### CS 640 Lecture on AI for Multimodal Analysis of Political News

Margrit Betke Co-Director of the AI Research Initiative at Boston University and Professor of Computer Science



### **Communication Research**





#### Artificial Intelligence and Emerging Media (AIEM) Research Group



#### What If You Could Manage Information Overload?

Groundbreaking collaboration among BU schools and researchers leads to \$1 million NSF grant to address media overload



# **Communication Research**

The ways in which the news media depict a certain political candidate, textually or visually, influence how the public perceives the candidate

Political candidates in various democracies have increasingly realized the power of their images in races and endeavored to put their best foot forward to appeal to voters

Candidates' nonverbal language, facial expressions, and physical attractiveness have exhibited persuasion power



#### Debates between 2016 President/Vice President Candidates



State-of-the-art Facial Expression Recognition: 7 Emotions & Neutral

#### SNL

#### Debates between 2016 President/Vice President Candidates



State of the art in expression recognition is not sufficient Datasets with spontaneous (vs. posed) expressions are lacking [Dupree et al, 2020]

SNL

### 2020 TV News Portrayals of Political Candidates











### Dataset of TV News Portrayals of Presidential Candidates

- Six leading candidates of the 2020 Democratic Party presidential primaries in the United States—Biden, Buttigieg, Klobuchar, Sanders, Warren, and Yang
- Candidate videos uploaded to archive.org between January 1, 2020 and March 2, 2020
- A total of 28,297 news clips were downloaded
- ABC, CBS, NBC, PBS, CNN, MSNBC, and Fox News
- 26,125 video segments of length 1-5 seconds were generated
- Communication scholars provide expert labels



### Video Analysis Method

- Face detection with ArcFace [Deng et al, 2019]
- Facial landmark detection with MTCNN [Zhang et al, 2016]
- Temporal alignment of facial landmarks
- Instead of 7 emotions & neural, we grouped expressions into 3 classes: [negative, neutral, positive]
- Two-stage Frame Attention Network [Meng et al., 2019]
  - Stage 1: Compute high-dimensional representation of the facial characteristics for each input facial image
  - Stage 2: . Use a frame attention module to learn the attention weights that adaptively aggregate the feature vectors from the previous module into a single discriminative video representation
- Video representation is fed into multiple fully connected layers for final classification



### **CV** Results

Performance of Personalized Models based on 4-fold cross validation

|           | Mean Accuracy     | Mean F-score |
|-----------|-------------------|--------------|
| Sanders   | 0.83              | 0.82         |
| Yang      | 0.89              | 0.89         |
| Biden     | 0.79              | 0.78         |
| Warren    | 0.86              | 0.86         |
| Buttigieg | 0.83              | 0.82         |
| Klobuchar | 0.80              | 0.80         |
| Overall   | <mark>0.83</mark> | 0.82         |



### COM Results: Connecting Survey Data and CV Results

- Among all the candidates, Buttigieg received the greatest amount of airtime across all the seven television networks.
- The proportion of Buttigieg' positive facial expression in his airtime is among the highest.
- Sanders' facial expression tended to be more negative in television news compared with other candidates.
- Media effect varies by the candidate and by the media source: For Biden and Buttigieg, for example, the exposure to the two candidates' positive images in CBS and NBC makes surveyed viewers feel more positive toward the candidates.



#### Text Recognition for Context Analysis





newshou

| * *      | *      | *      | *      | *      | *      | * | *      | *      | *      | *      | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * |  |
|----------|--------|--------|--------|--------|--------|---|--------|--------|--------|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
| v        | b      | r      | e      | а      | k      | i | n      | g      |        | 0      | v | e | r | n | i | g | h | t |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| * *      | *      | *      | *      | *      | *      | * | *      | *      | *      | *      | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * |  |
| sa<br>** | n<br>* | d<br>* | e<br>* | r<br>* | s<br>* | * | W<br>* | i<br>* | n<br>* | s<br>* | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * |  |
| wi       | n      |        |        |        |        |   |        |        |        |        |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| * *      | *      | *      | *      | *      | *      | * | *      | *      | *      | *      | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * |  |

