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Abstract

Using the ear as a biometric identifier, particularly for
children in healthcare settings, has an important advantage
over using the face – the privacy of the person can be pro-
tected better. However, aging and the resulting appearance
differences, known to be challenges for face recognition
models, have not been addressed for ear recognition yet.
To address this limitation, we curated a publicly available
dataset, which we call Ears of Infant Cohort in Zambia with
Aging (EICZA) 1 . The dataset contains 3,330 ear images
of 177 subjects, each photographed multiple times between
the ages of 6 days and 9 months, when ear growth is most
significant. For the task of age-constrained ear recognition,
i.e., recognizing a person who has aged since the model was
trained, we propose a new ear recognition model, called
SASE for Self-Attention-based Sequential Ear image anal-
ysis. The model takes a sequence of ear images at early
but different ages as input (instead of a single image) and
processes them with a feature extraction network and a
Transformer encoder. Trained with a large margin cosine
loss function, the model is encouraged to learn a feature
representation that distinguishes subjects from each other.
Our experiments show that accounting for age enables our
model to outperform other models that do not in recogniz-
ing ears that have grown and look different in later time
periods.

1. Introduction
Ear images can be used as biometric identifiers with

unique benefits compared to traditional face or fingerprint
systems. They provide better privacy, as they are usually
not as recognizable by humans as faces are. An ear photo-
graph can easily be captured with the camera of a mobile
device, and this can be done contact-free, unlike collect-

1Funding by the National Institutes of Health, grant 1R21TW010939-
01, is gratefully acknowledged.

Figure 1. Visualization of our proposed age-constrained ear recog-
nition task and our Self-Attention-based Sequential Ear image
analysis (SASE) model. During training, SASE takes ear images
of younger ages as inputs, while during inference, SASE identifies
a person from one or more ear images taken at a later age. Us-
ing a backbone network and Transformer, SASE learns a subject
representation with the large margin cosine loss (LMCL) function.

ing a fingerprint. The ear as a biometric identifier also has
the advantage that its acquisition “does not depend on the
cooperativeness of the person one is trying to recognize”
[18]. Therefore, numerous works, e.g. [18, 31, 60] have ex-
plored the potential of ear-based biometric systems, includ-
ing deep-learning models for ear recognition [4, 16, 20, 59]
in unconstrained conditions (also called “in the wild”).

In this paper, we propose a new recognition task for ears,
that is, identifying a person based on ear images that look
different due to aging, see Fig. 1. This task is suitable for
healthcare settings, particularly for identifying children.

Our task relates to the biometrics task of age-invariant
face recognition (AIFR) [21, 33, 56], which has the goal of
identifying people irrespective of their age. To overcome
the challenges of larger intra-class than inter-class differ-
ences – people at the same age often look more similar to
each other than their own much younger selves – methods



Figure 2. Ears of subjects at different ages. The arrows show some
of the significant differences among ears of different ages.

aim to compute age-invariant, subject-discriminatory fea-
tures. Models are typically trained on face images at earlier
ages and tested on a single image at the current age. Our
proposed task is similar but for a different target, i.e., ears:
Given one or more images of the ears of a subject at an older
age, an ear recognition model is asked to identify the sub-
ject after having been trained only on ear images that were
recorded when the subject was younger. We propose to call
this the age-constrained recognition task.

The task is valuable for real-life applications, such as
healthcare systems to identify patients over long time spans
(e.g., decades), or infants during the first few weeks or
months, when their ears grow most rapidly (see the intra-
class infant ear differences in Fig. 2). Even for general
ear recognition applications, a model that can handle dif-
ferences caused by aging may also be able to handle recog-
nition challenges caused by physical alterations (piercings)
and accessories (earrings).

To investigate the task of age-constrained ear recogni-
tion, we curated a dataset we call EICZA for Ears of Infant
Cohort in Zambia with Aging. EICZA contains 3,330 ear
images of 177 subjects with multiple ear photos of the
same subject taken at different ages. We experimented with
four existing feature extraction models as baselines, fine-
tuning them on EICZA. We then propose a model that di-
rectly addresses the issue of ear aging. We call our model
SASE for Self-Attention-based Sequential Ear image anal-
ysis. It is based on the concept of processing sequential
image input with a deep learning architecture. SASE con-
sists of a pre-trained backbone Squeeze-and-Excitation Net-
work [9, 27] that extracts a sequence of features that are
then interpreted by a Transformer [51]. We use a large mar-
gin cosine loss function [54] to both cluster intra-subject
feature embeddings and separate inter-subject embeddings.
We tested SASE on two existing benchmark datasets (ear
images without age labels and face images with age labels),
as well as our EICZA (ear images with age labels).

