Edge Detection and Active Contours

CS 585, February 22, 2024 Lecture by Margrit Betke

The Causes of Brightness Changes in an Image

The Causes of Brightness Changes in an Image

- 1. Occluding boundary
- 2. Changes in surface orientation
- 3. Changes in surface reflectance
- 4. Illumination discontinuity

Edge Detection

Definition:

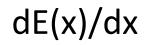
Edges = brightness changes (discontinuities) in an image

due to

- occlusion
- changes in surface orientation
- changes in surface reflectance (material)
- illumination discontinuity

1D Case: Image E(x) = grey value = brightness

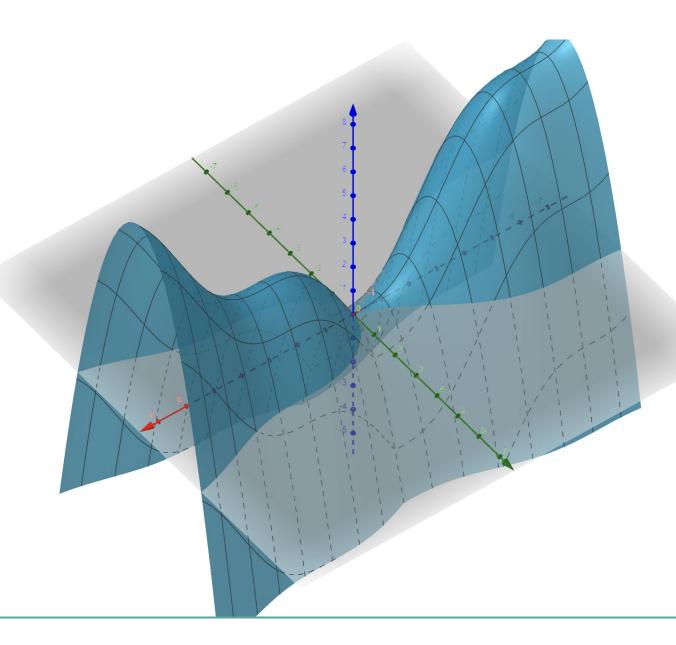
E(x)



 $d^2E(x)/dx^2$

2D Case: E(x,y)

Direction and magnitude of brightness change vector: Gradient of brightness



Edge is perpendicular to gradient

Discrete Approximation of Derivatives = Finite Differences

E(r,s+1)	
E(r,s)	E(r+1,s)

E(r+1,s) - E(r,s)E(r,s+1) - E(r,s)

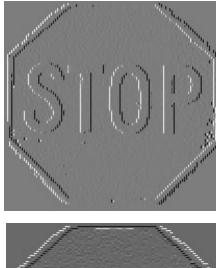
Discrete Approximation of Derivatives = Finite Differences

E(r,s+1)	
E(r,s)	E(r+1,s)

$$E(r,s+1) - E(r,s) = \frac{1}{-1}$$

$$E(r+1,s) - E(r,s) = -1$$

Which is $\partial E / \partial x$? Which $\partial E / \partial y$?



CS 585: Image and Video Computing

Better Approximation of Brightness Derivatives

E(r,s+1)	E(r+1, s+1)	
E(r,s)	E(r+1,s)	

$$E(r+1, s+1) - E(r,s+1) + E(r+1,s) - E(r,s)$$

 $E(r+1, s+1) - E(r+1,s) + E(r,s+1) - E(r,s)$

Better Approximation of Brightness Derivatives

Measuring Horizontal edges E(r+1, s+1) - E(r+1, s) + E(r, s+1) - E(r, s) $\frac{1}{-1}$ $\frac{-1}{-1}$

