ®red

Wondering if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining | was laying in bed

Wondering if she had changed at all if her hair was still red

Early one morning the sun shining |

er hair still red

Wondering if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI
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Early one morning the #sun

shining |

er hair still red

Wondering if

she had chqﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

the sun

bed
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Early one morning the sun

shining |

er hair still red

Wondering if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

the sun was

bed

Early one morning the sun shining |

er hair still red

Wondering if

she had chou;lged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

the sun was still

bed

Early one morning the sun shining |

er hair still ®red

Wondering if

she had chou;lged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

the sun was still red

bed

Early one morning the sun shining |

er hair still red

Wondering if

she had chou;lged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

the sun was still red

her

bed

Early one morning the sun shining |

er Phair

still red

Wondering if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

the sun was still red

her hair

bed

Early one morning the sun shining |

er hair still red

Wondering if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

the sun was still red

her hair was

bed

Early one morning the sun asPshining |

er hair still red

Wondering if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

the sun was still red

her hair was shining

bed

o :
shining |

Early one morning the sun

er hair still red

Wondering if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

the

bed

> > :. >
Early one morning the #sun

shining |

er hair still red

Wondering if

she had chqﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

the sun

bed

> > > :.
Early one morning the sun

shining |

er hair still red

Wondering if

she had choﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

the sun was

bed

Early one morning the sun shining |

er hair still red

Wondering if

she had chou;lged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

the sun was laying

bed

Early one morning the sun shining |

er hair still red

Wondering if

she had chou;lged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

the sun was laying in

Early one morning the sun shining |

er hair still red

Wondering if

she had chou;lged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

the sun was laying in bed

bed

Early one morning the sun shining |

er hair still red

Wondering if

she had chou;lged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

| was shining | was shining

bed

o :
shining =

Early one morning the sun

er hair still red

Wondering if

she had chou;lged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

| was shining | was shining | was still red

Early one morning the sun shining |

er hair still red

Wondering if

she had chou;lged at all
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she was standing on the side of my mind
side of my shoes heading out of my face

one of my chair said our lives together

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

P(xn xn 1) .‘ : ‘bed

Early one mornlng the sun

shiﬁing [

er hair still red

Wondering |f

she had chqﬁged at all

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning |the sun was shining | was laying in bed

Wondering if she had changed at all if her hair was still red

Early one morning

trigrams

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early sun was shining | was laying in bed

Wondering if she had changed at all if her hair was still red

Early one morning

one morning the

trigrams

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one wos shining | was laying in bed

Wondering if she had changed at all if her hair was still red

Early one morning

one morning the

morning the sun

trigrams

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning shining | was laying in bed

Wondering if she had changed at all if her hair was still red

Early one morning
one morning the

morning the sun

the sun was

trigrams

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

P(xn‘xn—l» xn—z)

Early one =——» morning

one morning =»the
morning the =¥ sun
the sun == was
sun wdas === shining
was shining = |
shining | =——> was

| WA =y |1y iNG




Early one morning the sun was shining | was laying in bed

Wondering if she had changed at all if her hair was still red

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining | was laying in bed

Wondering if she had changed at all if her hair was still red

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining | was laying in bed

Wondering if she had changed at all if her hair was still red

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

P(xn |xn—1r xn—Zr xn—3: xn—4: xn—Sr xn—6r xn—7: xn—8: xn—9r xn—lO: xn—llr Xn—12: xn—13)

1070 combinations

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Function Approximation

Fourier Series:  f(x) =/ \/" J/ VY L wwi

Taylor Series:  f(x) = +/ -}\/ -}\4 + ..