In summary, this paper contributes to the existing litera-

ture as follows:

• We curated the ear recognition dataset EICZA. It con-
tains 3,330 images of 177 infant participants, collected
from infants in hospitals in Lusaka, Zambia. The ear
images of the same subject are captured at different
ages, ranging from 6 days to 9 months old.

• We propose the task of age-constrained ear recogni-
tion – recognizing a person who has aged since the
model was trained. To address this challenging task,
the model must learn about the concept of aging hav-
ing only seen younger versions of the query person’s
ear.

• We evaluated four existing baseline models on EICZA
for the traditional age-neutral task of recognizing ears,
as well as the proposed age-constrained task. The re-
sults show that the age-constrained task is extremely
difficult – recognition accuracy drops drastically, e.g.,
>50% points (pp), when a model tries to identify a
grown ear at a later age.

• We propose an ear recognition model called SASE
that takes aging into account. In addition to adopt-
ing a representation-specific loss function, i.e., the
large margin cosine loss [54], SASE takes a sequence
of ear images at different ages as input and adopts
a Transformer encoder [51] to obtain context infor-
mation from ear features of earlier ages to interpret
the query ear image. The experimental results show
that our proposed method significantly outperforms the
baseline methods in the constrained-age task setting.

The curated dataset and our code are publicly available
at https://github.com/wdqin/eicza, allowing further anal-
ysis of the dataset and the development of ear recognition
models.

2. Related Work
The idea of using the ear as a biometric is old [8]. We

here discuss the main datasets and models that have been
used for ear recognition research and also describe face
recognition work that addresses the subjects’ ages.

2.1. Ear Recognition Datasets

The earliest publicly available recognition datasets con-
sist of ear photos captured under laboratory conditions,
with well-controlled views of the ears and lighting, e.g.,
IITD [31], IITK [38], UND [57], and AMI [48]. Un-
der these conditions, recognition systems based on hand-
crafted features worked well, and so the research focus
moved to address ear recognition “in the wild,” that is, un-
der more difficult unconstrained conditions. Datasets such



as UBEAR, AWE, USTB-Helloear, EarVN, and UERC
[40, 18, 60, 26, 19] were published accordingly. Some of
these are large-scale collections of ear images [19, 26, 60],
which enable the training of deep learning models, now fre-
quently adopted for recognition tasks. We use the newest
dataset, UERC [19], as a benchmark for our experiments.

2.2. Ear Recognition Models

Early ear recognition models relied on hand-crafted fea-
tures for ear identification and verification [1, 29, 53, 37,
11, 23, 42], e.g., Adaboost with the Haar feature [1]. When
tested on images collected under laboratory conditions,
these methods reportedly reach accuracy levels as high as
95% [1, 23, 37, 53]. However, when challenged with ear
images captured “in the wild,” with noise and variations in
illumination, imaging angle, and size, these models suffer
great performance drops [18]. Deep learning has been em-
ployed to address the task of unconstrained ear recognition,
initially with basic convolutional neural networks (CNNs)
[12, 41, 50, 24, 2]. Methodological contributions to ear
recognition include a U-Net-like encoder-decoder structure
[16], an ensemble of different CNNs to detect the ear in the
image [20], a comparison of various image feature extrac-
tion models [5, 17], the use of a center loss function [59],
and a process to concatenate image features from both local
patches of the ear images and the whole image [47]. Recent
work proposed a vision transformer for ear recognition [4]
and showed the benefits of pre-training [43].

2.3. Face Recognition in the Presence of Aging

As for ear recognition, early face recognition systems,
which relied on handcrafted features [3, 34], have been re-
placed by deep learning models (e.g., [36, 45, 49, 55]) with
the emergence of large face datasets [7, 9, 22]. Various
works proposed new ways of representing faces [14, 15,
35, 39, 54, 61]. We found the latent space representation
with the large margin cosine loss [54] particularly useful
for our work. Most relevant to our research is the literature
on age-invariant face recognition [6, 13, 21, 33, 56, 58], in
particular, the use of sequential face inputs [56].

