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Abstract

We introduce a method to detect the white visible por-
tion of the eyeball, the “sclera.” Our method is embed-
ded in a real-time vision system that actively controls
the camera’s pan, tilt, and zoom. We designed the
system to automatically detect the head of a moving
person and zoom towards the face until the eyes are
imaged with sufficient resolution. The scleras are then
detected using color-based Bayes decision thresholds.
We tested our system for various subjects, head and
facial motions, and lighting conditions.

1 Introduction

In the near future, standard desktop computers will
be equipped with cameras that can capture the com-
puter user’s head orientation, facial expression, lip
movement, and gaze direction. A computer vision
system that interprets this information reliably has
the potential to become a new communication tool
and augment traditional human-computer interfaces
such as keyboard and mouse. Such a system will
also have an important impact on people who can-
not use the keyboard or mouse due to severe dis-
abilities. Our research is motivated by the goal to
provide a communication tool to non-speaking chil-
dren with cerebral palsy and traumatic brain injuries
at Boston College’s campus school. Currently two
systems are used as mouse replacements and impor-
tant means of communication by several children at
the campus school. The older system, called “Ea-
gleEyes,” is based on measuring the user’s electro-
oculographic potential [11, 6]. Our new system, the
“Camera Mouse” is based on facial feature tracking
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using a video camera [10]. The children use the sys-
tems to spell out words or messages and play games.
This paper describes our steps towards substituting
EagleEyes with an inexpensive, unobtrusive computer
vision system that not only tracks features but also
detects them. Our ultimate goal is to automatically
determine the gaze direction of a computer user. Our
current system addresses the following two tasks:

e Detecting a face, zooming towards it, and track-
ing it.

e Detecting the scleras, the white visible portion of
the eyeballs.

Our system performs these tasks in real time using
various subjects, head and facial motions, and lighting
conditions. We developed a color-based technique to
detect eye scleras. The color of eye scleras, a yellowish
white, does not vary much between different subjects,
while iris color, eye shape, and surrounding skin color
generally vary substantially.

1.1 Previous Work

Various techniques have been used to detect and track
people, and their faces and eyes in real time. Tem-
poral differencing is often used to segment moving a
region of interest from a stable background [5, 19]. Fa-
cial motions have been analyzed in real time or near
real time, using normalized color histograms [3, 18],
parametric flow models [21], models of facial dynamics
[4, 7], Hidden Markov Models [14], and stereo systems
[12]. We are unaware of any previous work that ad-
dressed sclera detection. Skin color based detection
of faces, however, has been explored extensively, e.g.,
[8, 16, 20, 22].

Gaze estimation has proven to be a challenging
problem. Previous approaches include systems based
on neural networks [1, 17], morphable models [15], and
self-organizing gray-scale units [2]. Gee and Cipolla
[9] explore the underlying geometric constraints.



2 Statistical Sclera and Skin
Color Models

We use statistical decision theory [13], in particular,
Bayes decision rule to estimate from the color of a
pixel if it images a face or the sclera of an eye. A
training data set of images that are known to con-
tain faces is analyzed to determine a priori probabil-
ity distributions of skin and sclera color. Our sys-
tem minimizes the average loss associated with the
classification decision as follows. Let p and g be the
respective a priori probabilities that a data vector v
describes/does not describe the color of a particular
face region. Let p(v|s) be the likelihood function for
the image data v given a desired color s. Finally, let
p(v]|0) be the probability of the data, given that the
desired color s is not present. The likelihood ratio £(v)
is then given by
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The likelihood ratio £(v) is compared to the decision
threshold
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where C; and (5 are the respective costs associated
with false positive and false negative decisions. The
average loss associated with the classification decision
is minimized when pixels for which
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are classified belonging to the desired color, and pixels
for which £(v) < H are classified as not belonging to
the desired color.

2.1 Sclera Color

Our training data consists of images taken from 8 sub-
jects under two different lighting conditions. First,
only the neon ceiling lights in our laboratory were
used, and a set of images was obtained that shows
dark shadows around the subject’s eyes. Then an ad-
ditional desk lamp was placed to brighten the sub-
ject’s face. We segmented the white of the eyes in
each training image by hand.