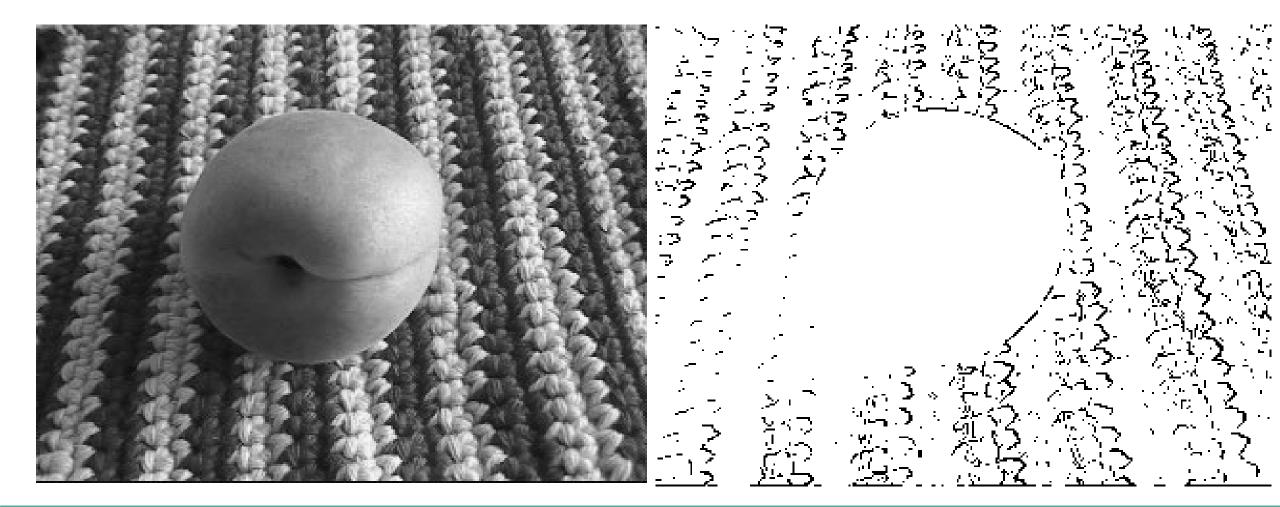
Vertical edges
$$E(r+1, s+1) - E(r, s+1) + E(r+1, s) - E(r, s)$$
 -1 1

Simple Edge Detection Algorithm

- 1. Compute $\partial E / \partial x$ and $\partial E / \partial y$ to determine brightness gradient direction.
- 2. To compute "edge strength" M, use
 - $|\partial E / \partial x| + |\partial E / \partial y|$ or
 - $(\partial E / \partial x)^2 + (\partial E / \partial y)^2$ or
 - magnitude sqrt{ $(\partial E / \partial x)^2 + (\partial E / \partial y)^2$ }

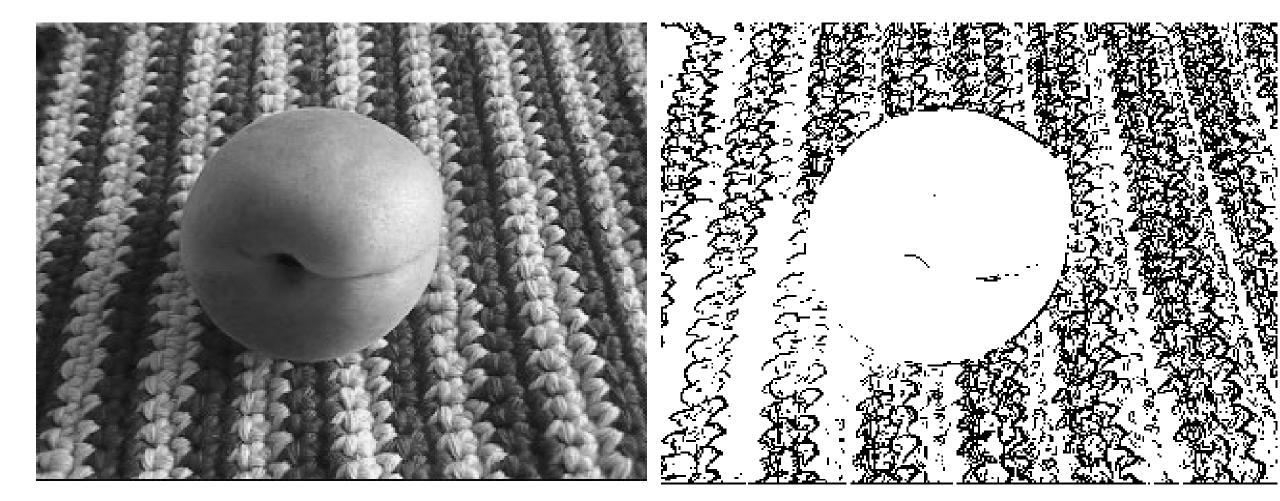
- 3. Compute binary edge map:
- IF M > threshold, EdgeMap(x,y) = 1; ELSE EdgeMap(x,y) = 0;