3. The EICZA Dataset
To date, the computer vision community has not worked

with ear image datasets that have age labels of the same sub-
jects, although an unnamed, not-much-explored dataset ex-
ists, i.e., https://doi.org/10.5281/zenodo.5676103. We cu-
rated this raw dataset by making the images suitable for
processing with deep learning architectures and organizing
them in training/validation/testing batches that are appropri-
ate for addressing the age-constrained recognition task. We
name this curated dataset EICZA for Ears of Infant Cohort
in Zambia with Aging. EICZA consists of the ear images
of infants who were seen at an urban clinic, the Chawama

Figure 3. Histogram of the number of imaged infants (red) and
the number of images (blue) per session. Each infant was imaged
during at most 10 sessions from age 6 days (D) to age 9 months
(M). Infants were enrolled in the longitudinal study either at age
6D or age 14 weeks (W).

Figure 4. Examples of curated ear images from three subjects at
different ages. The white arrows point to ear areas that changed
significantly as subject A aged.

Clinic, in Lusaka, Zambia, during routine well-child vis-
its [46], which occurred at ages 6 days, 6, 10, and 14 weeks,
as well as monthly from age 4 to 9 months (Fig. 3). A to-
tal of 227 infants were enrolled in this longitudinal study
after consent for the release of the images was taken from
the participants’ next of kin. Consent forms were presented
in two local languages and approved by the two universities
involved in the study. None of the participants took part in
all 10 imaging sessions. Attrition was notable for sessions
that did not co-occur with vaccination visits (after 14W).

For most participants, four ear images, two right and two
left, were taken at each imaging session. In most sessions,
additional images with the ear rotated by a 30◦ angle were
taken. The images were taken with a white background un-
der appropriate lighting. As a step in our curation process,
we cropped and resized the raw images to a resolution of
224×224 pixels for ease of image feature extraction. Pro-
cessed sample images of three subjects are shown in Fig. 4.
Ear growth was significant until 6 months of age [46] (com-
pare the images in the first two columns of Fig. 4).



Table 1. Properties of our EICZA dataset compared to the existing
ear datasets (without age labels) and three face datasets with age
information. EICZA includes more subjects and twice as many
images as the first published face dataset with age labels FG-NET.

Bio-
metric

# of
subjects

# of
images

Images
per subject

Age
label

IITD-2 [31] Ear 221 793 3.59
UND [57] Ear 952 3,480 3.66
UBEAR [40] Ear 126 4,430 35.16
UERC 2019 [19] Ear 3,706 11,804 3.19
EarVN 1.0 [26] Ear 164 28,412 173.24
FG-NET [32] Face 82 1,002 12.22 ✓
MORPH-II [44] Face 13,000 55,134 4.24 ✓
CACD [10] Face 2,000 163,446 81.72 ✓
EICZA (our) Ear 177 3,330 18.81 ✓

The original study [46] collected 3,544 ear images of 227
infants. For our task of age-constrained ear recognition, we
need ear images of the same participant, taken at 3 different
ages at least. This constraint reduced our dataset to 3,330
images of 177 infants for whom at least ∼ 3 × 4 = 12 im-
ages (4 photos each session) had been collected. For these
177 infants, an average of 18.8 images are available in total,
and 4.7 images at a particular age. The images in the origi-
nal dataset were labeled by patient identity and age. To cu-
rate the dataset for training and testing of recognition mod-
els in a neutral or age-constrained manner, we organized
the images into training, validation, and testing sets based
on the participant’s identity and the index of the session that
a participant actually attended (i.e., came back to the clinic
and took part in the ear collection at the required age). In
particular, the set of images taken at the kth imaging ses-
sion of participant p is the set S(p)

k = {I(p)k,1 , I
(p)
k,2 , . . . , I

(p)
k,u},

where the maximum number u of images is typically 4 and
the maximum session index k ranges from 3 to 8 sessions
per patient. Section 5 describes how we split the per-patient
and per-session sets S(p)

k of images into training, validation,
and testing data splits.

Table 1 provides a summary of the statistics of the cu-
rated EICZA dataset and other datasets. We list the existing
ear datasets as well as face datasets with age labels. Among
the face datasets, we selected FG-NET [32] for our experi-
ments, since it is publicly available and does not have label
noise. We conducted both age-neutral and age-constrained
experiments with it. Among the ear datasets, we chose the
most recently published dataset, UERC 2019 [19], which
includes the largest number of subjects among ear datasets,
for our experiments. Given its lack of age labels, we can
only conduct age-neutral experiments with it.