| * * * * * * * * * * * * * * * * * * * * | * |
|-----------------------------------------|---|
| 02.03 20                                |   |
| * * * * * * * * * * * * * * * * * * * * | * |
| decision day                            |   |
| in iowa                                 |   |
| * * * * * * * * * * * * * * * * * * * * | * |

|            | * * * * * * * * * * * * * * * * * * * *                                 |
|------------|-------------------------------------------------------------------------|
|            | sen amy klobuchar<br>democratic presidential candidate<br>************* |
| HANNE DIRE | for new<br>**********                                                   |
|            | pbs9<br>**********                                                      |
|            | hour<br>************************************                            |
| 100        | iv<br>************************************                              |
| OBUCHARIO  | re<br>************************************                              |



A method for detecting text of arbitrary shapes in natural scenes that improves text spotting

CVPR 2020 Workshop, June 2020

Qitong Wang, Yi Zheng, and Margrit Betke



Framework of our model: UHT (Abbrevaited as: UNet, Heatmaps, Texfill Algorithm)



Figure 2. Pipeline of UHT. The process of text detection of UHT can be divided into three steps: 1) Pre-processing is used to generate a heatmap text region ground truth, which is used as a training label of UHT-Net. 2) A trained UHT-Net can output predicted text region heatmaps. 3) In the post-processing step, the Textfill algorithm outputs the final predicted text bounding polygons interpreting the outputs of the UHT-Net.



# Selected visualization on text detection

| Methodology                 | Venue             | P (%) | R (%) | F (%) |
|-----------------------------|-------------------|-------|-------|-------|
| Si                          | ngle-scale Testi  | ng    |       |       |
| Poly-FRCNN-3 [8]            | IJDAR-2019        | 78.0  | 68.0  | 73.0  |
| TextSnake [24]              | ECCV-2018         | 82.7  | 74.5  | 78.4  |
| CSE <sup>+</sup> [22]       | CVPR-2019         | 81.4  | 79.7  | 80.2  |
| TextField [43]              | TIP-2019          | 81.2  | 79.9  | 80.6  |
| PSENet-1s <sup>+</sup> [40] | CVPR-2019         | 84.02 | 77.96 | 80.87 |
| FTSN [9]                    | ICPR-2018         | 84.7  | 78.0  | 81.3  |
| ICG [38]                    | PR-2019           | 82.9  | 80.9  | 81.5  |
| LOMO [46]                   | CVPR-2019         | 88.6  | 75.7  | 81.6  |
| CRAFT <sup>+</sup> [7]      | CVPR-2019         | 87.6  | 79.9  | 83.6  |
| PSENet_v2 [41]              | ICCV-2019         | 89.3  | 81.0  | 85.0  |
| CharNet H-88 [42]           | ICCV-2019         | 89.9  | 81.7  | 85.6  |
| UHT V16 (Ours)              | -                 | 88.8  | 82.6  | 85.6  |
| UHT R50 (Ours)              | -                 | 88.2  | 81.8  | 84.9  |
| M                           | Iulti-scale Testi | ıg    |       |       |
| LOMO MS [46]                | CVPR-2019         | 87.6  | 79.3  | 83.3  |
| CharNet H-88 MS [42]        | ICCV-2019         | 88.0  | 85.0  | 86.5  |
| UHT V16 MS (Ours)           | -                 | 85.0  | 85.6  | 85.3  |
| UHT R50 MS (Ours)           | -                 | 85.4  | 84.2  | 84.8  |

Table 1. Experimental results on the Total-Text dataset. "P" means Precision, "R" Recall, "F" F-measure, \* denotes results on updated groundtruth annotations, and "MS" multi-scale testing.