High Threshold on Magnitude of Brightness Change



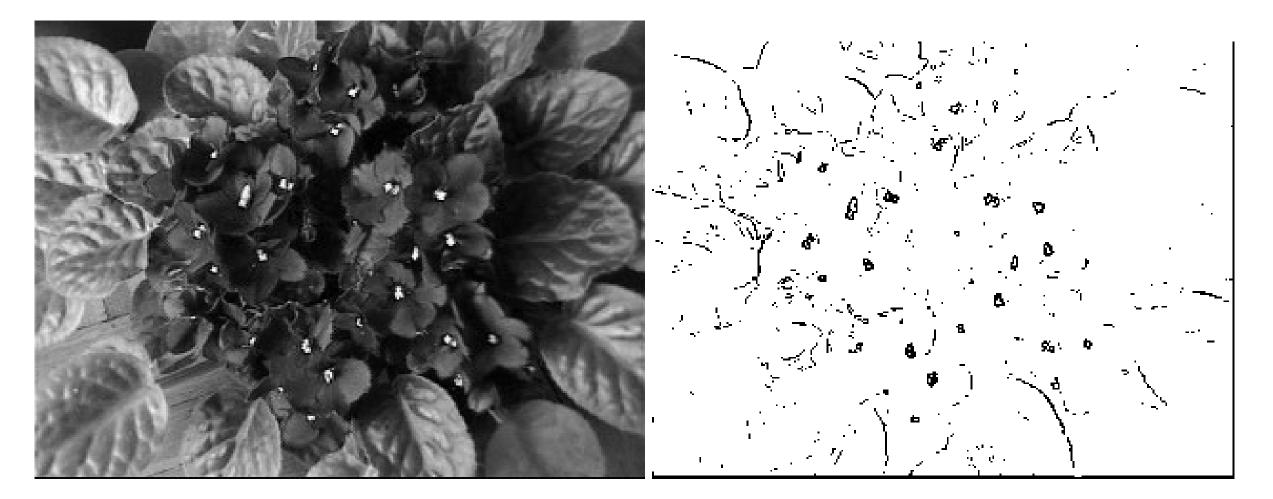
CS 585: Image and Video Computing

Low Threshold on Magnitude of Brightness Change



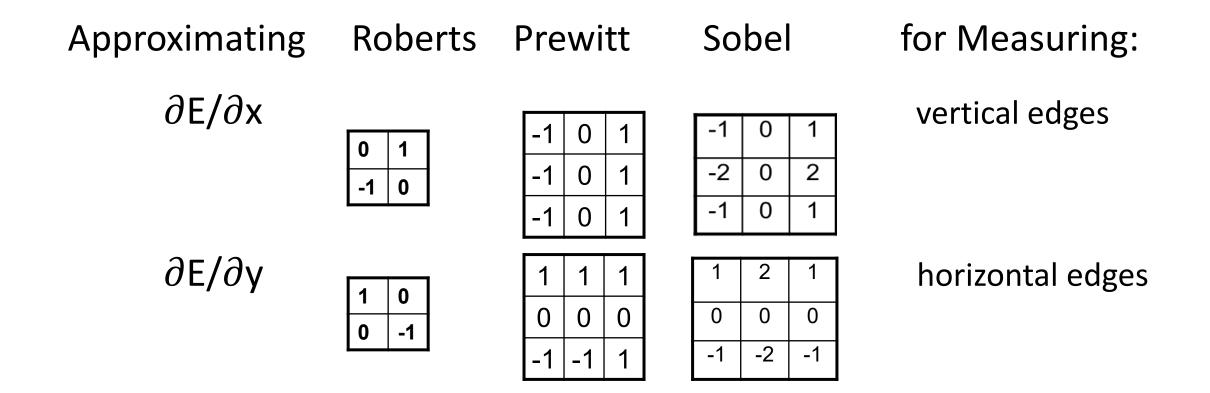
Low Threshold on Magnitude of Brightness Change

