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Abstract

We present a framework for recognizing isolated and
continuous American Sign Language (ASL) sentencesfrom
three-dimensional data. The data are obtained by us-
ing physics-based three-dimensional tracking methods and
then presented asinput to Hidden Markov Models (HMMs)
for recognition. To improve recognition performance,
we model context-dependent HMMs and present a novel
method of coupling three-dimensional computer vision
methods and HMMs by temporally segmenting the data
stream with vision methods. We then use the geomet-
ric properties of the segments to constrain the HMM
framework for recognition. We show in experiments
with a 53 sign vocabulary that three-dimensional features
outperform two-dimensional features in recognition per-
formance. Furthermore, we demonstrate that context-
dependent modeling and the coupling of vision methods
and HMMsimprove the accuracy of continuous ASL recog-
nition.

1 Intr oduction

AmericanSignLanguag€ASL) is theprimarymodeof
communicatiorfor mary deafpeoplein the USA. It is a
highly inflectedlanguagewith sophisticatedyrammatical
propertieswhich constrainstronglythe orderandappear
anceof signs.Becaus®f theconstraintsit providesanap-
pealingtestbedfor understandingnoregenerabprinciples
governinghumanmotionandgesturingjncludinghuman-
computergestureinterfaces. Suchinterfacesare essential
in virtual reality applicationswherethe usermustbe able
to manipulatevirtual objectsby gesturing A working ASL
recognitionsystemcouldalsofacilitateinteractionof deaf
peoplewith their surroundings.

To date, most attemptsat ASL recognitionhave ei-
ther used only two-dimensionalcomputervision meth-
ods, or they have usedotherinput devices, suchasdata-
gloves, insteadof computervision, to collect input from
the signer[18, 3, 23]. In this paperwe presenta new ap-
proachto ASL recognition.First, we usecomputervision
methodsto extractthe three-dimensiongbarametersf a
signers arm motions. We thenuseHiddenMarkov Mod-
els(HMMs) to recognizeasolatedandcontinuousASL ut-
terancesrom the three-dimensionainput. We develop
contt-dependenmodeling of HMMs and methodsfor

coupling the applicationof HMMs and the application
of three-dimensionatomputervision methodgo improve
continuousrecognitionperformance. Our approachat-
temptsto overcomesomeof thelimitationsof the previous
approacheshat usetwo-dimensionavisual input, do not
use contet-dependentmodeling, or do not couple com-
putervision methodswith HMMs [18, 3,17, 12].

Three-dimensionalimage-basedshape and motion
tracking of a humans arm and handis difficult because
of the compleity of the motions and occlusioneffects.
Recently a methodologyhasbeendeveloped[8, 10] that
allows three-dimensionatackingof humanmotion from
multiple images.In this paperwe augmenthis methodol-
ogy to track the three-dimensionamotion of a subjects
arms and handsfrom multiple images. This methodis
basedon the useof deformablemodels,whoseshapeand
motion fits the given image sequencedasedon occlud-
ing contourinformationandtheoremsrom projectve ge-
ometry The outputof this methodconsistsof the three-
dimensionamotion parametersf the subjects arms. For
efficiengy reasonsand becausearm movementsalready
carrymuchof theinformationneededor recognizingASL
signs,we do notusethe handinformationin this paper

Apart from obtaining accuratedata, ASL recognition
is difficult, becauseahereare always statisticalvariations
in the way humansperform motions, even with identical
meaning. In addition,in continuousutterancesthereare
no clearboundariebetweerindividual signs.HMMs pro-
vide aframework for capturingstatisticalvariationsn both
positionanddurationof the movementaswell asimplicit
segmentatiorof theinputstream Furthermorecontinuous
recognitionis complicatedy coarticulatioreffects,thatis,
the pronunciation of asignis influencedby the preceding
andfollowing signs. Coarticulationeffects can be partly
alleviatedby training context-dependentiMMs.

The theory behindHMMs malkes several assumptions
thatareoftennotvalid in practice.For this reasonwe de-
velopa new approacthat couplescomputevision meth-
odswith HMM modeling. It is basedon a temporalsey-
mentationprocessthat operateshy extracting geometric
propertiesof the three-dimensionatomputervision pa-

1By “pronunciation”we meanmotion. We follow the terminologyof
spolenlanguagdinguisticswhereapplicable.



rameters. Thesepropertiesare obtainedindependently
from the HMM algorithmsand are usedto imposeaddi-
tional constrainton HMM-basedrecognition.

Totestouralgorithmsandassumptionsye performeca
seriesof experimentshasedon a vocahulary consistingof
53 differentsignsthatmake extensive useof space We ex-
perimentedvith bothisolatedandcontinuousASL recog-
nition for both three-dimensionahnd two-dimensional
data. As HMMs require large amountsof training data
andthe computewision processs computationallyexpen-
sive, we useddatafrom an AscensionTechnologies$-lock
of Birds andcomputervision processeiterchangeably

Ourgoalis to discover andanalyzea usableframeavork
for bothisolatedandparticularlycontinuousASL recogni-
tion. We do not addressnoregeneralgesturerecognition
topicsandsignerindependencen this paper Neitherdo
we addresgheinvolvedaspect®f ASL linguistics[19] at
this point, but obviously, a viable future ASL recognition
systemshouldbeableto handlethem.

In the following sectionswe discussrelatedwork and
give an overview on the theory behindthe vision meth-
odsandHMMs. Afterward,we addresghe useof HMMs
for isolatedandcontinuousASL recognitionandcoupling
computervision processewith the HMM algorithms.Fi-
nally, we outline datacollectionandprovide experimenta-
tion resultsfor isolatedandcontinuougecognitionandthe
couplingof computewisionandHMMs.

2 Previous Work

Previous work on sign languagerecognitionfocuses
primarily on fingerspellingrecognitionand isolatedsign
recognition. Somework usesneural networks [3, 22].
For this work to applyto continuousASL recognitionthe
problemof explicit temporakegmentatiommustbesolved,
whichis alimitation thatHMM-basedrecognitiondoesnot
have. MohammedNaleedKadoug[23] usesPawver Gloves
torecognizeasetof 95isolatedAuslansignswith 80%ac-
curag/, with anemphasi©n computationallyinexpensve
methodsKirsti GrobelandMarcell Assam[4] useHMMs
to recognizeisolatedsignswith 91.3%accurag out of a
262signvocahulary. They extractthefeaturesrom video
recordingsof signerswearingcoloredgloves.

Thereis very little previous work on continuousASL
recognition. Thad Starnerand Alex Pentland[18] usea
view-basedapproachto extract two-dimensionafeatures
asinput to HMMs with a 40 word vocalulary. Yanghee
Nam and Kwang YoenWohn [12] usethree-dimensional
dataasinputto HMMs for continuousecognitionof avery
smallsetof gestures.

3 Model-basedTracking of aHuman’sArms

In this sectionwe give a brief overview of our formula-
tion that allows the three-dimensionadrm shapeand mo-

tion estimatiorfrom multipleimaged6, 7, 8, 10].