Neural Network:

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

_ 2
sin(x) 10

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

function (blue line)

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

P(xn ‘xn—l: Xn—-2)Xn-3Xn—4,Xn-5,Xn—6,Xn—=7, - )

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

Early one morning the sun was shining | was laying in bed

Wondering if she had changed at all if her hair was still red

slide from Steve Seitz’s video


https://youtu.be/lnA9DMvHtfI

red

t

Early one morning the sun was shining | was laying in bed

Wondering if she had changed at all if her hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

red

neural network

Early one morning the sun was shining |  was laying in bed wondering if she had changed at all if her hair was still

slide from Steve Seitz's video


https://youtu.be/YDiSFS-yHwk
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slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

word2vec

[Collobert & Weston 2008; Mikolov et al. 2013]

store-bought gimmicks and appliances, the toasters and




about

o)

° apex
‘ [ )
e zenith

Word Embedding (e.g., word2Vec, GloVe)

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

red

neural network

Early one morning the sun was shining |  was laying in bed wondering if she had changed at all if her hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk
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if her hair was still

if she had changed at all

ing

bed wonderi

In

was laying

.

ining

Early one morning the sun was sh

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

Early one morning the sun was shining | was laying in bed

Wondering if she had changed at all if her hair was still ?

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

bed

hair was still red

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

1 1 1 1

in bed Wondering if she had changed at all if her hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

red

next word prediction

bed hair was still
attention
in bed Wondering jf she had changed at all if her hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

bed hair was still

Tirain

in bed Wondering jf she had changed at all if her hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

Two roads diverted in a yellow wood
And sorry | could not travel both

And be one traveler, long | stood
And looked down as far as | could
To where it bent in the undergrowth;

Robert Frost, Road Not Taken

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

red

next word prediction

hair was still

in

bed Wondering if

she

attention

had changed at all

if

her

hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

brown

next word prediction

hair was still

in

bed Wondering if

she

attention

had changed at all

if

her

hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

brown

next word prediction

J

hair was still

in

bed Wondering if

she

I I
* a*ntion *

had changed at all

if

her

hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

red

Transformer

in bed Wondering jf she had changed at all if her hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

\_

attention

J

in

bed Wondering if

she

had changed qt

all

if

her

hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

4 )
attention
\__ y,
| | | | | | | | | | | | |
in bed Wondering jf she had changed at all if her hair was

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

-
attention
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| | | | | | | | | | | | |
in bed Wondering jf she had changed at all if her hair was

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk
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.2 her +'6 hair _I_.l wdas _I_.1 still

attention N

- J
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in bed Wondering jf she had changed at all if

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

Csﬁll
1 r + 1 & 1 1 [ [ 1 | |

~
attention

J

in bed Wondering jf she had changed at all if her hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

Cstill
.t  + { {1+ & 1 1 | | [ |

~
attention

J

in  bed Wonderng if  she had‘changed

at all if her hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

Cstill
I

4 )
attention
9 N .1 .5 2 N Y
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in bed Wondering jf she hadIchanged at all if her hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

Cstill
I

-

\_

.1 Wondering _I_] if _|_5 she _|_2 had _I_] changed = Cchonged

~N

J

in bed at all if

her

hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

Cchonged CSTi”

~N

attention
y,
| | | | | | | | | | | | | |
in bed Wondering jf she had changed at all if her hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

Cin Cbed Cwondering Cif

Cshe Chqd Cchanged

Cq'r qul Cs’rill Cs’rill Chqir Cqu Cs’rill
L 1 1 | | |

4 )
attention
\__ y,
| | | | | | | | | | | | | |
in bed Wondering jf she had changed at all if her hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

prediction

Cin Cbed Cwondering Cif Cshe Chqd Cchanged Cq'r qul Cs’rill Cs’rill Chqir Cqu Cs’rill
I I I N N T A A R N A
4 )
attention
\_ J
| | | | | | | | | | | | | |
in  bed Wondering if  she had changed at all if her hair was still