4. Proposed SASE Model

The motivation of our model design was to train a
subject-discriminatory representation that utilizes previ-

ously collected ear images of the same subject, i.e., ears
at younger ages. Accordingly, Our proposed model, SASE
for Self-Attention-based Sequential Ear image analysis,
consists of three parts, a feature-extracting backbone net-
work, which adopts the Squeeze-and-Excitation Network
(SENet) [27], a Transformer encoder [52], which allows the
extracted feature to obtain context information from ears
of early ages, and a per-subject representation by “center
vectors,” computed using the Large Margin Cosine Loss
(LMCL). A summary of our proposed SASE model is vi-
sualized in Figure 5.

4.1. Sequential Input and Transformer Encoder

The task of the SASE model is to identify a
person p by a sequence of l ear images of the
same person. Concretely, our model is a classifica-
tion model that, given an input sequence of images
[I

(p)
k−l+1, ..., I

(p)
k−1, I

(p)
k ], predicts a person’s identity p̂ with

probability Pr(p̂|[I(p)k−l+1, ..., I
(p)
k−1, I

(p)
k ]). Since the input

images to the model are always from the same person, it is
convenient to drop the superscript (p) and re-write I(p) as
I . Specifically, Ik is an ear image taken during session Sk.

During training, Ik−i is an ear image randomly chosen
from images of session Sk−i of a younger age k − i where
i ranges from 1 to l − 1. If (k − i) < 1, we sample images
from k instead. Practically, during inference, the model is
not able to access images of the query subject at a younger
age, so we sample images from Sk instead during the eval-
uation process. In our experiments, we chose l = 3, i.e., a
sequence of three images as input.

The backbone is a Squeeze-and-Excitation Network
(SENet) [27] extractor which extracts the image features
from the image sequence:

[fIk−l+1
, ..., fIk−1

, fIk ] = Backbone([Ik−l+1, ..., Ik−1, Ik]).
(1)

For convenience, we re-write fIk as fk. fk ∈ Rdf , where
the dimension df is 2,048 for a SENet. In practice, we first
pre-trained the SENet with the VGG-Face v2 dataset [9] and
then fine-tune the pre-trained backbone with EICZA.

The transformer encoder module takes over the feature
sequence [fk−l+1, ..., fk] and outputs the self-attended fea-
ture f ′

k from sequence [f ′
k−l+1, ..., f

′
k]. Unlike fk, which

only contains information about itself, f ′
k also encodes con-

text from the other images in the input sequence of the same
person, i.e., from [fk−l+1, ..., fk−1].

There are two main parts of the transformer encoder,
the self-attention layer, and the feed-forward network layer.
The self-attention layer computes the f ′

k with a “scaled dot-
product attention” mechanism:

Q = FWQ, K = FWK , V = FWV , and



Figure 5. A visualization of our SASE model. Taking an input sequence of l ear images [Ik−l+1, the model extracts their image features
[fk−l+1, . . . , fk] with a backbone network and sends them through a Transformer encoder to compute an output feature Ok representing
the input ear. The identity of the subject is predicted by comparing the cosine similarities between each element w of a set of learnable
center vectors and the normalized output feature representation xk, and choosing the most similar (“LMC similarities”). During training,
a marginalized cross-entropy loss is computed to fine-tune the backbone, Transformer encoder, and ear subject space (the color wheel).

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V,

where F ∈ R(l+1)×df is the concatenated matrix form of
[fk−l+1, ..., fk], WQ,WK ,WV ∈ R(df )×dk are learnable
matrices, and dk = 256.

The transformer encoder also adopts a multi-
head attention structure, which computes a different
Attention(Q,K, V ) at the same time:

MultiHead(Q,K, V ) = Concat(head1, head2, ..., headn)WO,

where headi = Attention(Qi,Ki, Vi) that i ≤ n. WO ∈
Rndk×df , n = 8 in our case.

The computed MultiHead(Q,K, V ) is sent to a feed-
forward network which can be considered as a neural net-
work of fully-connected layers. The output is F ′ =
[f ′

k−l+1, ..., f
′
k]. Additionally, the self-attention layer and

the feed-forward network can stack up with each other. Our
stack size is two.