High Threshold on Magnitude of Brightness Change



CS 585: Image and Video Computing

Other Commonly Used Edge Masks to Approximate the Brightness Gradient



Approximating 2nd Derivatives of Brightness

Difference of differences:

$$\begin{array}{l} \partial^{2} E/\partial x^{2} = 1/\epsilon^{2} & \{ [E(r-1,s) - E(r,s)] - [E(r,s) - E(r+1,s)] \} = \\ & 1/\epsilon^{2} & \{ E(r-1,s) - 2 E(r,s) + E(r+1,s) \} \\ \partial^{2} E/\partial y^{2} = 1/\epsilon^{2} & \{ E(r,s-1) - 2 E(r,s) + E(r,s+1) \} \\ & \text{where} \end{array}$$

E(r-1,s+1)	E(r,s+1)	E(r+1,s+1)
E(r-1,s)	E(r,s)	E(r+1,s)
E(r-1,s-1)	E(r,s-1)	E(r+1,s-1)

Edge Detection via Laplacian at Center Cell

The Laplacian of E(x,y) is defined as $\partial^2 E/\partial x^2 + \partial^2 E/\partial y^2$.

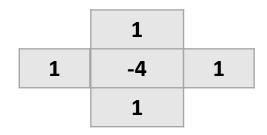
Approximation of the Laplacian at center cell of 9-pixel window: 4/ ϵ^2 { ¼ [E(r-1,s) + E(r, s-1) + E(r+1,s) + E(r,s+1)] - E(r,s) }

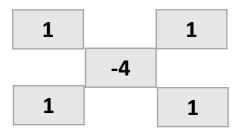
Mask: 1 1 -4 1 1 1

Edge Detection via Laplacian at Center Cell

Mask:

Mask rotated by 45 degrees:





Accurate approximation of the Laplacian (linear combination of above):

1	4	1
4	-20	4
1	4	1

Edge Detection Algorithm:1) Approximate Laplacian2) Find zero crossings

1	4	1
4	-20	4
1	4	1

Approximation by

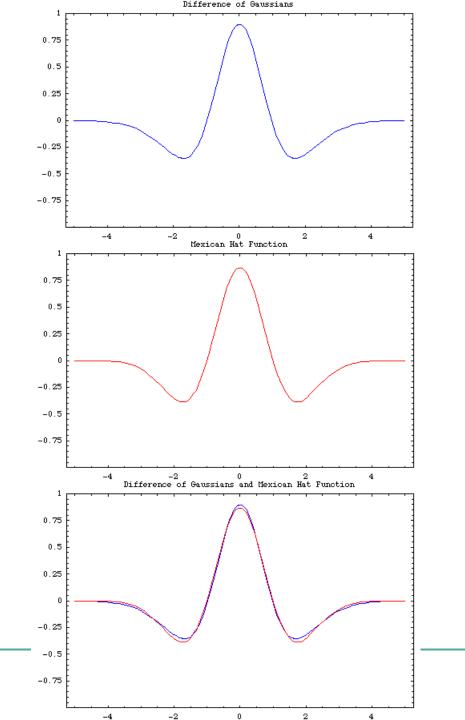
Difference of Gaussians

Or

BOSTON

UNIVERSITY

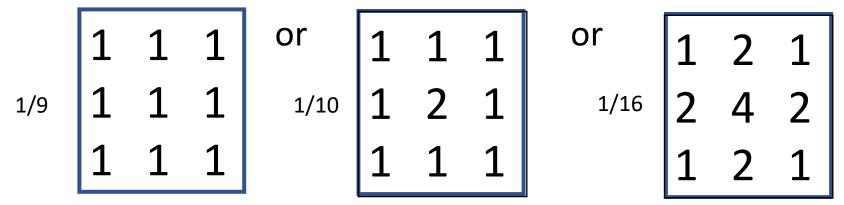
"Mexican Hat Function"