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

Cin Cbed Cwondering Cif

in

bed Wondering if

prediction

Cshe Chqd Cchcmged Cq'r qul Cs'rill Cs'rill Chqir Cqu Cs'rill

she

had changed at

all

i.f

her

hair was still

-

attention

~

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

prediction

attention

It’s

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

0.4

the
0.3

looking
0.1

possible
0.1

getting
0.1

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

prediction

attention

It’s

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

lot

prediction

attention

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

prediction

attention

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

fun

prediction

attention

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

prediction

attention

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

Abraham

prediction

attention

- J
| 1 1+ & > 1 © | |

The 16th was
president

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

The 16th President was ¢

The capital of Zimbabwe is 2

Frank Zappa’s middle name is ¢

Napoleon was born on this date ¢

The prime factorization of 19456721434 is ¢
Queen Victoria’s maiden name was ¢

US per-capita income in 1957 was 2

The lat long coordinates of Rome are ¢

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

prediction

attention

* 96 (GPT-3) 118 (Paim)

prediction

attention

prediction

attention

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

prediction

attention

prediction

attention

prediction

attention

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

prediction

attention

prediction

attention

- T T T T T T 1T

— __attenon

Syntax

slide from Steve Seitz’s video


https://youtu.be/YDiSFS-yHwk

Semantics

o~ . attenon

prediction

attention

prediction

attention

slide from Steve Seitz’s video
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How much data
to train¢



All of it...



All text on the internet?

Is that legal?
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All text on the
internet?

Litigation | Copyright | Litigation | Technology | Intellectual Property

John Grisham, other top US authors sue

OpenAl over copyrights
Is that legal?

By Blake Brittain
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All text on the internet?

Is that legal? December 27, 2023

The Times Sues OpenAl and Microsoft
Al & Ethics! Over A.I. Use of Copyrighted Work

Millions of articles from The New York Times were used to train
chatbots that now compete with it, the lawsuit said.
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Training the 175 billion parameters
of GPT-3 on
“all text on the internet”
on a single GPU or computer
would take 355 years

and $4,600,000

aaaaaaaaaaaaaa



How long did it take OpenAl to train GPT-3¢

a month



What did OpenAl train on?

GPT-3 training datal':°

Proportion
Dataset # tokens o o
within training

Common Crawl 410 billion 60%
WebText2 19 billion 22%
Books1 12 billion 8%
Books?2 55 billion 8%
Wikipedia 3 billion 3%

Source: Wikipedia

ES&EESTNY CS 585: Image and Video Computing © Betke



What about GPT-47

1 trillion parameters

e Sam Altman stated that the cost of training GPT-4 was
more than $S100 million.

BOSTON IR
UNIVERSITY Source: Wikipedia

© Betke



What about GPT-47

1 trillion parameters

e Sam Altman stated that the cost of training GPT-4 was
more than $S100 million.

Why are the [awsuits so costly?

* We don’t know how to “untrain” neural networks.
e “Unlearning” is an exciting research area!

BOSTON IR
Source: Wikipedia © Betke



The 16th President was

The capital of Zimbabwe is

Frank Zappa’s middle name is

Napoleon was born on this date

The prime factorization of 19456721434 is
Queen Victoria’s maiden name was

US per-capita income in 1957 was

The lat long coordinates of Rome are
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The 16th President was Abraham Lincoln

The capital of Zimbabwe is Harare

Frank Zappa’s middle name is Vincent

Napoleon was born on this date 1769

The prime factorization of 19456721434 is 2X3X3X17
Queen Victoria’s maiden name was Alexandrina Victoria
US per-capita income in 1957 was $2,974

The lat long coordinates of Rome are 41.894722, 12.48
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a haiku about a turtle and a stop sign
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a haiku about a turtle and a stop sign

Turtle at the stop sign
waiting for the perfect moment

to cross the busy road
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translate “tangled up in blue” to 5 languages
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translate “tangled up in blue” to 5 languages

1. Spanish: Enredado en azul
2. French: Emmélé dans le bleu
3. Italian: Intrecciato nel blu

4, German: Verwickelt in blau

5. Japanese: 5 LVRIZHEE ST
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the number after the number after 37 is 74