Our approactronsistof two parts. Thefirst part[6, 7]
consistof anactive, integratedapproactihatidentifiesre-
liably the partsof amoving articulatedbjectandestimates
their shapeand motion from a controlled set of motions
thatrevealthe object’s structure We usethe algorithmde-
velopedin [6, 7], which segmentsthe apparenbody con-
tourof amoving humaninto theconstituenparts.Initially,
asingledeformablemodelis usedin orderto fit theimage
data.As themodeldeformsto fit the deformed(dueto the
motion of the human)subsequerimagecontoursa novel
Human Body Part Identification Algorithm (HBPIA) is
developedto identify all the body parts. By applyingthe
HBPIA iteratively overthesubsequerftamesall themaov-
ing partsareidentified. In addition,we have extendecdthis
algorithmto allow the estimationof the three-dimensional
shapeof asubjects body parts,basen theintegrationof
imagegakenfrom threeorthogonallyplacedcamerasWe
usedthis methodologyto estimatethe three-dimensional
shapeof the subjects armsshavn in the examplesin Sec-
tion 7. It is worth noting thatwe have recoveredthelower
armandthehandasonepart,sincein our ASL recognition
experimentswe did not usethe motion of the lower arm
andthehandrelative to eachother

The secondpart of the algorithm consistsof usingthe
extractedthree-dimensionahapeof the armto track the
three-dimensionaposition and orientationof a subjects
bodyparts[8]. To alleviatedifficultiesarisingfrom occlu-
sionanddegenerateviews duringthe unconstrainedove-
mentof the arm, we usethreecalibratedcameragplaced
in a mutually orthogonalconfiguration. At every image
frame and for eachbody part, we derive a subsetof the
camerashatprovide the mostinformative views for track-
ing. This active andtime varying selectionis basedon
thevisibility of a partandtheobsenrability of its predicted
motionfrom a certaincamera.Oncea setof camerasas
beenselectedo trackeachpart,we useconceptgrom pro-
jective geometryto relatepointson the occludingcontour
to pointson the three-dimensionadhapemodel. Using a
physics-basedhodelingapproachwe transformthis cor-
respondencein additionto two-dimensionaforcesaris-
ing from the discrepang betweenthe models occluding
contourand the imagedata, into generalizedorcesthat
are appliedto the modelto estimatethe model’s transla-
tional androtationaldegreesof freedom. To improve the
trackingresultsfurther, the dynamicsystemis embedded
within an extendedKalmanfilter framewvork, andwe use
the predicted motion of the model at eachframe to es-
tablishpoint correspondencdsetweernccludingcontours
andthethree-dimensionahodel.

We usedthis two-stepapproachto track the motion of
the subjects armsperformingthe ASL gesturesasshovn



in Section7. The outputof the systemis a setof rotation,
qy, andtranslationg,., parametershatwe useasinputto
the HMMs and the vision-basedsegmentationalgorithm
presentedh thefollowing sections.

4 Hidden Mark ov Models

Hidden Markov Models (HMMs) are a type of statis-
tical model. They have beenusedsuccessfullyin speech
recognition,andrecentlyin handwriting,gestureandsign
languageecognition.We now giveasummaryof thebasic
theorybehindHMMSs, whichis coveredin detailin [15].

4.1 Definition of HMMs

An HMM consistof anumberN of statesS;, S,, .. .,
S, togethemwith transitiondbetweerstates Thesystemnis
in oneof the HMM'’ s statesat ary giventime. At regularly
spacedliscretdimeintenals,thesystentakesanoutgoing
transitionfrom its currentstateto a new state.

Eachtransitionfrom .S; to S; hasanassociategroba-
bility a;; of beingtaken. Hence,Y", a;; = 1. Eachstate
S; alsohasaninitial probability 7; of the systemstarting
in S;. In addition,eachstateS; generatesutputk € ,
whichis distributedaccordingo a probability distribution
functionb; (k) = P{Outputis k|Systemisin S;}. An ex-
ampleis givenin Figurel. Themodeldepictedhereis also
anexampleof aleft-right model;thatis, a;; > 0 implies
j > i. In otherwords, transitionsonly flow forward from
lower statesto the samestateor higher states,but never
backward. This topologyis the mostcommonlyusedone
for modelingprocessesvertime.

aig m ass
a a a

by b, bs (o) bs

Figurel: Exampleleft-right HMM with its transitionand
outputprobabilities.“Left-right” meanghattransitionsc-
curonly from left to right, andnever backward.

4.2 The ThreeFundamentalHMM Problems
Therearethreefundamentaproblemsn HMM theory:

(1) For a sequencef obserationsO = O, ..., Or,
0; € Q, computethe probability P(O|XA) that an
HMM ) generated.

(2) For someO andanHMM A, recover the mostlikely
statesequencé, ..., St thatgenerated.

(3) Adjust the parameter®f an HMM \ suchthat they
maximizeP(O|)\) for someO.

The first problemcorrespond$o maximumlikelihood
recognitionof an unknovn data sequencewith a set of
HMMs, eachof which correspondgo a sign. For each
HMM, the probability P(O|A) is computedthatit gener
atedthe unknovn sequenceandthenthe HMM with the
highestprobabilityis selectedastherecognizedsign. For
computingP(O|\), let @ = Q1,Qa,...,Qr be astate
sequencén A:

a(i) = P(O1,02,...,0 Q¢ = Si|]A) 1<i <N, (1)

N
PO =) ar(i), (2)
=1
a1 (i) = mbi(01), 3)
N
a1 (i) = bi(Op1) D _on(jlaj; 1<t<T—1 (4)
j=1

Theseequationsassumehat the O; areindependentand
they make the Markov assumptiornthat a transition de-
pendsonly on the currentstate,a fundamentalimitation
of HMMs. This methodis calledthe forward-backvard
algorithmandcomputesP(O|\) in O(N2T) time.

The secondproblem correspondgo finding the most
likely path @ throughan HMM A, given an obsenration
sequence®, andis equivalentto maximizing P(@, O| ).
Let

0¢ (i) =  max P(Q1Q2...Q¢ = S;,0|)), (5)
641 (4) = bi(Oq1) - IIST;&;CN{&(J')aji}a (6)
mgxP(Q,OM) = 1rsnzaéy§v{5T(z)} @)

d:(i) correspondso the maximumprobability of all state
sequencethatendupin S; attime ¢. Equations6 and7
follow from Equation5 by inductionon ¢. The Viterbi
algorithmis a dynamic programmingalgorithmthat, us-
ing Equation?, computeshoth the maximumprobability
P(Q, O|\) andthe statesequencé) in O(N2T) time.
Therecovery of the statesequencenakesthe Viterbi al-
gorithminvaluablefor continuougecognition sinceit by-
passeghe difficult problemof segmentingthe utterances
into its individual parts.Insteadasequencef HMMs cor-
respondingo individual signsis concatenate¢hto a net-
work, as schematicallydepictedin Figure 2. Thus, the
mostlik ely statesequenceecoversthe sequencef signs.
The Viterbi algorithmalsohasthe propertythatit can
be optimizedwith the beam-searchinglgorithm. While
updatingd;,1 (%), this optimization considersonly those
statesS; in the HMM network for which é;(j) is above
athresholdvalue. Theassumptioris thatif the probability
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Figure2: Concatenatioof HMMs into a network

of a partial paththroughthe network becomesgoo low, it
cannotcontrituteto the mostlikely path. Beam-searching
is essentiafor makinglarge-scaleapplicationgractable.