Source of plot: Wikipedia, Justin Wick

Image Smoothing

Use Image Masks multiple times:

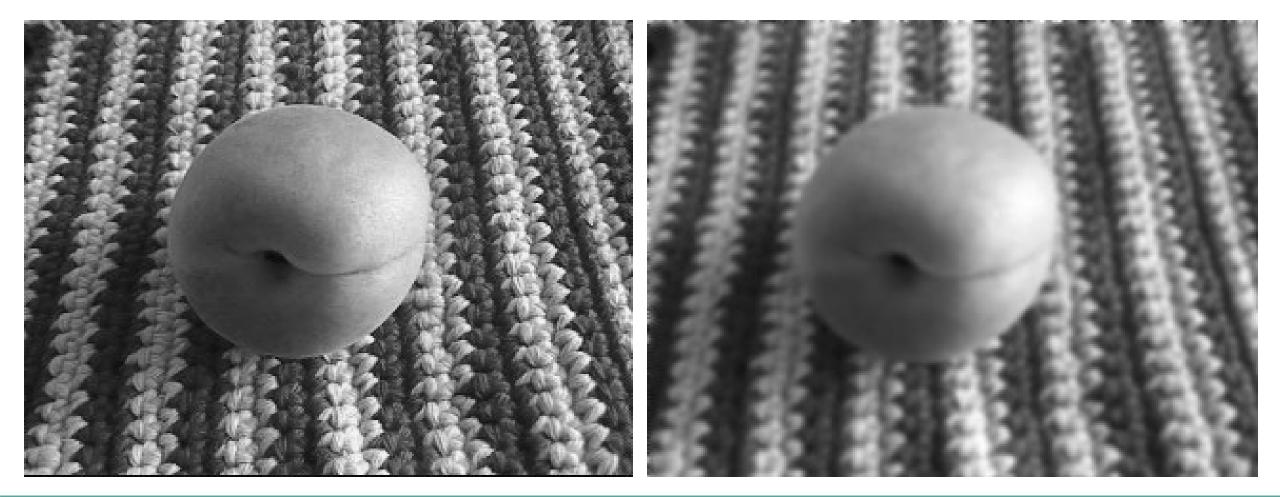


Or use a "Gaussian Mask," for example:

$\frac{1}{159}$	$\lceil 2 \rceil$	4	5	4	2
	4	9	12	9	4
	5	12	15	12	5
	4	9	12	9	$2 \\ 4 \\ 5 \\ 4 \\ 2 \\ $
	2	4	5	4	2