We note that techniques such as layer normalization and
residual connection are also applied in the transformer en-
coder [52].

By sending the f ′
k through two additional fully-

connected layers, we obtain Ok that encodes information
from images of different ages. We normalize Ok by divid-
ing by its norm and obtain xk = Ok

∥Ok∥ , which allows us to
compute the Large Margin Cosine Loss (LMCL) function
[54], described next.

4.2. Large Margin Cosine Loss (LMCL)

The Large Margin Cosine Loss [54] can be considered
as a special form of cross-entropy loss between the predic-
tions and the target classes. A visualization of the latent ear
space trained with LMCL is given in Figure 5. Each feature
in the space can be considered as a unit vector with its own
direction (cosine value). So whether a feature belongs to

a certain subject class (the colored fan in the figure) is de-
cided by how small the angle θ is between the direction of
feature vector xk and the direction of the class center unit
vector w. For classification, a set of parameters, the “cen-
ters” w’s, are learned to represent each class (subject) dur-
ing the process. During inference, the cosine similarities
are computed between the xk and w’s to decide to which
subject p feature vector xk belongs. The goal of the opti-
mizer is to maximize the cosine similarity between xk and
the center of our target center wp. A hyperparameter M
controls the size of margins (gaps between colored fans in
the figure) between different class areas, and hyperparame-
ter s controls the magnitude of feature vectors. The Large
Margin Cosine Loss is defined as follows

ℓLMC =
1

N

N∑
i

− log
es(cos(θyi ,i)−M)

es(cos(θyi ,i)−M) +
∑

p ̸=yi
es cos(θp,i)

,

(2)
where N is the number of training samples, i stands for
the ith sample, yi stands for the ground truth subject of the
sample, cos(θp, i) = wT

p xi (with ∥wT ∥ = ∥xi∥ = 1), and
the learnable vector wp of the pth subject, which works as a
“center” to represent subject p in latent “ear space.”

5. Proposed Evaluation Methodology
Cross-validation Setup. We used 4-fold cross valida-

tion in the experiments with the EICZA dataset. In each
fold, the ear image data are divided into three disjoint sets
for training, validation, and testing. The model is first
trained with the images in the training set. Training is
then continued on the validation data while regularly stor-
ing “snapshots” of the learned parameters. Among these
snapshots, the snapshot with the best performance on the
validation set is selected as the best model for the current
fold. The chosen snapshot model is then tested on the test-
ing data. Once the four folds have been processed, we re-
port the average accuracy of the four best models on the



Table 2. Cross-Validation Setup for Age Constrained Recognition Experiments. For 2 of 4 folds the sets of images
included in training, validation, and testing are shown, where S

(p)
k is the set of images of person p obtained at session k (age

increases by session). In each fold, all images are used for training (green), except the images taken during sessions 2–n for
a group of m persons (for fold 1, the first m persons; for fold 2, the second m, etc). The newest images are used for testing.

Fold Training Set Validation Set Testing Set
1 S

(1)
1 , . . . , S

(m)
1 S

(1)
2 , . . . , S

(m)
2 S

(1)
3 , . . . S

(m)
n

S
(m+1)
1 , . . . , S

(2m)
1 S

(m+1)
2 , . . . , S

(2m)
2 S

(m+1)
3 , . . . , S

(2m)
n

S
(2m+1)
1 , . . . , S

(3m)
1 S

(2m+1)
2 , . . . , S

(3m)
2 S

(2m+1)
3 , . . . , S

(3m)
n

S
(3m+1)
1 , . . . , S

(4m)
1 S

(2m+1)
2 , . . . , S

(4m)
2 S

(2m+1)
3 , . . . , S

(4m)
n

2 S
(1)
1 , . . . S

(m)
1 S

(1)
2 , . . . S

(m)
2 S

(1)
3 , . . . S

(m)
n

S
(m+1)
1 , . . . S

(2m)
1 S

(m+1)
2 , . . . S

(2m)
2 S

(m+1)
3 , . . . S

(2m)
n

S
(2m+1)
1 , . . . S

(3m)
1 S

(2m+1)
2 , . . . S

(3m)
2 S

(2m+1)
3 , . . . S

(3m)
n

S
(3m+1)
1 , . . . , S

(4m)
1 S

(3m+1)
2 , . . . , S

(4m)
2 S

(3m+1)
3 , . . . , S

(4m)
n

fold-specific testing sets.
To ensure that, during testing, the model is not queried

with an ear image of a previously unseen person, we orga-
nize our cross-validation scheme by subjects. For a popu-
lation of 4m subjects, each cross-validation fold has a test-
ing set that contains the images of a different group of m
subjects. We ensure that images of these subjects are also
included in the training and validation sets of the fold. To
enhance the training set, we allow images of subjects out-
side the group of m to be included.