Figure 1 shows a sample set of our training images,
where the subject’s sclera is segmented by hand and
displayed in pure white. Figure 2 plots the distri-
butions for the sclera and non-sclera pixels for data
points v; = red — green and vy = green — blue. The

non-sclera pixels are also segmented by hand to in-
clude all pixels that make up the eye region except the
sclera, i.e., the iris, pupil, eye brows, lashes, and lids.
The distributions were computed using 7550 training
pixels for the sclera color, and 275,547 for the non-
sclera, color, and taken under the same desk and ceil-
ing light conditions.
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Figure 1: Training images for sclera color taken with
ceiling lights (top row), ceiling and desk lights (bot-
tom row). The black region in the right bottom image
is used as training data for non-sclera eye color.

Table 1 lists sample means and variances for the
training data distributions. Figure 2 shows Gaus-
sian approximations based on these statistics. We use
them to define the likelihood functions
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for v1 = red — green, ma = 42, and 05 = 231. The
likelihood functions for v = green — blue are defined
similarly. We assume that sclera or non-sclera colors
are equally likely to occur within the eye region. Then
the prior probabilities p and ¢ can be set to 1/2 and
the likelihood ratio is
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If the same costs are associated to false positive
and false negative decisions, i.e., H = C1/Cy = 1,
pixels with v; = red — green < 36.4 and vy, =
green — blue < 8.3 are classified to have sclera color.
These thresholds on v; and v are given by the inter-
sections of p(v|sclera) and p(v|eye) in Fig. 2. How-
ever, for our application it is worse to miss a true
sclera pixel rather misclassify a non-sclera pixel. We
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Figure 2: Distributions of sclera and surround-

ing eye color of training data and respective like-
lihood functions p(v1|sclera),p(vy|eye), p(vsa|sclera),
and p(vi|eye). On top v = red — green, at bottom
vg = green — blue.

Table 1
Statistics of Training Data
Sclera | Eye | Sclera | Eye
Sample red - green | green - blue
Mean 29 42 4 12
Variance 121 | 231 36 64

therefore use a cost ratio of C1/C2 = 2/3 as the de-
cision threshold . This results in classifying pixels
with v; <40 and vy < 12 as sclera colored.

Figure 3 shows the sclera classification results for
a typical scene. Sclera-colored pixels are shown in
white. Notice that glare at the border of the face

and clusters of background pixels are also identified
as sclera colored. To avoid such misclassifications, our
system first identifies the face and then only searches
the face area for sclera-colored pixels. Skin-colored
pixels are used to help identify the face. We use the
same techniques as described above to determine de-
cision thresholds for skin-color classification. Misclas-
sification of skin color is addressed by a model-based
approach as described in Section 4.

Figure 3: Pixels that match the sclera color are shown
in white; other pixels are shown in black.

3 System Overview

Our system actively acquires and processes live video
input of a person and outputs an online description of
location and size of the person’s face and eyes. The
vision system contains five main components: cam-
era initialization, process coordination, face detection,
face tracking, and eye detection. Figure 4 provides a
system flow chart.

In the initialization phase, the camera is positioned
at zero pan and tilt angles and widest field of view.
Frame acquisition is then started with the face de-
tector searching the full frame. Once the face detec-
tor recognizes a face, the process coordinator creates
a tracking process. While the face is being tracked,
the system decreases the camera’s field of view and
zooms towards the detected face until it appears large
enough to employ the eye detector.

The process coordinator uses the detection and
tracking history to decide whether a face estimate is
reliable. If the process coordinator concludes that the
face disappeared or is tracked incorrectly, it switches
control from the face tracker back to the full-frame
face detector. The dynamic use of either face detec-
tor and tracker reduces the amount of computational
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Figure 4: System overview

resources needed and allows real-time detection and
tracking.

4 Face Detection

The task of the face detector is to identify a person’s
head and rotate the camera so that the face is in the
center of the image. It outputs estimates for the cen-
ter and the top, bottom, left, and right borders of the
face.

The face detector identifies pixels with skin tone
in the entire image frame. To classify the color of a
pixel, Bayes decision rule is applied as described in
Section 2. The face detector then creates a “skin-
tone motion image” that describes where the signifi-
cant changes in skin color from one frame to the next
occur. As can be seen in Figure 5, these changes ap-
pear strong within the face and at its border, where
skin-tone motion is obtained by subtracting face pix-
els from non-face background pixels. The face detec-
tor can therefore identify the face outline by searching
the skin-tone motion image for strong edges.