I'm heading north. | turn right. Then | turn left.
I'm now heading south
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the recipe for chocolate guacamole pancakes

Ingredients:

1 ripe avocado, mashed
1/4 cup cocoa powder
1/4 cup all-purpose flour

1 teaspoon baking powder
1/4 teaspoon salt

1/2 cup milk

1 egg

1 tablespoon vegetable oil
1/4 cup chocolate chips

Directions:

. In a separate bowl, whisk together the milk, egg, and vegetable oil.

. Add the wet ingredients to the dry ingredients and mix until well combined.
. Fold in the chocolate chips.

. Heat a large skillet over medium heat.

. Scoop 1/4 cup batter onto the skillet for each pancake.

. Cook for 2-3 minutes per side, or until the pancakes are golden brown.

. Serve with your favorite toppings.

CONO LG N WD —

. In a medium bowl, combine the avocado, cocoa powder, flour, baking powder, and salt.
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https://jalammar.qgithub.io/illustrated-transformer/

For more detalls: https://jalammar.qgithub.io/illustrated-gpt2/
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a pattern of characters that looks like a star

. O .
O O O
[ ] O o
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a pattern of characters that looks like a vertical line

. O .

O O O O

slide from Steve Seitz’s video


https://youtu.be/GYyP7Ova8KA

a pattern of characters that looks like a triangle

. O .

. O O .

. O O O .

. O O O O .
. O O O O O .
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Large Language Model
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Large Language Model

1,000s of words

T —

1,000,000s of pixels
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squirrel reaching for a nut
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squirrel reaching for a nut
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squirrel reaching for a nut
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squirrel reaching for a nut
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squirrel reaching for a nut

Parti, https://parti.research.qoogle/



https://parti.research.google/

squirrel reaching for a nut underwater
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fossil of a squirrel reaching for a nut
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squirrel made of toothpicks wearing sunglasses reaching for a nut
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DLSR photograph of a whimsical fantasy house shaped like a squirrel
with windows and a door, in the forest
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Squirrel reaching for a nut. by Leonardo da Vinci
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Squirrel reaching for a nut. Van Gogh painting
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Intricately carved cathedral door of a squirrel reaching for a nut
slide from Steve Seitz’'s video
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Squirrel reaching for a nut. Woodcut tessellation pattern by M.C. Escher
slide from Steve Seitz’'s video
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slide from Steve Seitz’s video
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.
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Sequence 2 Sequence models in language

Encoder ‘ She |—> IS > eating—~> a — green — apple

Context vector (length: 5)

l C (0.1,-0.2, 0.8, 1.5, -0.3] ><

Decoderlﬂﬁl,HE —>||]’z', - =1 > ﬁl"zﬁ%‘
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Attention and Context in language

Encoder ‘ She |—> IS > eating a green — apple
Context vector (length: 5)
l C 0.1, -0.2, 0.8, 1.5, -0.3] ><
Decoder ‘ it |—>| £ —>| 172 —1 2K |—’ f"%
C * * attelr'tion
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Self-Attention

o Content-based querying

e Retrieves similar items

o Weighted sum of similarities

o Constant path length between any two positions

o Variable-sized perceptive field

o Gating/multiplication enables crisp error propagation
o Trivial to parallelize (per layer)

e« Canreplace sequence-aligned recurrence entirely

BOSTON



Self-Attention Order in Machine Translation

e Encoder-Decoder Attention:

o from output attending to words in input sequence

e Encoder Self-Attention:

o attention to words in input sequence (all directions)

e Masked Decoder Self-Attention

o in output attending only to words that come before
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o from output attending to words in input sequence
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predicting the output
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Self-Attention Order in Machine Translation

e Encoder-Decoder Attention:

o from output attending to words in input sequence

e Encoder Self-Attention:

You cannot use this if you are

o attention to words in input sequence (all directions) <
predicting the output

e Masked Decoder Self-Attention

o in output attending only to words that come before  Use this instead!
BUT with word-by-word processing this would take a very long time to train!
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Transformer Architecture

Vaswani et al., 2017
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Masking Attention

Attention(Q,K,V) = softmax(Q K') V

Q = query vector = current English (or French) word
K key and V value = memory of words seen before

Goal: Find key(s) most similar to query and retrieve value(s) that
correspond to this/these key(s)

Softmax = X, e« /Zj .k V; produces probability distribution over keys
with peaks for keys similar to query
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Masking Attention

Attention(Q,K,V) = softmax(Q K') V

Acts as a weight mask over V
Q = query vector = current English (or French) word
K key and V value = memory of words seen before

Goal: Find key(s) most similar to query and retrieve value(s) that
correspond to this/these key(s)

Softmax = X, e« /Zj .k V; produces probability distribution over keys
with peaks for keys similar to query
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Masking Attention  veryfast

2 matrix multiplications & 1 softmax operation

Attention(Q,K,V) = softmax(Q K') V

Acts as a weight mask over V
Q = query vector = current English (or French) word
K key and V value = memory of words seen before

Goal: Find key(s) most similar to query and retrieve value(s) that
correspond to this/these key(s)

Softmax = X, e« /Zj .k V; produces probability distribution over keys
with peaks for keys similar to query
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Masking Attention  veryfast

2 matrix multiplications & 1 softmax operation

. _ T Technical detail:
Attention(Q,K,V) = softmax(Q K'/ sqrt(d,) ) V sqrt(d,) normalization needed
Acts as a weight mask over V for training

Q = query vector = current English (or French) word
K key and V value = memory of words seen before

Goal: Find key(s) most similar to query and retrieve value(s) that
correspond to this/these key(s)

Softmax = X, e« /Zj .k V; produces probability distribution over keys
with peaks for keys similar to query
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Feed forward network processes
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Why Multi-Head Attention?

* Multiple attention layers (heads) in paraellel
e Each head uses different linear transformation
 Different heads can learn different relationships
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Attention Visualizations
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Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of
the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color.
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Training a Transformer

* ADAM optimizer

* Dropout during training at every layer

* Label smoothing

* Auto-regressive decoding with beam-search
* Checkpoint-averaging

e Library available: https://github.com/tensorflow/tensor2tensor
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Transformer Architecture Complexity

* n= number of words in sequence
* d= network depth

Number of operations: n?d

Number of activations: n?+nd

Much better than CNNs or RNNs with number of operations n d?
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Transformer Architecture Complexity

* n= number of words in sequence (<70 words per sentence)
* d= network depth (maybe 1000)

Every word attends to every word

Number of operations: n’d e.g., 70x70x1000=4.9 mill
Number of activations: n?+ nd

Much better than CNNs or RNNs with number of operations n d?
e.g., 70x1000x1000=70 mill
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performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
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ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to train.!
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).
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Vision Transformer

Model Layers Hiddensize D MLPsize Heads Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Table 1: Details of Vision Transformer model variants.
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Vision Transformer Results
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UNIVERSITY

Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student

(ViT-H/14)  (ViT-L/16)  (ViT-L/16) (ResNetl152x4) (EfficientNet-L2)
ImageNet 88.55 +0.04 &7.76+0.03 85.30+0.02 87.54 4+ 0.02 88.4/88.5*
ImageNet Real 90.72+0.05 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+0.06 99.42+0.03 99.15+0.03 99.37 +0.06 —
CIFAR-100 94.55+0.04 93.90+0.05 93.25+0.05 93.51 +0.08 —
Oxford-IIIT Pets 97.56+0.03 97.32+0.11 94.67+o0.15 96.62 +0.23 —
Oxford Flowers-102  99.68 +0.02  99.74+0.00 99.61 +0.02 99.63 +0.03 —
VTAB (19 tasks) 77.63+023 76.28+046 72.72+0.21 76.29 +1.70 —
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