The third problemcorresponddo training the HMMs
with data,suchthatthey areableto recognizepreviously
unseerdatacorrectlyafterthetrainingphase Thereexists
no analyticalsolution for maximizing P(O|X) for given
obsenation sequenceshut an iterative procedure called
the Baum-Weélch procedure, maximizesP(O|X) locally.
In the caseof continuousdensityoutputprobabilities,the
reestimatiorprocesavorksasfollows.

Defineb; (0) asb;(0) = "M_. ¢;mG(O, tjm, Ujm),
where M describeghe numberof mixtures,j is the state
number ¢ describeghe weight of mixture m in statej,
andG is a Gaussiardensitywith meanu, andcovariance
matrix U. Definethebackwardvariableg as

Be(i) = P(Ot410¢42,...,07|Qr = Si A),  (8)
Zaz] 0t+1 /375+1( ) (10)
lgng,lgtST—l. (11)

Furthermoredefine and~ as
o ai(8)aibi (Oe1) Beta (4)
§t(z7.7) - 2 ;‘)(OP\) ’ (12)
N
=&, 5)- (13)
i=1

>, &(i, ) canbe interpretedasthe expectednumber
of transitionsfrom S; to S;; likewise )", v:(i) canbein-
terpretedasthe expectednumberof transitionstakenfrom
S;. With theseinterpretationsthe reestimatiorformulae
for thetransitionsandoutputprobabilitiesare

=M (2)7

4o — 2ot &(0rd)
’ Et 1 ’Yt()

(14)

(15)

_ ZZ:I Yt (.7) m)

m = , 16
RS S > TR (16)
Et 1’7?5(.77 )Ot
m= T N 17)
IJ] Zt:l "t (.77 )
0, = 2tz 1m0 = i) O = psm)” 1)

EZ:I ’Yt (j’ m)
Repeatediseof thisprocedureornvergesto amaximum
probability[15], typically after5—10iterations.

5 Useof HMMs for ASL Recognition

In the previous sectionwe reviewed the extraction of
three-dimensiondeaturesfrom computervision andthe
HMM theory We now discusshow they fit in the frame-
work of ASL recognition.

HMMs are an attractve choice for processinghree-
dimensionakigndata,becaus¢heir state-basedatureen-
ablesthemto describehow a sign changeover time and
to capturevariationsin the durationof signs,by remaining
in a statefor severaltime frames.

Therearetwo waysto approactthe recognitionprob-
lem that posevery differentresearctproblems. Isolated
recognitionattemptdo recognizeonesinglesignatatime.
Hence,it is basedon theassumptiorthateachsigncanbe
individually extractedandthenindividually recognized.

Continuousrecognition,on the otherhand,attemptsto
recognizean entire streamof signs,without arny artificial
pausesor ary otherform of marked boundariehetween
theindividual signs.Clearly continuougecognitionis de-
sirablefor the most naturalinteractionpossiblebetween
humansandmachinesbut it is alsomuchmoredifficult to
tacklethanisolatedrecognition.The next two subsections
discussachof thetwo approaches detail.

5.1 Isolated Recognition

Isolated sign recognitionassumeshat eachsign can
be extractedindividually. This requiresclearly marked
boundariesetweensigns. Sucha boundarycould sim-
ply besilence thatis, a brief restingphaseaftereachsign,
duringwhich the signerperformsno movements.Silence
is easilydetectedhroughananalysisof theglobalvariance
overthehandmovements.

Once there are clearly marked boundariesbetween
signs,HMM recognitionis comparatiely straightforvard.
The recognitionprocessxtractsthe signalcorresponding
to eachsignindividually. It thenpickstheHMM thatyields
the maximumlik elihoodfor that signalasthe recognized
sign.

Training the HMMs to maximize recognition perfor
manceis alsocomparatiely straightforvard. Initially, all
signsin the training set are labeled. For eachsign in
the dictionary the training procedurethen computesthe



meanand covariancematrix over the data available for
that sign and assignsthem uniformly as the initial out-
put probabilitiesto all statesin the correspondindgiMM.

It alsoassigndnitial transitionprobabilitiesuniformly to
the HMM' s states.Unlike theinitial outputprobabilities,
initial transitionprobabilitiesdo not influencethe perfor
manceof thefully trainedHMMSs greatly

The training procedureghenrunsthe Viterbi algorithm
repeatedhonthetrainingsamplessoasto alignthetrain-
ing dataalongthe HMM'’ s states. The aligneddataare
thenusedto estimatebetteroutput probabilitiesfor each
stateindividually. This realignmenyieldsmajorimprove-
mentsin recognitionperformancebecausét increaseshe
chancesf the Baum-\Weélch reestimationalgorithm con-
verging to an optimal or a nearoptimal maximum. After
constructingthesebootstrappediMMs, the training pro-
cedurefinishesby reestimatingegachHMM in turn with
the Baum-Welch reestimationalgorithm outlinedin Sec-
tion4.2.

The by far mostchallengingproblemin isolatedrecog-
nition is extractinga featurevectorthat optimizesrecog-
nition performance.Even after obtainingaccuratethree-
dimensionaldata from our computervision methodde-
scribedin Section3, we found that the featuresusedfor
recognition— and the way that they are represented—
greatly influencerecognitionperformance. The experi-
mentalresultsgiven in Section8.1 demonstraténow the
featurevectoraffectsperformance.

Thereare several reasonswvhy performances so sen-
sitive to choosingthe type of featurevector: First, some
featurescarry more information than others; for exam-
ple,three-dimensiondkaturesaremorereliablethantwo-
dimensionabnes.Secondsomefeaturesaremoreinvari-
antto changesn orientationand positionthanothers;for
example,polar coordinatesare moreinvariantto rotations
thanCartesiarcoordinateg1]. Third, the statisticalprop-
ertiesof somefeatureschangedependingon the duration
of a sign. For this reason,the positionsof the handsin
three-dimensionapaceperformbetterthanthe velocities
of the hands(seealso Section8.2). Fourth, the statisti-
cal distribution of the featuresduring the courseof a sign
seemgo play arole. For somefeaturestheir distribution
fits Gaussiardensitiematurally whereador othersit does
not.