Text detection demo of UHT. Left: polygonal text detection result. Right: deep learned heatmap from UHT-Net



#### Framework of our model: UHTA (Abbrevaited as: UHT+ASTER)

| Methodology           | Venue     | F-measure (%) |
|-----------------------|-----------|---------------|
| Textboxes [18]        | AAAI-2017 | 36.3          |
| Mask TextSpotter [25] | ECCV-2018 | 52.9          |
| TextNet [37]          | ACCV-2018 | 54.0          |
| CharNet H-88 [42]     | ICCV-2019 | 66.6          |
| TSA [24, 33]          | ECCV-2018 | 58.1          |
| UHTA V16 (Ours) [33]  | -         | 75.7          |
| UHTA R50 (Ours) [33]  | -         | 77.6          |

Table 6. Experimental results of TSA and UHTA on the Total-Text Dataset. Pretrained ASTER [33] model is downloaded from official pytorch reimplementation [5]. Evaluation method for UHTA and TSA is end-to-end recognition from [6]. Annotations are horizontal text-bounding rectangles because UHT and TextSnake outputs horizontal text-bounding rectangles in UHTA and TSA. No distinction between uppercase and lowercase was made when we evaluated UHTA and TSA. The listed F-measures of the prior works were reported in their original papers. UHTA V16 denotes UHTA with VGG-16backbone; UHTA R50 denotes UHTA with ResNet-50 backbone.



Figure 5. Pipeline of the proposed text spotting model UHTA. The model first calls the proposed UHT Detector and then converts UHT's polygonal output regions into horizontally-aligned rectangular regions of text. These text regions are then passed to the state-of-the-art text recognition model ASTER [33], which can accurately recognize the text in these regions and output text strings. So, like a person, UHTA does not only know where the text regions are, but also recognize the content of each text region.



# LAL: Linguistically Aware Learning for Scene Text Recognition

MM '20: Proceedings of the 28th ACM International Conference on Multimedia October 2020 Pages 4051–4059

Yi Zheng, Wenda Qin, Derry Wijaya, and Margrit Betke



# Motivation

**Problem**: Incorrectly recognized characters caused by embeddings of text that has ambiguous or misleading visual appearance (Fig.1a).

**Solution:** Combine embeddings of visual & linguistic information (Fig.1b).



Figure 1: Problem and solution for scene text recognition



#### Method

**Visual embeddings**: Rectifier + Encoder + Attention Decoder

Linguistic embeddings: Next-Character Predictor (Transformer-based)



Figure 2: Overview of the proposed LAL method.



rectified image

Combined Visual and Textual Analysis

| achter    |               | cv            |       |               | NCP           |       | c             | CV+NCF | •    |
|-----------|---------------|---------------|-------|---------------|---------------|-------|---------------|--------|------|
|           | h             | m             | I     | -             | -             | -     | h             | m      | I    |
| 31117     | 97.2          | 1.15          | 0.38  | -             | -             | -     | 97.2          | 1.15   | 0.38 |
|           | ο             | е             | а     | е             | a             | 0     | ο             | е      | a    |
|           | 99.17         | 0.25          | 0.18  | 26.29         | 23.12         | 22.88 | 98.17         | 1.32   | 0.39 |
|           | +             | <b>W</b>      |       |               |               |       | +             | 14/    | m    |
| 3 31 14   | 74.43         | w<br>19.01    | 2.3   | 20.33         | w<br>16.52    | 11.95 | 75.50         | 10.07  | 2.74 |
|           | i             | !             | е     | е             | <eo\$></eo\$> | s     | е             | h      | m    |
|           | 38.15         | 31.18         | 12.73 | 51.89         | 40.23         | 2.50  | 58.83         | 21.28  | 4.64 |
|           | I             | <e0\$></e0\$> | s     | Ι             | s             | v     | I             | !      | ,    |
| 2 3 4 4 4 | 88.68         | 4.67          | 1.47  | 99.96         | 0.01          | 0.01  | 99.98         | 0.00   | 0.00 |
|           | <eo\$></eo\$> | •             | ,     | <e0\$></e0\$> | ,             | S     | <e0\$></e0\$> | ,      |      |
| 2 CARL    | 99.48         | 0.19          | 0.1   | 67.30         | 12.94         | 9.94  | 99.10         | 0.00   | 0.00 |



### Experiments

- 1. Highest accuracy compared to others on six of seven benchmarks.
- 2. An average of **3.3 percentage points boost** on irregular text.