For the task of age-neutral recognition, we can randomly
select a person’s images into training, validation, and test-
ing sets irrespective of age labels. For the task of age
constrained recognition, however, we need to devise a data
split procedure that takes the age labels into account, as de-
scribed next.

Setup for Age Constrained Recognition Experiments.
Our cross validation procedure groups images by age. For
ease of description, we refer to an imaging session rather
than the specific age of the person at that session. In EICZA,
we have S1, . . . , Sn sessions, where the number n of ses-
sions varies among infants (n is at least 3 and at most 8). For
the scenario that the ear is used as a biometric for access to
health care records, the use case would be to train the model
with images taken when the subject is younger (“gallery im-
ages” in biometrics) and to query the model with an image
when the subject is older (“probe” in biometrics). Thus, we
set up our testing set to include the images of more recent
sessions S3, . . . , Sn and reserve a subject’s images in the
first session S1 for training and in the second session S2 for
hyperparameter validation. (For other use cases, the proce-
dure could be changed so that the younger ears are in the
query images and the older used for training.)

Table 2 illustrates the dataset split for the 4-fold cross
validation experiments with our age constrained recognition
model for the first two folds. In the first fold, the images of
the third and subsequent imaging session of the first m sub-

jects make up the testing set (blue), and the images of the
second session of these m subjects make up the validation
set (red). The images in the first session are included in the
training set, as well as all data from all sessions of the re-
maining 3m subjects (green). Including the latter is done to
help the model learn the general concept of aging, including
the former is done so the model learns how the ears of the
m subjects look initially.

For the age-neutral experiments, we directly use one
group for testing, one group for validation, and the rest for
training.

6. Setup of Experiments
Dataset Experiments. To process the EICZA data, we

used the procedure described in Section 5 with 177 indi-
viduals. Consequently, the ears of 43 or 44 subjects are
evaluated during validation and testing for each fold. The
number n of sessions to be at least 3 and at most 8, and
a [Training:Validation:Testing] split of [2755:248:327] im-
ages on average, corresponding to a [83%:7%:10%] of the
total number of images, 3330. During experiments, we no-
ticed that images of 6-day ears cause large intra-subject dif-
ferences compared to the rest of the images, leading to a sig-
nificant drop in accuracy. Thus, we also trained and tested
the ear models without including the 6-day ear data and re-
port their performance.

We experimented with the UERC dataset [19], which
contains 11,804 ear images of 3,706 subjects. The main
part of this dataset is a subset of the Extended Annotated
Web Ears (AWEx) dataset [18], which contains 3,300 ear
images of 330 subjects. We used a subset of the UERC
2019 public dataset, including all subjects that have at least
10 ear images, which is a total of 442 subjects and 6,218
images. Since the UERC data do not include age labels, we
followed the age-neutral evaluation procedure as described
in Section 5. Because the dataset is larger than EICZA, we
were able to use five cross-validation folds. When training



SASE on UERC, which requires a sequence of input im-
ages, we simply input copies of the same image.

We also experimented with the FG-NET dataset [32],
which contains face images of 82 subjects aged from 0 to
69 years old. Due to the limited number of images for cer-
tain subjects, we did not apply cross-validation. However,
we did apply the age-neutral and age-constrained evaluation
procedures in a “single fold experiment.”

Model Comparisons. In addition to SASE, we
experimented with three feature extraction models,
SqueezeNet [28], ResNet-50 [25], and SENet (version
SEResNet-50) [27].

Input Preprocessing. All images are resized and
padded to 224 × 224 pixels as input of the models. Dur-
ing training, with 0.5 probability, each input image is either
processed in this form or in its horizontally-flipped form.
Similarly, with equal probability, the input image is rotated
by a degree within the range of 0◦−30◦. This preprocessing
method ensures a richer data augmentation.