If thelatterexplanationholdstrue,we shouldseea ma-
jor improvementin recognitionperformancefrom using
multiple Gaussiammixturesasthe outputprobabilitiesfor
HMMs, insteadof usingjust onesingle Gaussiardensity
However, we did not experimentwith multiple mixtures
becaus®f thelack of sufficienttrainingdata.

The numberof statesand the topology usedfor the
HMMs is alsoimportant.Signlanguageasa time-varying

procesdendsitself naturallyto aleft-right modeltopology
Findingthe optimumnumberof stateswhich dependsn
theframerateandonthecompleity of thesignsinvolved,
is anempiricalprocessWe usedthe samemodeltopology
for all signs,and determinedexperimentallythat for our
taskamodelwith 9 statesvassufficient, whichis depicted
in Figure3. The outputprobabilitiesweresingleGaussian
densitieswith diagonalcovariancematrices,becauseve
hadinsufiicienttrainingdatafor multiple mixtures.
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Figure 3: Left-right HMM topology for isolated ASL
recognition.

5.2 Continuous Recognition

Continuoussignrecognitionontheotherhand,is much
harderthanisolatedsign recognition. Thereis no silence
betweenthe signs, so the straightforward methodof us-
ing silenceto distinguishboundariedails. Here HMMs
offer the compellingadvantageof being ableto seggment
the streamsof signsautomaticallywith the Viterbi algo-
rithm. Coarticulatioreffectsfurthercomplicatecontinuous
recognition.We now discusghemin detail, beforewe de-
scribethetechniqueseededo trainHMMs for continuous
recognition.

5.2.1 The Coarticulation Problem

Coarticulatiormeanghatthe pronunciatiorof asignis
influencedby the precedingandfollowing signs. One of
the mostvisible effectsof coarticulationin ASL is thata
wide rangeof movementsareinsertedbetweersigns.

For example,the sign for “FATHER” is performedby
repeatedlytappingtheforeheadandthe signfor “READ”
is performedn neutralspacdn front of the chest.If these
two signsareperformedn successiorgnextramovement
fromtheforeheado neutralspaceappeargFigure4). This
phenomenois calledmovementepenthesig5]. We dis-
cussits implicationsfor ASL recognitionmorethoroughly
in [20].

Figure4: MovementepenthesisThe arron in the middle
pictureindicatesan extra movementbetweerthe signsfor
“FATHER” and“READ” thatis notpresentn theirlexical
forms.



Speechrecognizershandle coarticulationby training
phonemecontext-dependentiMMs. They train a separate
modelfor eachpossiblecombinatiorof threephonemedn
sequencéhatcouldoccurduringnaturalspeechlin princi-
ple,thesamedeaappliesto signlanguageecognitionand
we performedsomeexperimentgo verify theapplicability,
seeSection8.3.

A possibleway to train contet-dependenimodelsfor
ASL recognitionis to usewhole signsas the phonologi-
cal unit in ASL.? Thus, triphonecontext-dependeninod-
elsfrom speechrecognitioncorrespondo tri-sign context-
dependentnodelsin ASL recognition. In otherwords,a
separatemodel is trainedfor eachcombinationof three
signsin sequence.The first andthe third signin the se-
guenceform the context for the middle sign, with which
themodelis associated.

Tri-sign context-dependenmodeling,however, is pro-
hibitively expensve, becausét requiresO(W?) models
overall, whereW is the vocalulary size. Collectingsuch
a large amountof training datanecessaryo obtainreli-
able estimatedor the modelsis intractableevenfor small
vocahulary sizes. This intractability is a negative conse-
guenceof usingwhole signsasthe phonologicalunit. Un-
like for speectrecognition,which hasto handleonly ap-
proximately 40 classesof allophones.thereis no upper
boundon the numberof modelsrequiredfor ASL recog-
nition with whole signsasthe smallestunit.

Therefore, we used only bi-sign context-dependent
modelswhichrequireamodelfor every possiblecombina-
tion of two signs.Themodelis associateavith the second
sign,andthefirst signformsits precedingcontext.

Bi-sign context-dependentmodeling requiresO(WW?)
models.Althoughthis compleity is animprovementover
O(W?), it is still too largefor anything but a smallvocab-
ulary. Speechecognizerseduceghenumberof modelsre-
quiredby usingtheobsenationthatmary contextsarevery
similar. Therefore they tie the parameter®f the models
correspondingo similar contexts, suchthatthe transition
andoutputprobabilitiesare sharecbetweerthesemodels.
Thistechniquesignificantlyreduceghe numberof distinct
models.

Parametettying is alsoapplicableto ASL recognition,
but it is not as effective as for speechrecognition. The
main reasonfor the reducedeffectivenessis that move-
mentepenthesinsertsmary movementsunrelatedo the
signs’ lexical forms. The implication is that context-
dependentodelswill work well only with prohibitively
largeamountf trainingdata.

In fact, it is questionablewvhethercontext-dependent
modelingis a good solution to the coarticulationprob-

2This assumptioris not correct: Whole signsarenotthe smallestunit
in ASL phonologybut this topic is beyond the scopeof this paper

lem in ASL recognitionat all. Movementepenthesiss
a phonologicalprocessin ASL and shouldbe treatedas
such;thatis, themovementsnducedby epenthesiaresep-
aratephonemesUsing contet-dependeninodelsto cap-
turethemis implausiblefrom aphonologicapointof view.
It seemgo make moresensgo modelthe movementsex-
plicitly. We follow up onthisideain [20] andshaw thatit
leadsto betterrecognitionperformance.
5.2.2 The Training Procedure

A signin our datacollectedat naturalsigning speeds
was between10 and 45 frameslong, not counting the
framesneededor the transitionbetweensigns. Because
of themovementdetweersigns,theHMM topologymust
be moreflexible thanthe onedescribedor isolatedrecog-
nition in Section5.1. Theseconsiderationted usto using
theleft-right modelshovn in Figure5.

Figure5: Topologyof the context-dependenmodel. The
arcsthat skip statesallow the modelingof variabilitiesin
thedurationof differentsigns.

Like for isolatedrecognition,we determinedhe opti-
mal numberof statessxperimentally For the outputprob-
abilities,we chosea singleGaussiamensitywith diagonal
covarianceaswe hadinsufficienttrainingdatafor estimat-
ing full-rank covariancematrices.

Trainingcontinuougecognitionmodelsis muchharder
thantrainingisolatedrecognitionmodels becausét is dif-
ficult to obtaingoodinitial estimatesf theHMM param-
eters. Viterbi realignmentseeSection5.1) works only if
thetrainingdatais accurateljabeledjncludingthebound-
ariesbetweertheindividual signs.Obtainingthesebound-
ariesis very difficult and time-consumingjeven humans
have trouble determiningwherea sign endsandthe next
onestarts.

The alternatve to using Viterbi realignments usinga
flat-startschemelt consistof computingtheglobalmean
andcovariancematrix over the entiretraining datasetand
assigningtheseas the initial output probabilitiesto the
HMMs. We usedthis schemeo initialize the HMMs.