Smoothing Applied to our Example

Smoothing Applied to our Example

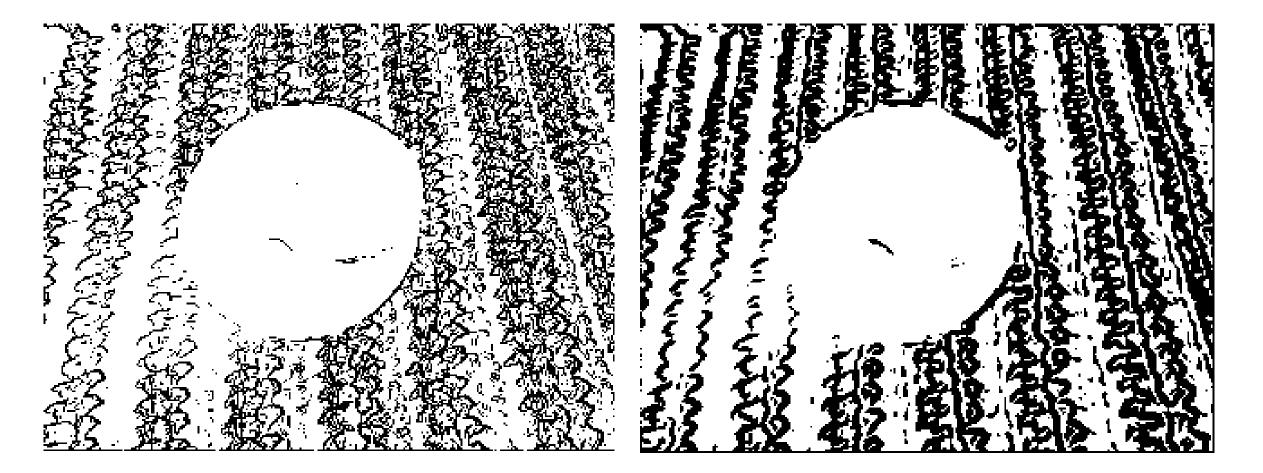


Edge Detection on Smoothed Images

CS 585: Image and Video Computing

Edge Detection on Original and Smoothed

Edge Detection on Original and Smoothed



Smoothed Image yields "thick" edges

Solution:

We need a "non-maximum suppression algorithm:"

For vertically pointing brightness gradient:

Canny Edge Detection

- 1. Smooth image with Gaussian filter
- 2. Compute gradient magnitude map $M(x,y) = sqrt((dI/dx)^2+(dI/dy)^2)$ & gradient direction map $\theta(x,y) = arctan(dI/dx, dI/dy)$
- 3. Apply "Nonmaximum Suppression" to M:
 - a. Reduce number of angles into 4 sectors: $\theta(x,y) \rightarrow \alpha(x,y)$
 - b. Scan through M(x,y) with a 3x3 mask & check 3 pixels (A,B,C) along the line defined by $\alpha(x,y)$: If M(B) \leq M(A) and M(B) \leq M(C), then set M(B) to zero.
- 4. Apply "Double Thresholding:"
 - a. Initialize: Choose $\tau_2 \approx 2 \tau_1$; Copy M(x,y) into T₁(x,y) & T₂(x,y) = M(x,y)
 - b. If $M(x,y) < \tau_1$ then $T_1(x,y) = 0$. If $M(x,y) < \tau_2$ then $T_2(x,y) = 0$.
 - c. Link gaps in T_2 by gathering edges from T_1 (compare N8 neighbors)

Canny Edge Detection Result

Long edges along hair strands Closed edge along chin & clothes

Image source: Wikipedia, JonMcLoone

CS 585: Image and Video Computing

How does Canny Edge Detection work?

- 1. Smoothing removes speckle noise but creates thicker edges
- 3. This step thins edges
- 4. This step performs noise reduction and edge linking:

(a)

$$T_1(x,y)$$

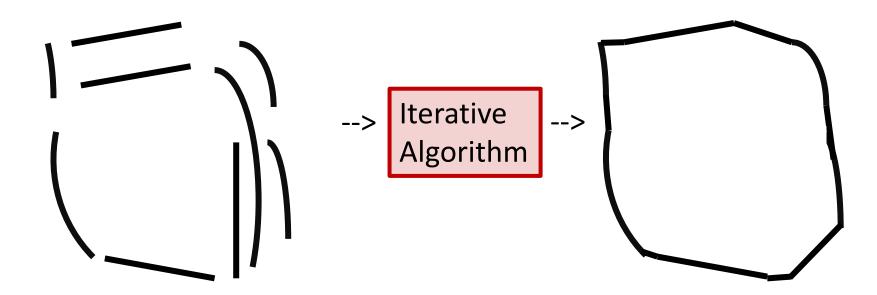
 $T_2(x,y)$
 $T_2(x,y)$
(b)
 $T_2(x,y)$
 $T_2(x,$

Active Contours (also called "Snakes")