Strong horizontal and vertical lines in the n x m
skin-tone motion image are identified as follows. Its
pixel values are projected horizontally and vertically
onto vectors h and v, respectively. The horizon-
tal projection vector h is an m-dimensional column

vector, and the vertical projection vector v is an n-
dimensional row vector. A large vector component h;
indicates that the ¢th image row contains a substantial
number of pixels with skin-tone motion that are due
to up or down head motion. Similarly, a large compo-
nent v; indicates that the jth image column contains
a substantial number of skin-tone motion pixels that
are due to left or right head motion. Local peaks
in h and v can therefore be used to estimate the top-,
bottom-, left-, and rightmost coordinates of the face.
The search for these coordinates starts at the top,
bottom, left, and right border of the image and moves
towards the image center.

Our method to detect the face outline only assumes
that the face will be a “recognizable blob” in the skin-
tone motion image. It does not assume the coherence
of same-color pixels and therefore does not waste com-
putational resources trying to find crisp, contiguous
edges that mark the border of the face.

Figure 5: A skin-tone motion image. Bright pixels in-
dicate significant temporal changes in skin tone, black
pixels indicate no change.

Once the face detector identifies a set of coordi-
nates (¢, yt), (s, ys), (z1, 1) and (z,,y,) that poten-
tially describe the borders of a face, it counts skin-
tone pixels (x,y) within the ellipse
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that is defined by these coordinates (see Fig. 6). If
the skin-tone portion of the ellipse is large enough
to provide evidence that it indeed models a face, the
camera is repositioned to center the face in the image.
At this point, the process coordinator switches control
to the face tracker. It also disables the face detector
for the next few frames to increase the speed of the
system.



Figure 6: The face in the left image is detected and
modeled by the ellipse shown in the right image.

5 Face Tracking

The task of the face tracker is to

e follow the face by rotating the camera and

e obtain or maintain a resolution that allows reli-

able eye detection by changing the camera zoom.

To determine the face outline in the current image
frame, the face tracker uses as inputs either its own
or the face detector’s estimates of face border coordi-
nates in the previous frame.

The face tracker and detector determine the face
outline in a similar manner. The main differences
lie in the search size, data, and direction. Instead
of searching the entire frame, the face tracker only
searches an image region slightly larger than the re-
gion covered by the detected face in the previous
frame. Instead of searching for strong edges in the
skin-tone motion image alone, the face tracker in-
cludes in its search both skin-tone pixels and skin-tone
motion pixels. This enables the tracker to identify the
face even if there is no or only small motion. The face
tracker searches the projection vectors from the cen-
ter of the search region towards its borders. Once it
identifies a set of coordinates that possibly describe
the face outline, the face tracker checks whether the
skin-tone portion of the ellipse defined by these coor-
dinates is large compared to the size of the ellipse. If
this portion is large, the coordinates are considered to
describe a face.

Once the face tracker has identified a face, it checks
the size of the elliptic face model and determines if the
camera’s field of view should be decreased to increase
the size of the face within the image. After the po-
tential change of the camera’s zoom, system control
moves on to the eye detector.

6 Eye Detection

The task of the eye detector is to find the eyes in a face
by locating the left and right eye scleras. The eye de-
tector is started by the process coordinator as soon as

the identified face region contains at least two-thirds
of the size of the image. This threshold is needed
to ensure a resolution of the eyes in the image that
makes sclera detection feasible. The threshold was
not chosen arbitrarily, but in fact tested extensively.

The eye detector identifies all sclera-colored pix-
els within the face using Bayes decision rule as de-
scribed in Section 2.1. To improve sclera color clas-
sification, the pixels in the face region are also ana-
lyzed for skin tone and vertical edges and weights are
assigned to combine color and edge information as fol-
lows. A weight of zero is assigned for a skin-colored
pixel, a weight of one for a pixel matching the non-
skin color or indicating the presence of a vertical line,
and a weight of three for a sclera-colored pixel. The
highest concentration of weights can be expected to
occur around the eyes, where large pixel clusters of
sclera-white, clusters of non-skin color due to pupils
and irises, and vertical edges due to eyelashes and iris
borders are the most prominent features.

The peak concentration is found by filtering the
weight map of the face. The filter is defined by a
computational mask of 5 x 5 that averages the local
weights that are associated with the pixels. The eye
detector first searches for a peak filter output that
represents the center of the left eye. The search in-
cludes only pixels located within the left half of the
elliptic face model. Once the left eye is found in this
manner, the eye detector searches the right half of the
ellipse for the right eye.