| Mathad                          | Dimension of | Rectification |        | Regi | ılar |      | Irregular |      |      |  |
|---------------------------------|--------------|---------------|--------|------|------|------|-----------|------|------|--|
| Method                          | Feature Map  |               | IIIT5K | SVT  | IC03 | IC13 | IC15      | SVTP | CT   |  |
| CRNN [33]                       | 1D           | no            | 78.2   | 80.9 | -    | 86.7 | -         | -    | -    |  |
| RARE [34]                       | 1D           | no            | 81.9   | 81.9 | -    | -    | -         | 71.8 | 59.2 |  |
| STAR-Net [24]                   | 1D           | no            | 83.3   | 83.6 | -    | 89.1 | -         | 73.5 | -    |  |
| FAN [5]                         | 1D           | no            | 87.4   | 85.9 | 94.2 | 93.3 | -         | -    | -    |  |
| ASTER [35]                      | 1D           | yes           | 93.4   | 89.5 | -    | 91.8 | 76.1      | 78.5 | 79.5 |  |
| ESIR [44]                       | 1D           | yes           | 93.3   | 90.2 | -    | -    | 76.9      | 79.6 | 83.3 |  |
| Attentive Text Recognition [41] | 2D           | no            | -      | -    | -    | -    | -         | 75.8 | 69.3 |  |
| AON [6]                         | 2D           | no            | 87.0   | 82.8 | 91.5 | -    | 68.2      | 73.0 | 76.8 |  |
| CA-FCN [22]                     | 2D           | no            | 92.0   | 82.1 | -    | 91.4 | -         | -    | 79.9 |  |
| SAR [20]                        | 2D           | no            | 91.5   | 84.5 | -    | -    | 69.2      | 76.4 | 83.3 |  |
| LAL without NCP                 | 1D           | yes           | 94.4   | 87.5 | 92.5 | 93.8 | 76.4      | 79.5 | 84.7 |  |
| LAL                             | 1D           | yes           | 95.0   | 89.8 | 94.3 | 95.1 | 79.0      | 82.9 | 87.8 |  |

Figure 3: Scene text recognition accuracy (%) on benchmark datasets, as reported in the paper.



### Experiments

3. Difference between combining visual information with and without linguistic information is **statistically significant** on the larger datasets IIIT5k and IC15, which contains over 2,000 samples.

| Dataset | IIIT5K | SVT  | IC03 | IC13  | IC15 | SVTP | СТ    |
|---------|--------|------|------|-------|------|------|-------|
| P-value | 2.59   | 9.45 | 6.06 | 10.42 | 2.21 | 5.84 | 13.81 |

Figure 4: P-value (×10<sup>-2</sup>) on seven benchmark datasets.



### Deep Neural Network for Semanticbased Text Recognition in Images

arXiv

Yi Zheng, Qitong Wang, and Margrit Betke



# Idea: Use Context





### Method





Results

BOSTON



# Detect media frames in gun violence coverage:

#### **Textual Data**

### GOP lawmaker calls for age restriction on AR-15s

Checking Facts and Falsehoods About Gun Violence and Mental Illness After Parkland Shooting

Lindsey Graham: Both parties will suffer if Congress doesn't act on new gun bill Gun control

Mental health

Politics



# Current project:

Politics

Detect media frames in gun violence coverage

Visual Data





Gun control







#### Detect media frames in textual and visual coverage of gun violence

Our approach: Natural Language Processing (NLP) + Computer Vision (CV)





# Data

|                            |            | Relevant     |
|----------------------------|------------|--------------|
| News Frame                 | # Articles | Images Frac. |
| 2nd Amendment/Gun Rights   | 38         | 0.34         |
| Gun Control/Regulation     | 215        | 0.43         |
| Politics                   | 373        | 0.65         |
| Mental Health              | 65         | 0.43         |
| School/Public Space Safety | 137        | 0.50         |
| Race/Ethnicity             | 114        | 0.30         |
| Public Opinion             | 237        | 0.62         |
| Society/Culture            | 41         | 0.10         |
| Economic Consequences      | 80         | 0.58         |
| Overall                    | 1300       | 0.52         |