Goal: Given an edge image of an object,

Find the outline of the object = Find its contour points

Idea: Combine disconnected edges (gaps), allow corners



The Active Contour Algorithm is an Iterative Optimization Algorithm

Input: Greyscale image E(x,y); Output: Binary contour map

- 1. Initial Solution for Contour (e.g., large box, not necessarily bounding)
- 2. Evaluate cost function (or "energy" function) for
 - Fit of contour with edge image E_{image}
 - Curvature properties of contour E_{curvature}
 - Distances of contour points to each other E_{continuity}
- 3. Move contour point
- 4. Repeat 2.

Possible termination conditions:

Upper bound on # iterations or on points moved OR Lower bound on cost function or change in cost

"Energy" Function of Active Contour Algorithm

$$E_j = \alpha_i E_{continuity, j} + \beta_i E_{curvature, j} + \gamma_i E_{image, j}$$

where

 α_i , $\beta_{i,}$, γ_i control the relative influence of each term e.g., $\beta_i = 0$ at corner point

Explanation of each energy follows:

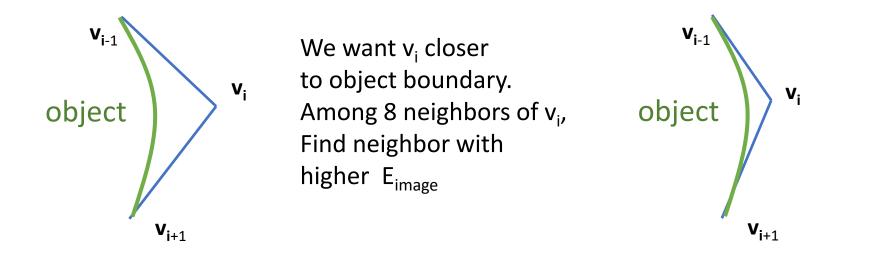
E_{curvature, j}: Use one of the 4 definitions from our previous lecture

Read the paper by <u>Willams and Shah</u> on active contours

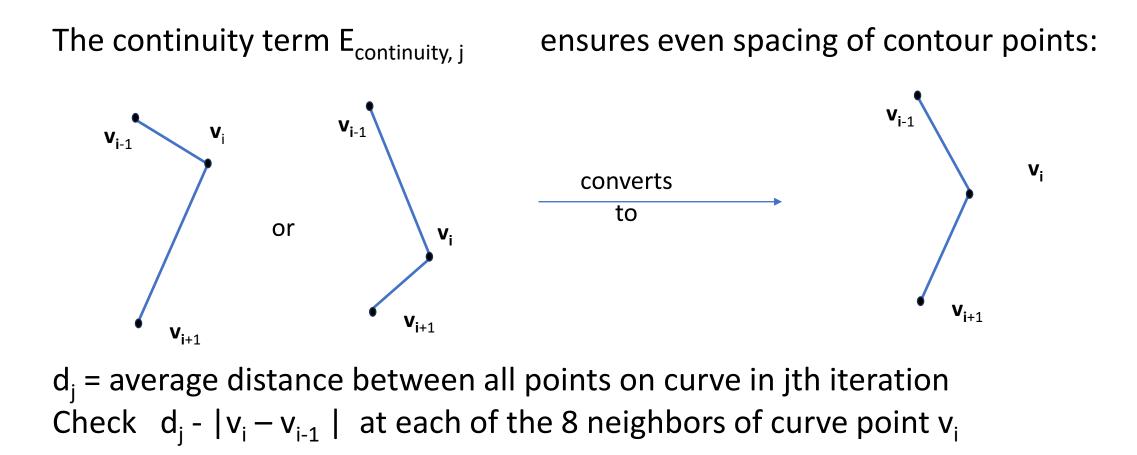
Energy Function of Active Contour Algorithm

$$E_j = \alpha_i E_{\text{continuity}, j} + \beta_i E_{\text{curvature}, j} + \gamma_i E_{\text{image}, j}$$