Wethenusedembeddedtraining [24] to reestimatéhe
HMMs. Eachiterationof this procedureconcatenatethe
HMMs correspondingo the individual signsin a training
sentencento a singlelarge HMM. It thenreestimateshe
parametersf thelargeHMM with asingleiterationof the
Baum-Welchalgorithmdescribedn Section4.2, asusual.
Thereestimategharameterdhowever, arenotimmediately
appliedto theindividual HMMs. Insteadthey arepooled



in accumulatorsandappliedto theindividual HMMs only
afterthetraining proceduréhasiteratedover all sentences
in thetrainingset.

Hence,embeddedraining effectively trains all mod-
elsin parallelwith the entire training set. It yields bet-
ter parameteestimateghantrainingthe HMMs indepen-
dently[24].

In the caseof contet-independentnodels,using the
flat start schemefollowed by sereral embeddedraining
runsis all thatis necessaryo train HMMs for recognition.
Contet-dependenmodelsare moredifficult to train than
contt-independenmodels becauseghetraininginvolves
two extra steps. Theseconsistof generatinghe context-
dependenimodels, and tying the parametersof HMMs
with similar contexts (seealsoSection5.2.1).

The first extra step, which consists of generating
the contt-dependenimodels,requirescare, becausdor
contt-dependenmodelsthere exist far fewer training
examplesper model than for contet-independentnod-
els. In this case,embeddedrainingis likely to yield the
bestparameteestimatedor context-dependentodelsif
they have alreadybeeninitialized with bettervaluesthan
the global meanand covariancematrix from the flat-start
scheme.

Thereforeweranseveralembeddedrainingrunsonthe
contt-independenmodelsand then generateccontext-
dependentodelswith thesameparameterasthe context-
independentnodels. It is vital to avoid overtrainingthe
contt-independentodelsby keepingthe numberof ini-
tial training passesow. The probabilitiesshouldnot have
fully corvergedyet. Otherwise,using context-dependent
modelsactuallydecreaseszcognitionperformance.

The secondextra step,which consistsof tying the pa-
rameters,is also vital to the contet-dependentnodels’
performance,especiallybecauseof our relatve lack of
training data. Tying parametergeducesthe number of
models,as signswith similar contects thensharea com-
monmodel. As aresult,moretraining dataper modelbe-
comesavailable.

Unfortunately parametertying is a highly empirical
processOurexperimentsndicatedthattying thetransition
probabilitiesproperlyhadthe greatesinfluenceon recog-
nition results. We usedthe endinglocationsof the signs
in the precedingcontet to decideon the tying. For ex-
ample,the signsfor “BROTHER” and“SISTER” endin
the samelocation. As a result,the two modelsfor a sign
occurringafter the signsfor “BROTHER” or “SISTER}
suchas“LIKE,” cansharethe sametransitionprobabili-
ties. We alsousedthe endinglocationsto decideon tying
the output probabilities. For our dataset, the tying pro-
cessreducedthe numberof modelsto lessthanone sixth
of their original number

6 Coupling of Vision and HMMs

In the precedingsectionwe reviewed how HMMs can
be usedfor ASL recognition. The useof HMMs alone,
however, imposessomelimitations,oneof whichis insuf-
ficiengy of training data,especiallywhile training context-
dependentnodels.Furthermorethe probabilitytheoryas-
sumptionsunderlyingthe HMM theory as describedin
Section4.2, are often not valid: Successie obsenations
areoftennot independentthe transitionfrom one stateto
the next often dependsot only on the currentstate, but
alsoon the statehistory, andthe distribution of obsena-
tionsdoesnot necessarilyesemblea normaldensity

Anotherproblemis thattheHMM theorydoesnot pro-
videfor any dynamicweightingof featuresdlependingona
sign’scontet. For example theinvariantfeaturegor some
signs,suchas“l,” are the endpointsof their movements
with respecto a body part,andthe movementsareunim-
portant.For othersigns,only the movementsareinvariant.
The partsof the featuresetthat shouldbe examinedand
ignoredfor eachclassof signsaremutually exclusive.

To alleviate theselimitations, we investigatedhe cou-
pling of the HMM recognitionprocesswith an indepen-
dent computervision-basedmotion analysisthat tempo-
rally segmentsthe signalandextractsits geometricprop-
erties. Theideais thata signcanbe describedn termsof
oneor moregeometrigrimitives,suchashandmovements
alongaline, in aplane,or acircle. Thisideais supported
by theexistenceof transcriptiorsystemssuchasthe Ham-
NoSys[14], thatbasethedescriptiorof themovementon
geometrigrimitives.

The presencef three-dimensionahformationis cru-
cial for the couplingto work. In the past,geometricfit-
ting of planeshasalreadybeenusedfor rough sgmen-
tation [12], but not for providing additionalinformation
aboutthe natureof the fits to the HMM recognitionpro-
cess.

6.1 Segmentationof the Signal

To extract the geometricpropertiesof the continuous
signalestimatedvith ourcomputewrisionmethodsit must
first be sggmentedemporallyinto its parts.Any changeof
thetype of arm movementis likely to be accompaniedby
a dip in the velocity. Thus, minimain the absoluteval-
uesof the velocity vectorprovide stronghints at sggmen-
tationboundariesHowever, therearetypically mary more
velocity minimathanseggmentationboundaries.Thus,the
segmentatiorprocesanustprovide facilitiesto mege ad-
jacentsggments.

After performinginitial sgmentatiorbasedon veloci-
ties, our algorithm attemptsto fit geometricprimitivesto
theindividual segments. Thesecurrently consistof lines,
planesandholds’ ata positionin space.

3A hold is a shortperiodof time, during which no handmovements



The fit of a hold is determinedoy computingthe co-
variancematrix over the sggments positiondata. If there
is little movement,the eigervaluesof the matrix in every
directionaresmall,andconsequentlyts traceis small.

Theleast-squarefit of aline is governedby

Zei = ZHpi —(d-p;)d|]?,

wheree; is thedistanceof p; to theline, andd is theline’s
unit direction vector Let P be a matrix containingthe
points p; in the sggmentsasits row vectors. Minimiz-
ing Equation19 with respectto d correspondgo maxi-
mizingd"PTPd. By Rayleighs principle, the maximal-
eigervalueeigervectorof PTP maximizesthis equation,
whichis equivalentto themaximal-eigexalueeigervector
of the points’ covariancematrix. This eigervectoris the
line’s directionvector The othertwo eigervaluesindicate
the goodnes®f fit — the smallerthey arewith respecto
thelargesteigervalue,the betterthefit.
Theleast-squarefit of a planeis governedby

Y ei= llpi-nlf
i i

wheree; is the distanceof p; to the plane,andn is the
planes unit normalvector If P is a matrix containingthe
pointsp; asits row vectorsthe minimal-eigewalueeigen-
vectorof PTP minimizesEquation20 with respecto n.
Hence, minimizing this equationis equialentto finding
the minimal-eigenalue eigervectorof the points’ covari-
ancematrix. The othertwo eigervaluesindicatethe good-
nesof fit — thelargerthey arewith respecto thesmallest
eigervalue,thebetterthefit.