Table 2: Comparison with state of the art on popular image classification benchmarks. We re-
port mean and standard deviation of the accuracies, averaged over three fine-tuning runs. Vision
Transformer models pre-trained on the JFT-300M dataset outperform ResNet-based baselines on all
datasets, while taking substantially less computational resources to pre-train. ViT pre-trained on the
smaller public ImageNet-21k dataset performs well too. *Slightly improved 88.5% result reported
in Touvron et al. (2020).
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Vision Transformer Results

e Caltechl101
e CIFAR-100
e DTD

® Flowers102
® Pets

® Sun397

e SVHN

ViT-H/14 (JFT) 953 85.5 75.2 99.7 97.2 65.0 83.9
VIT-L/16 (JFT) 954 81.9 74.3 99.7 96.7 63.5 &87.4
VIT-L/16 (I21k) 90.8 84.1 74.1 99.3 92.7 61.0 80.9
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Animal Pose Tracking: 3D
Multimodal Dataset and Token-
based Pose Optimization

Patel et al., 2022
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Animal Pose Tracking: 3D
Multimodal Dataset and Token-
based Pose Optimization
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Animal Pose Tracking: 3D
Multimodal Dataset and Token-
based Pose Optimization
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Abstract

The “Roaring 205" of visual recognition began with the
introduction of Vision Transformers (ViTs), which quickly
superseded ConvNets as the state-of-the-art image classifica-
tion model. A vanilla ViT, on the other hand, faces difficulties
when applied to general computer vision tasks such as object
detection and semantic segmentation. It is the hierarchical
Transformers (e.g., Swin Transformers) that reintroduced sev-
eral ConviNet priors, making Transformers practically viable
as a generic vision backbone and demonstrating remarkable
performance on a wide variety of vision tasks. However,
the effectiveness of such hybrid approaches is still largely
credited to the intrinsic superiority of Transformers, rather
than the inherent inductive biases of convolutions. In this
work, we reexamine the design spaces and test the limits of
what a pure ConvNet can achieve. We gradually “modernize”
a standard ResNet toward the design of a vision Transformer,
and discover several key components that contribute to the
performance difference along the way. The outcome of this
exploration is a family of pure ConvNet models dubbed Con-
vNeXt. Constructed entirely from standard ConvNet modules,
ConvNeXis compete favorably with Transformers in terms of
accuracy and scalability, achieving 87.8% ImageNet top-1
accuracy and outperforming Swin Transformers on COCQ
detection and ADE20K segmentation, while maintaining the
simplicity and efficiency of standard ConvNets.
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Figure 1. ImageNet-1K classification results for « ConvNets and

vision Transformers. Each bubble’s area is proportional to FLOPs
of a variant in a model family., ImageNet-1K/22K models here
take 224°/384” images respectively. ResNet and ViT results were
obtained with improved training procedures over the original papers.
‘We demonstrate that a standard ConvINet model can achieve the
same level of scalability as hierarchical vision Transformers while
being much simpler in design.

visual feature learning. The introduction of AlexNet [40]
precipitated the “ImageNet moment™ [59], ushering in a new
cra of computer vision. The ficld has since evolved at a
rapid speed. Representative ConvNets like VGGNet [64],
Inceptions [68], ResNe(X)t |28, 87], DenseNet [36], Mo-
bileNet [34], EfficientNet [71] and RegNet [54] focused on
different aspects of accuracy, efficiency and scalability, and
popularized many useful design principles.
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Learning Outcomes

Understand

* Concept of attention

* Transformers for NLP (“Attention is All you Need”)

* Vision transformers for object recognition (“An image is worth 16x16 Words”)
 Vision transformers for image captioning

* Vision transformers for 3D pose optimization and tracking
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