E_{image, j} is the edge component of the energy function, e.g., use the Sobel mask to approximate the squared brightness gradient

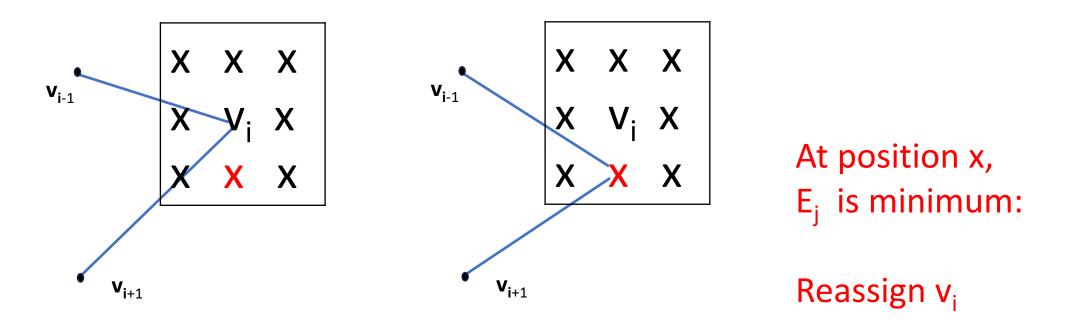


Energy Function of Active Contour Algorithm



Energy Function of Active Contour Algorithm

The continuity term E_{continuity, j} ensures even spacing of contour points by checking 8 neighbors of contour point v_i and reassigning it if necessary:



Active Contour Algorithm

Input: Greyscale image E(x,y); Output: Binary contour around object in image Initialize n-point contour around object (e.g., large box, not necessarily bounding): v₁,..., v_n Initialize α , β , γ to 1 for all points $v_i = \#$ index arithmetic is modulo n # e.g., bound on number of moved points While termination condition # loop to move contour points to new locations For i = 0 to n: $E_{min} = LARGE$ For j=0 to 7 # 8 neighborhood of point v_i $E_i = \alpha_i E_{continuity, i} + \beta_i E_{curvature, i} + \gamma_i E_{image, i}$ # Evaluate energy at each neighborhood point If $E_i < E_{min}$ Then $E_{min} = E_i$ jmin = j Move contour point v_i to location jmin If jmin not current location, pointsmoved ++ # count how many points moved

Examples of Active Contour Algorithm

Segmentation of grey and white Matter in MR scan of the brain:

Iterations of Algorithm:

Image Credit of shamrock animation: https://medpure.blogspot.com/2012/03/active-contour-in-c.html

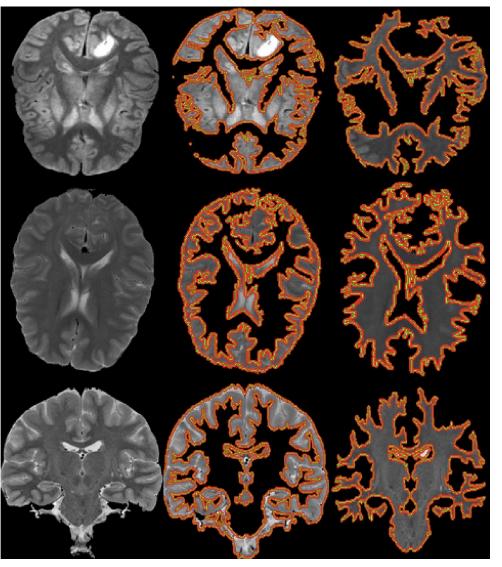


Image credit: Varma et al., 2011

Learning Outcomes

Explain the four causes of brightness changes in an image

Explain why the brightness gradient is perpendicular to an edge

Know masks used to compute edges

Evaluate edges in an image using approximations of 1st or 2nd derivatives, as well as the difference of Gaussians

Explain why smoothing is used in edge detection and provide a smoothing mask

Explain the Canny Edge Detection & Active Contour Algorithms

Define the energy function used in computing an active contour (3 terms involving edges, curvature, continuity)