Using least-squareétting is basedon the assumption
that the signal noisetermis capturedby a normal distri-
bution. If this assumptioris not valid, the least-squares
estimatoiis likely to yield poorresults becausef its sen-
sitivity to outliers.Ontheotherhand,in three-dimensional
space the least-squaresstimatoris mucheasierto com-
putethanmorerobust estimators.It would be interesting
to compareits performanceon temporalsegmentationto
the performancef robustregressiorestimatorg13], such
astheleastmedianof squaresestimatorf2, 11], or there-
peatednedianestimatof16, 9].

After the initial fit, the algorithm poolsthe primitives
into a directedacgyclic graph (DAG), schematicallyde-
pictedin Figure6. Note thattheindividual sggmentsare
not mutually exclusive; for example, datacan fit both a
line andaplane.

If the algorithmfails to fit any geometricprimitivesto
somesggment, it insertsthe sggmentinto the DAG asa

(19)

(20)

take place.

“wild card; whichis definedconseratively to matchary
kind of geometricprimitive. It thenattemptso merge ad-
jacentsegmentsif they are compatible,in an attemptto
eliminatespuriousseggmentatiorboundaries.

We definedadjacentsegmentsto be compatiblefor a
mergeif they sharedhe sametype of geometricprimitive
in similar orientationsandif the meigedsegmentstill fit
thesameypeof geometrigrimitive asits constitutingsey-
ments. In addition,we considereda wild cardto be com-
patible with anothergeometricprimitive if this primitive
alsofit themeigedsegment.

Figure 6: Geometricprimitives pooledinto a DAG. Cir-
clesdenotesggmentationboundaries.Dotted arcsdenote
possiblenull transitionsthey arenecessaryo compensate
for spurioussegments.Sometimeslatacanfit multiple ge-
ometric primitives; in this DAG the dataof the first two
segmentsfit both a hold followed by aline, anda simple
line.

TheDAG now givesall possiblesgmentsequencethat
areavalid representationf the signal. If asequencés to
bevalid, it mustbeobtainableby tracingapaththroughthe
DAG from theleftmostsegmentatiorboundaryto theright-
mostsegmentatiorboundary In the examplegivenin Fig-
ure6 thesequenceHold, Line, Plan€; and“Line, Plane”
would both be valid sequencesyut “Plane, Plane”would
not, becaus¢helatterdoesnotlie onary paththroughthat
DAG.

Thisdiscussiorhassofarignoredthepossibilityof spu-
rioussegmentsarisingfrom thevisionanalysis.Thatis, the
analysismight recognizea sggmentthat shouldbe part of
anothey but the merge processfails to memgeit into an-
othersegment. The main reasonfor the existenceof spu-
rious sggmentsis undersamplinglf a sgmentconsistsof
very few samplesit is oftenimpossibleto extractreliable
informationfrom it. Our algorithmattemptso solve this
problemby addingarcsto the DAG from eachsegmenta-
tion boundaryto the next (representedby the dottedarcs
in Figure6). Thus,a paththroughthe DAG canoptionally
skip thesespurioussegments.

6.2 Usingthe Motion Analysiswith HMMs

Eachsignin thevocalulary hasassociatedneor more
templatesthat comprisethe sign’s geometricprimitives
with weightsof eachfeatures relative importance.These



primitivesare matchedagainsthosein the DAG. Assum-
ing thatthe sgmentatiomprocesyieldscorrectresults the
following mustbe true: If a sequencef signsis repre-
senteddy theinputsignal,thesequencef geometrigrim-
itivescorrespondingo the signsmustform a paththrough
the DAG. We call sucha sequencef signsvalid with re-
spectto the computenision DAG.

This obsenation suggests&n applicationof the motion
as a backupcheckfor the HMM framework. First rec-
ognizea candidatesentencdrom the input signalvia the
Viterbi algorithm. Thengenerateall possiblesequencesf
geometrigrimitivescorrespondingp therecognizeaigns
and constructanotherDAG from them. Using dynamic
programmingmatchthe two DAGs againsteachother If
thetwo DAGs sharea commonpath,accepthe candidate
sentences correct. Otherwise,rejectthe candidatesen-
tenceasincorrect.

Thejustificationfor this algorithmcomesfrom the fol-
lowing propertiesof the DAGs: If the two DAGs sharea
commonpath,thereis a sequence®f geometricprimitives
thatforms a paththroughthe computervision DAG. Fur
thermore this sequenc®f geometricprimitivesis one of
the possiblesequencegeneratedrom the candidatesen-
tence. Thus, the candidatesentencas valid with respect
to the computervision DAG. Corversely if no suchcom-
mon pathexists, noneof the sequencesf geometrigorim-
itivesgeneratedrom the candidatesentencdorms a path
through the computervision DAG. Thus, the candidate
sentencas not valid with respectto the computervision
DAG andshouldberejected.

6.3 Discussionof the Coupling

TheHMM recognitionalgorithmandthe vision match-
ing algorithmcomplementeachother The advantageof
the HMM recognitionmethodareautomaticseggmentation
during both training and recognition,and a fully formal-
ized training procedure.The disadwantagesare poor per
formancein the presenceof insufiicient training data,no
formal way to weight featuresdynamically and possible
violationsof the stochastiégndependencassumptions.

The advantage®f the vision matchingmethodarethe
possibility of weightingtherelative importanceof features
dynamically andindependencéom insufficient training
data. A significantdisadwantagds that estimatingthe ge-
ometricpropertiesof the signsin the vocahlulary requires
manualabelingandanalysisof thedata.Furthermoreseg-
mentationmustbe doneexplicitly, which raisesthe possi-
bility of spurioussegmentsasdescribedn Section6.1,or
the possibility of missingsegments.Coarticulationsome-
timesalsochangeghe geometricpropertiesof the signal,
suchthatthetemplatedor the correctsequencef signno
longermatchthe actualsignal. Copingwith the changes
in the geometricpropertieds animportanttaskfor future

research.

7 Data Collection

For our experimentswe collecteddata,usingboth our
computervision system,and an AscensionTechnologies
Flock of Birds. Thereasorfor usingthe latterwasthatit
is fasterat this pointthanthe computervision systemand
hencemoresuitablefor prototyping.

The computervision systemyields rotation, q4, and
translationg., of eachsegmentof thearm,asdescribedn
Section3. Figure7 givesan exampleof the computervi-
siontrackingprocessTheimagesshav the high accurayg
of the computervision system;in fact,it is comparableo
theaccurag achievedby the Flock of Birds system.

The Flock of Birds systemconsistf a magnetandsix
sensorghat detecttheir rotation, g4, andtranslation,qe,
with respectto the magnetat 25 framesper second. We
usedthe datafrom both systemsinterchangeablyith a
simple alignmentof coordinatesystems. The coordinate
systemwasright-handedyith the origin atthe baseof the
signers spineandthe z axisfacingup.