# Methods and Results

| Subset   | Res<br>Net-50 | BERT<br>API | ResNet-50<br>+ BERT API | BERT<br>Headline |
|----------|---------------|-------------|-------------------------|------------------|
| 9 frames | 62.5          | 72.7        | 74                      | 85.9             |
| 4 frames | 71.8          | 82          | 84.8                    | 90.3             |



# Communicating COVID-19

https://covid19.philemerge.com





Develop and apply machine learning tools to examine international news coverage of COVID-19

Create data visualizations of how journalists around the world have reported on various facets of the pandemic



# Demo Website:

### https://covid19.philemerge.com



# **Research Method**

Methods to group COVID 19 news articles into topics:

- dictionary-based analysis
- unsupervised topic modeling
- supervised machine learning



# **Research Method**

Methods to group COVID 19 news articles into topics:

- dictionary-based analysis
- unsupervised topic modeling: Latent Dirichlet Allocation
- supervised machine learning

Ten main topics from each country's news coverage are identified by week. Each topic is associated with 20 terms.



#### Mainland China News Topics and New COVID-19 Cases by Week





#### Mainland China News Topics and New COVID-19 Cases by Week



- Government Response
- Science
- Healthcare



#### Mainland China News Topics and New COVID-19 Cases by Week



#### Domestic Economy



#### South Korean News Topics and New COVID-19 Cases by Week





#### South Korean News Topics and New COVID-19 Cases by Week



#### Outbreak in Mainland China



#### South Korean News Topics and New COVID-19 Cases by Week



 International Collaboratio

n

Government
Response









#### Outbreak in Mainland China





- Personal Preventative Actions
- Domestic Economy



Communicating COVID-19



# Racism & race relations



# Al for News Analysis: What emotions do Headlines and Images Cause with News Readers?



Emotion:

Image by itself: Fear

Headline: Fear



Emotion:

Image by itself: Curiosity

Headline: Disapproval Admiration

This will only get worse: California fires linked to climate change

A topic we cannot sugarcoat: Waukegan students join peers in global climate strike

### Our ACII 2023 project:

| News headline                                                                                                    | Human - News Image | AI - News Image |
|------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
| Jacksonville mass<br>killing once again<br>proves the left's gun<br>control 'solution' is a<br>fleeting illusion |                    |                 |
| Climate change<br>protests snarl DC<br>traffic as bizarre<br>scenes unfold in<br>capital                         |                    |                 |

| Emotion from 🛎 image-only | Emotion from image + headline                                                                                                |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Admiration                | Fear                                                                                                                         |
|                           | Rising emissions could drain foods<br>like rice and wheat of their nutrients,<br>causing a slow-moving global food<br>crisis |
| Emotion from 💩 image-only | Emotion from 💩 image + headline                                                                                              |
| Admiration                | Fear                                                                                                                         |
|                           | Dems say GOP focus on mental<br>health is redirection from gun control                                                       |

"Climate change is altering the nation's environment and the microbes, viruses and insects that inhabit it, potentially increasing where diseases are. "House Dems are promising tougher gun control measures, but advocates may have lost ground in the Senate"

gun but ve lost ite" To survive global warming, Mojave Desert birds will need a lot more water — and they probably won't get it"



"Florida sheriff: The Parkland massacre could have been avoided if someone else had a gun"





Fig. 6: Depiction of objects and figures. Human (left) and AI (right) provided images. 1) & 2) News images of 3D-printed guns are common. AI instead shows the 3D printing process (row 1) or other context (row 2, headline "Chicago, suburban libraries brace for the question: Can I print out a 3D gun?" 3) AI generates a fake, yet stereotypical and real-looking person when the headline contains phrasing such "tech mogul" and/or "CEO." These phrases elicited a male figure, with a hand gesture similar to Steve Jobs' gestures, and the camera angle tilted upward.

# Hammer & Nail

- For computer scientists:
- Beat the benchmark vs. solve the real problem
- For communication researchers:
- Expand the scope of research