7 Hardware

Our system uses a Sony EVI-D30 color video CCD
camera. Its NTSC video output is processed by a
Matrox Meteor II image capture board on a 450 MHz
dual processor PC with 384MB RAM. Our system
controls the camera’s pan, tilt, and zoom mechanisms
via the PC’s serial port. The camera’s pan and tilt
angles are £100° and £25°, respectively. Horizontally
the camera’s field of view can change from 48.8° to
4.3% vertically it can change from 37.6° to 3.2°. The
camera has autofocus. Our system processes images
of size 320 x 240 pixels, which is half the resolution
that the camera provides.

8 Real-time Performance

Our system processes between 5 and 14 frames per
second. The wide range of possible frame rates is due
to the active nature of our system. During detection



and tracking phases that do not require any adjust-
ments of the camera’s controls, the system runs about
12 to 14 frames per second. When our system decides
that repositioning of the camera becomes necessary
and activates the camera’s control mechanisms, image
acquisition cannot occur and the frame rate drops.

At the beginning of the experiments, the camera is
initialized to use its widest field of view. When a face
is detected at this wide angle, the camera takes several
seconds to zoom towards the face until a sufficient res-
olution of the eyes is obtained and the scleras can be
detected. Due to frequent camera readjustments, the
frame rate is only about 5 frames per second during
this time.

9 Experiments and Discussion

Since our system actively acquires and processes video
input, it only works in live experiments. This compli-
cates the analysis of our system’s performance. We
cannot work with a database of image sequences and
exploit the advantage that stored test sequences pro-
vide, namely, repeatability of experiments. When a
test person becomes available, both image acquisi-
tion and processing, and analysis of results must all
be done in a live session. In these live experiments,
we find that the system locates and zooms towards
faces well and detects eyes reasonably well. A simpler
version of our system that manually determines the
field of view and automatically detects and tracks eye
scleras has been tested extensively in several public
demonstrations that included about 100 test subjects.
All subject eyes were detected and tracked success-
fully, independent of a subject’s age, race, sex, facial
hair, glasses, etc.

To give a quantitative analysis of our system’s per-
formance, we added the option to save processed im-
ages that are annotated with information about face
borders and eye locations. Saving images for later
analysis slows down the system to about 4 to 6 frames
per second, and therefore causes a significant impact
on its detection performance.

We first tested for long-term tracking performance.
We recorded 190 images over the period of 11.5 min-
utes, choosing a uniform sampling rate. The outline of
the head was identified correctly in 75% of the stored
images. An eye matched correctly in 63% of the sam-
ple images.

We then tested how well our system can track a
face if the subject moves around significantly. Within

2500 frames, the subject made 14 drastic movements
so that only half of the subject’s face was imaged in
the frame that immediately followed the move. The
system correctly repositioned the camera 71% of the
time. The system repositioned the camera within the
span of 30 to 100 frames. It failed if the subject moved
too fast out of the camera’s field of view before the
camera could reposition itself.

We also tested our system’s performance on eight
different subjects in 18 live tests, each lasting 33 sec-
onds. For analysis purposes, 48 images were stored
per test. They included 13 images with eye localiza-
tion. The initial zooming process was 95% successful,
taking between 86 and 254 frames until an optimal
field of view was obtained. The system localized at
least one eye in 89% of the cases. Figure 7 shows how
the vision system actively changes the field of view
once it detects a face. The camera zooms in until the
face is imaged large enough for the eyes to be detected.
The person in the sequence on the right moved out of
the field of view, which delayed the zooming process.

Figure 8 illustrates successful eye detection. Fig-
ures 9 and 10 show cases where only one eye is de-
tected or eye detection failed. Mismatches are due to
closed eyes, misidentification of the face outline, and
problems with the autofocus.

Figure 8: Eye detection and iris localization.



Figure 7: Once a face is detected, the system rotates to center the face within the image frame and widens the
field of view. The faces detected in frame 23 have a width of about 55 pixels. Eye detection starts once the

width of the imaged face is 231 pixels.

Figure 9: Localization of one iris and false match with
hair or background.

10 Future Work

We have presented a system that detects, tracks, and
zooms in on faces, and locates eyes. We developed a
statistical model based on Bayes decision rule to de-
tect the color of the sclera of an eye. Our plan for the

Figure 10: Incorrect localization of eyes due to closed
eyes, failure of camera’s autofocus, and incorrect face
localization.

future is to add geometric constraints to our face and
eye models that improve eye detection without sub-
stantially reducing the real-time performance of our
system. To make eye detection reliable over long time
periods, we will also add an eye tracker to our system.



We strongly believe that reliable sclera detection is an
important tool for estimating gaze direction, which is
our ultimate goal.
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