Figure 7: Fitting the three-dimensionamodelsto the
signers arms. From top to bottom, the signsfor “FA-
THER; “I,” and“MAIL " aredisplayed.Fromleft to right,
thefront, side,andtop views aredisplayed.

We used the 53-sign vocahulary listed in Table 1.
Their pronunciationgollowedthe ASL dialectusedin the
PhiladelphiaPA, area. The goalsin choosingthe vocab-
ulary wereto be ableto expresssentencethatcould have
occurredin a naturalcorversationandto make intensive
useof the signingspace so asto demonstrat¢he advan-
tagesf three-dimensionalataovertwo-dimensionatiata.
We collected486continuousASL sentencegachbetween



Catagory Signsused Features W o B W N
Nouns America, Christian, Christmas, book, T,Y,2 9842% 099% 1000% 938% 463
brother chair, college, family, fa- Toy> Ozys
ther, friend, interpretey language mail, z 98.72% 0.79% 1000% 955% 494
mother name,paper president,school, Tays Toz
sign,sister teacher Oy, 02,
Pronouns |, my, you,your, how, what,where why T,Y,2 98.78% 0.78% 1000% 949% 882
Verbs act,can,give, have, interpret like, make, r,0,¢ 9648% 1.31% 1000% 933% 210
read sit, teach try, visit, want,will, win z,1, 2 9687% 1.21% 1000% 933% 167
Adjectives  deaf,good,happ, relieved,sad z,y,2,0 9825% 0.92% 1000% 955% 167
Other if, from, for, hi Tays Oy,
_ _ Z 9628% 1.04% 989% 938% 120
Tablel1: Thecompletes3 signvocatulary 0.9 9589% 129% 989% 921% 150

2 and12 signslong, with a total of 2345signs. The only
constraintontheorderandoccurrencef signswerethose
dictatedby thegrammarof ASL [19].

Furthermore we collectedexamplesof eachsign for
isolatedrecognition. Becausepart of the datawere cor-
ruptedduringthecollectionprocessye discardedll signs
for whichwe did nothave enoughntacttrainingexamples.
This left 656 examplesover arangeof 40 signs.Eachsign
hadatleast6 examplesavailablefor thetrainingset,and2
examplesavailablefor thetestset.

8 Experiments

We performedisolated,continuous,and vision-HMM
coupledASL recognitionexperimentsWe usedEntropics
Hidden Markov Model Toolkit (HTK) Version2.02 for
trainingandtestingin all of our experiments.

8.1 Isolated RecognitionExperiments

Thegoalof theisolatedrecognitionexperimentsvasto
discover a setof featuresthat maximizesHMM recogni-
tion performanceWe useddifferentfeaturesn our exper
iments,includingwrist positioncoordinate®f bothhands
(denotedby z, y, ), wrist positionexpressedn polar co-
ordinatesin the z-y plane (denotedby r,,, 6,,), polar
coordinatesn the z-z plane(denotedby r,,0,.), wrist
position expressedin sphericalcoordinates(denotedby
r, 8, ¢), andwrist orientationangle(denotedy 6), aswell
asderivativesof these(denotedby a dot). We alsocom-
binedseveralfeaturesn someexperiments.

We ran repeatedexperimentsmorethan10, 000 total,
with differentfeaturesandrandomlyselectedrainingand
testsetson a perexperimentbasis. Threequartersof the
exampledor eachsignwerein thetrainingsetandtherest
werein thetestset. Eachselectiornyielded178testexam-
plesperexperiment.Sometypical resultsaregivenin Ta-
ble 2. In addition,we performedexperimentsto compare
the merits of usingthree-dimensionatoordinatesversus
two-dimensionatoordinatedy projectingthe coordinates
onplanes.Theresultsareshovnin Table3.
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Table 2: Resultsof isolatedsign recognitionwith three-
dimensionalfeatures. u, o, B, W, andN correspondo
theaveragepercentagef correctlyrecognizedigns,stan-
darddeviation,bestcaseworstcaseandnumberof exper
iments,respectiely. All experimentasedatestsetof 178
signs.

Features 7 o B W N
Toy,0zy 9806% 126% 1000% 949% 118
T,y 97.75% 120% 1000% 949% 118

Table 3: Resultsof isolatedsign recognitionwith two-
dimensionafeatures.The meaningof the columnsis the
sameasin Table2.

8.2 Analysisof Isolated Recognition

The low error ratesof the bestfeaturesetsshav that
with a good selectionof features,the hand movements
alone,without handconfigurationinformation, carry suf-
ficient informationto discriminateamongmary different
signs. Polarcoordinatesslightly outperformedCartesian
coordinates.A combinationof both yielded the bestre-
sults,althoughthe differenceis not significant. However,
thestandardieviation of thecombinedeaturesetwaslow-
est,indicatingthata complex featurevectoris morerobust
thanasimplefeaturevector

Positioncoordinatessignificantly outperformedveloc-
ities. The reasonfor the poor performanceof velocity
featuresis that the statisticalpropertiesof the velocities
changewith variationsin the sign’s duration. In contrast,
the statisticalpropertiesof positioncoordinatesarelargely
unafectedby thedurationof signs,becauséiMMs absorb
variationsin durationthroughtransitionslooping backto
the samestate. Yet, position coordinateshave the signif-
icantdisadwantagethatthey arenot invariantwith respect
to location. Thelack of invariancewill causeproblemsfor
future applicationsthat attemptto capturecommonalities
betweermovementsat differentlocationsin space.



Three-dimensiondeaturegperformedbetterthantwo-
dimensionafeaturesalthoughthe differenceis not large.
The differencewould probably becomemore significant
with a largervocalulary. The differencesn standardde-
viation, however, indicatethat three-dimensiondeatures
aremorerobustthantwo-dimensionafeatures.

It is animportantconsequencef the experiments're-
sultsthat the performanceof the featurevectorsdepends
ontheactualexamplesin thetrainingset,all otherfactors
beingequal. Thus,only performinga large numberof ex-
perimentsyieldsreliableestimate®f therelatve meritsof
differentfeatures.

8.3 ContinuousRecognitionExperiments

We split the 486 sentencesandomlyinto a training set
with 389 examplesanda testsetwith 97 examples(con-
taining 456 signs). Eachsignin the vocalulary occurred
at leastoncein the test set. The training and test sets
werethe samethroughoutall experimentsandno portion
of the testsetwas usedfor trainingin any way. We ran
three-dimensionadxperimentswith and without context-
dependenHMMs, andtwo-dimensionakxperiments(by
projectingthedataon planestheresultsgivenarethe best
thatwe found).

In accordancewith the resultsfrom isolated experi-
mentsthat position coordinatesperform better than ve-
locities, and that a complex feature vector is more ro-
bustthana sparseone,we choseour featurevectorto be
(@Y, 2,024,022, &,9, £,6) for bothhands.Thatis, it con-
sistedof Cartesiarandpolar positioncoordinatesyeloci-
ties,andwrist orientationangles.Thetaskgrammamwasa
simpleword loop, so every signwasequallylikely at arny
timein theHMM network.