Hyper-parameter Tuning. We used a subset of images
to determine the learning rate and number of times all train-
ing data should be processed during backpropagation with-
out incurring overfitting. We determined a learning rate of
10−5 for models based on ResNet and SENet, a learning
rate of 5 × 10−5 for SqueezeNet-based models, and the
number of epochs in all experiments to be 200. The hy-
perparameters s and M are set to 64 and 0.35, respectively.

Network Initialization. We initialized the ResNet and
SENet feature extractor parameters by pre-training the mod-
els first with the MS1M dataset [22], and then with the
VGG-Face2 dataset [9]. We initialized SqueezeNet with the
parameters pre-trained on ImageNet.

Snapshot Retrieval. We used a batch size of 16 for
models with time series input and 32 for models with sin-
gle image input. Each iteration during training processes
a batch. When training on the validation data, after every
200 iterations, a snapshot is stored. This yields approxi-
mately 400 snapshots per cross-validation fold, from which
the best-performing model (per fold) is determined.

Computing Environment. We implemented our exper-
iment in Python 3.6 with Pytorch 1.10 and adopted Adam
[30] as the optimizer. We used a Quadro RTX 6000 graph-
ics card. Each 4-fold cross-validation experiment takes
∼8,000 MB memory and ∼20 hours (∼ 5 h per fold).

7. Results
Main Results on EICZA. Our experimental results

show that our proposed model, SASE, when applied to
EICZA outperforms baseline models by large margins, see
Table 3. This applies to the three experimental conditions
of age-neutral and age-constrained, trained with and with-
out Day 6 images, i.e., an average accuracy of 69%, 33%,
and 50%, respectively, and uses the cross-validation proce-

Figure 6. Cumulative Match Characteristic (CMC) curves for the
four tested ear recognition models. The proposed SASE model
performs consistently the highest accuracy for ranks 1 through 35.
The performance is computed for EICZA data without the age 6D
images included in the training set.

dure described in Section 5 and experimental setup in Sec-
tion 6. We note that the standard deviation across cross-
validation folds is about 6% points, on average. We also
conducted an experiment that shows that the smaller the age
difference between train and probe images is, the higher the
model performance becomes. In particular, SASE’s age-
constrained performance on EICZA improves to 43% (with
Day 6) and 58% (without Day 6) if train and test images
were from consecutive imaging sessions (if two sessions
apart, 37% (w D6) vs. 52% (w/o D6). Among the three deep
models SqueezeNet, ResNet-50, and SENet, the fine-tuned
SENet performs the best (i.e., 28% on age-constrained test-
ing without Day 6 images in the training set), which justi-
fies our choice of SENet as the backbone feature extractor
in SASE.

Model Comparison with CMC. We computed Cumula-
tive Match Characteristic (CMC) curves for the four tested
ear recognition models from rank-1 to rank-35 accuracy, see
Fig. 6. The plot shows that our proposed SASE model con-
sistently performs with the highest accuracy for these ranks.
We note the large jump in accuracy levels from rank 1 (50%)
to rank 5 (75%) and rank 10 (84%).

Results on Other Datasets. Since EICZA is the first
dataset of its kind and there are no other datasets of ear
images with age labels, we cannot apply SASE on other
datasets for benchmark comparisons. Nonetheless, we
tested SASE on UERC [19] and FG-NET [32] in the age-
neutral settings, for which SASE outperforms the baseline
models, and on FG-NET in the age-constrained setting, for
which it underperforms by 3% points (but outperforms the
fine-tuned SENet model, its own backbone, by 7% points).
We must stress that our performance levels are lower than
what has been reported in the literature for these datasets for
state-of-the-art models, but this fact is beside the point we
are making here. Our experimental results apply to the age-
constrained recognition task we define in this paper, and



Table 3. Average cross-validation recognition accuracy of SASE compared to four baseline models on three datasets
Dataset UERC [19] FG-NET [32] (Aging Faces) Our EICZA (Aging Ears)

without Age Neutral Age Constrained Age Neutral Age Constrained Train/Test
Model Ear Ages Train/Test Train/Test Train/Test with Day 6 without Day 6
SqueezeNet [28] 26.88% 17.85% 7.24% 52.30 % 8.23% 11.14%
ResNet-50 [25] 36.72% 82.84% 55.92% 61.30% 13.84% 22.98%
SENet [27] 41.86% 78.89% 46.05% 68.11 % 18.85% 28.46%
SASE (Our Model) 42.56% 82.90% 52.96% 69.49% 33.14% 49.98%

Table 4. Ablation study results for our SASE model, remov-
ing both LMCL (L) and sequential input (S) or one at a time,
with (w) and without (w/o) Day 6 training. The percentage
point improvement (Impr.) is computed over the baseline
SENet (SASE w/o L&S).