Table 4 shaws the experimentalresults. We useword
accurag asourevaluationcriterion. It is computedy sub-
tractingthe numberof insertionerrorsfrom the numberof
correctlyspottedsigns. The numberof wordsin theresult
for two-dimensionatlatais lowerthanin the otherresults,
becausdor onesentencehe Viterbi beam-searchingpti-
mizationprunedall pathsthroughthe HMM network (see
alsoSectiord.2).

8.4 Analysisof Continuous Recognition

The resultsare clearly in favor of using three-dimen-
sionaldataover two-dimensionafor continuousrecogni-
tion. The 6.3 percentdifferences large,althoughaccord-
ing to ourexperiencesvith isolatedrecognition oneexper
imentis notenougho estimateherealdifferencereliably.

Contet-dependenmodelsoutperformedcontext-inde-
pendentmodels, but the increasein performancewas
small, probablyto a large extent becauseof insufiicient
trainingdata— context-dependentodelingrequireshuge
amountsof datato becomeeffective. Also, cross-sign
contt-dependenimodelingfor ASL is implausiblefrom
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Typeof Word

experiment accuray Details

3Dcontxt 8771% H=416,D=8,S=32
independent 1=16,N=456
3Dcontxt 8991% H=424,D=6,S=26
dependent I=14,N=456
2Dcontxt 8363% H=394,D=14,S=44
dependent 1=16,N=452

Table 4: Resultsof continuousrecognitionexperiments.
H denoteshe numberof correctsigns,D the numberof

deletionerrors, S the numberof substitutionerrors,| the
numberof insertionerrors,andN thetotal numberof signs
in thetestset.

a phonologicalpoint of view (seeSection5.2.1). Theal-
ternative is modelingmovementepenthesislirectly, andit
appeargo performbetter[20].

More thanhalf of the substitutionerrorsin eachexperi-
mentwereconfusiondetweerfl” and“MY,” and“Y OU”
and“Y OUR; whichdiffer only in handconfiguration We
expectthataddingfeaturesdescribingthe handconfigura-
tion will improve recognitionperformancesignificantly

Repeatinghe contet-dependengxperimentwith five-
bestrecognitionshavedthattheabsenc®f a stronggram-
marfor constraininghe HMM network degradegecogni-
tion performancesignificantly In mary casesthe correct
sentencevastheonly grammaticasentencamonghefive
bestcandidatesln othercasesall five candidatesvereun-
grammatical.

Unfortunately using a strong grammarfor a test set
asdiverseasoursis not practical,becausehe size of an
HMM network grows exponentiallywith the numberof
rulespresenin the grammar Statisticallanguagenodels,
suchasbigrammodels have provedto beaneffective solu-
tionto thisproblemin speechiecognition.We shaw in [20]
thatbigramlanguaganodelsarepromisingfor ASL recog-
nition aswell. However, they requirea large corpusof la-
beledreal-world datato becometruly effective. Presently
no suchcorpusexistsfor ASL.

8.5 Coupling Experiments

To investigatethe effects of couplingthe three-dimen-
sionalmotionanalysiswith theHMM framework, we per
formedtwo experiments.In the first experiment,we ana-
lyzedall sentencem thetestsetwith our motionanalysis,
soasto provide anupperboundon its performancelf the
motion analysishad worked perfectly it shouldhave ac-
ceptedall of these97 testsentencedn reality, however, it
rejectedlO out of thesed7 sentences.

A closerlook atthe 10 rejectedsentencesevealedthat
five of thesewerenotrecognizectorrectlyby the context-
dependentMMs either Thus,it is likely thatthesefive



sentencewerenotsignedpreciselyenoughduringthedata
collectionprocess.The otherfive rejectedsentencedi-
catethatthemotionanalysisstill needsmprovement.

In thesecondexperimentweranthecouplingalgorithm
on the actual recognition hypothesedfrom the context-
dependenHMMs in the experimentsn Section8.3. This
time, thealgorithmalsoeliminated10 sentencesutof 97.
Five of thesewere correctly rejected;that is, the HMM
framewvork hadprovidedincorrectresultsfor them. Thus,
atthecurrentmoment,couplingHMMs with motionanal-
ysisbreaksevenwith usingtheHMM framework by itself.
Theword accurayg achiezedby the couplingwas90.10%,
which is slightly betterthan the 89.91%word accurag
achievedby the context-dependentnodelsalone.

As we have usedonly a small part of the full power
of computervision motion analysisso far, we seethese
resultsasevidencethatcouplingwill eventuallybe ableto
outperformeithermethodindependently

9 Summary

We have developedaframeawvork for recognizingAmer-
ican SignLanguagdrom three-dimensionalataobtained
with computervision techniqguesWe shavedhow to col-
lect three-dimensionalatafrom computervision anduse
them as input to Hidden Markov Models. We also de-
terminedthatthree-dimensiondkaturesare superiorover
two-dimensionabnes.

By using context-dependentmodeling, we improved
recognitionperformance. Through coupling vision pro-
cessewith HiddenMarkov Models, we took a first step
toward overcomingthe limitations of eithermethodby it-
self.

10 Futurework

The collection of a standardizedorpusof real-world
ASL corversationsaandstory telling shouldbe a high pri-
ority for future work. The currentlack of sucha corpus
malkesit impossibleto compareresultsfrom differentre-
searchersFurthermorejt makesthe developmentof sta-
tistical languagemodelsfor ASL difficult. Suchlanguage
modelsarenecessarfor large-scalepplications.

Testing the algorithms describedin this paper and
in [20, 21] with alargervocahularyis alsoimportant.Only
thenit will bepossibleto judgehow well thesealgorithms
scale.

Onthelinguistic side of ASL recognition,future work
shouldincorporatefacial expressionandotherphonolog-
ical processen ASL into the recognitionframeawork. It
alsoneedgo addres$iowv to make useof handconfigura-
tion information;usingthis informationeffectively seems
to benontrivial. Furthermorefuturework hasto find ways
to use statisticallanguagemodels, so as to counterbal-
ancetheimpracticabilityof usingstronglyconstrainedask
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grammars.

Onthecomputenision sideof ASL recognition future
work shouldelaborateon the couplingof computervision
and HMMs and make the computervision analysismore
robust. This work shouldconsistof recognizingmoredif-
ferentgeometrigpropertiesfine-tuningthesigntemplates,
and fine-tuningthe dynamicweighting of featuresbased
onthepropertieof eachsignthatis matchedo thesignal.
It alsoneedgo addreszoarticulatioreffects,whichit has
ignoredsofar.

It is alsonecessaryo to developananthropometrically
correctmodelof the humanhand,sothatthe computevi-
sion tracking processcan make handconfigurationinfor-
mationavailableto therecognitionframework.
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