Model Accuracy Impr. Accuracy Impr.
SASE w Day 6 [pp] w/o Day 6 [pp]
w/o L&S 18.9% 28.5%
w/o L 25.5% 6.7 41.6% 13.1
w/o S 28.1% 9.2 44.0% 15.6
w L&S 33.1% 14.3 50.0% 21.5

the task requires a different experimental methodology than
what previous works have used. Our purpose in reporting
the numbers in Table 3 is to illustrate differences in task
difficulty and baseline models.

Ablation Study of the Proposed Model SASE. In order
to show that the design of using sequential inputs and the
LMCL-based embedding space are both effective compo-
nents of our SASE model, we conducted an ablation study
that removed either component and then tested performance
on the EICZA dataset (Table 4). Without sequential inputs
and LMCL, our proposed model is degraded into a SENet
feature extractor and fully-connected layers for classifica-
tion output (row 1). As we can see from rows 2 and 3, use
of sequential input and LMCL increases the model perfor-
mance by 6.7% points and 9.2% points, respectively, when
trained on Day 6 data. When the two designs are combined
together, our model achieves average accuracy of 33.1%,
which is even higher than only using either of them. When
we conduct the same ablation experiments on SASE trained
without day 6 images, the improvements over the baseline
model are even more significant.

Length of Input Sequence. We experimented with dif-
ferent input sequence lengths l on EICZA with and without
Day 6 images. We tested l = 1 to 5 (Table 5). Length l = 1
yields the lowest and l = 3 yields the highest accuracy for
the testing set for both dataset versions, validating our ap-
proach to use sequences of three input images, rather than
single images. For the validation sets, we found differences
in which length provides highest average accuracy levels
(l = 5 vs. 3), indicating that length 3 may not necessarily
yield the best results in other settings. However, the benefit
of processing sequential image input likely generalizes.

Table 5. Accuracy of SASE with different length l on EICZA.

SASE with Day 6 w/o Day 6
Val. Test Val. Test

l = 1 57.47% 30.40% 65.97% 44.48%
l = 2 62.70% 32.87% 70.19% 45.72%
l = 3 56.64 % 33.14% 71.47% 49.98%
l = 4 55.63% 26.51 % 71.03% 42.79%
l = 5 62.87% 32.83 % 69.77% 43.09%

Table 6. The result of the outsider experiment for model SASE
with the training set that includes the challenging 6-day data.
Thresh-
old T

Insider
Accuracy

Outsider Detection
Accuracy Precision Recall F-1

0.2 30.25% 50.16% 50.08% 99.84% 66.70%
0.3 36.40% 54.91% 53.59% 73.35% 61.93%
0.4 55.49% 54.68% 60.42% 27.12% 37.43%
0.5 70.69% 51.57% 67.44% 6.06% 11.12%
0.6 90.91% 50.13% 64.71% 0.57% 1.14%

Outsider Experiment. In each fold of the 4-fold cross-
validation, we selected 1/4 of the subjects as “outsiders”
and randomly sampled ear images from them for an amount
equal to the original testing images. If the highest score for
a subject predicted by the model is lower than the thresh-
old T , the model predicts the input ear as an ear of a
previously-unseen “outsider.” The results in Table 6 show
there is a trade-off between high insider and outsider detec-
tion. The “sweet spot” for T is between 0.3 and 0.4.

8. Discussion and Conclusion
Our work has shown that ear aging adds a substantial

challenge to the problem of ear recognition. While the
performance margins of SASE are large compared to the
baseline models (20 percent points and more), the absolute
accuracy level of the best model (50%) is too low yet for
SASE to serve as a biometric method. This encourages fu-
ture work by the IJCB community. We suggest exploring
how to handle the issue of missed sessions, maybe working
with the age labels directly rather than the session index k.

We suggest that the curated dataset be used for research
on ear-based identity verification for access to electronic
health records of infants. After all, being able to match a
child to its immunization records was one of the goals that
motivated the ear image data collection in Zambia.
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