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Abstract—Domain Name System (DNS) records are frequently
used to investigate a wide variety of Internet phenomena in-
cluding topology, malicious activity, resource allocations and
user behavior. The scope and utility of the results of these
studies depends intrinsically on the representativeness of the DNS
data. In this paper, we compare and contrast five different
DNS datasets from four different providers collected over a
period of 3 months that in total comprise over 10.1B total Fully
Qualified Domain Names (FQDNs) of which 3.7B are unique.
We process and organize that data into a consistent format that
enables it to be efficiently analyzed in Google BigQuery. We
begin by reporting the details of the measurement methods and
the datasets used in our analysis. We then analyze the relative
coverage of each dataset by structural, administrative, and client-
behavioral features. We find that while there are significant
overlaps in the records provided by each dataset, each also
provides unique records not found in the other datasets that
are important in different use cases. Our results highlight the
opportunities in using these datasets in research and operations,
and how combinations of datasets can provide broader and more
diverse perspectives.

I. INTRODUCTION

The contents of the DNS (i.e., the records that are managed
and maintained within the DNS) determine how most Internet
resources and services are accessed. As such, DNS record
datasets have been of continued interest to the measurement
community [1]–[11]. However, the usefulness of these datasets
for downstream studies relies on how representative the in-
cluded data is of the phenomenon analyzed through DNS. In
particular, different DNS datasets may offer more complete
views of geographies, infrastructure, and service types, and
may have differing characteristics and stability over time. In
contrast, a dataset may provide insufficient representativeness
when it is biased towards specific geographies or simply has
too little coverage. A dataset that is representative will lead
to conclusions that are more likely to be generalizable for
the intended research. When performing studies on the DNS,
researchers currently lack an understanding of the relative

trade-offs of these DNS datasets that are actionable for dataset
curation. The goal of our work is to fill this gap.

In this paper, we report on a comparative analysis that fo-
cuses on five DNS datasets collected using different measure-
ment techniques between May–June 2024. Our analysis offers
a novel perspective on how each dataset can be useful by itself
or in combination with others to provide a more complete and
accurate representation of the configurations expressed in the
DNS. To this end, we process and organize data that includes
over 10 billion records using Google BigQuery. To assess
representativeness, we conduct cross-dataset comparisons that
include coverage of differing top-level domains, second-level
domains, domain complexities, and record types.

We find that DNS records collected actively from a tar-
get list of FQDNs compiled from Internet scans have the
largest number of unique records and provide deep details
on infrastructure-related resources in the Internet. Conversely,
records collected via open DNS zone data, applications (e.g.,
extracted from web crawls), or Certificate Transparency (CT)
Logs provide a more comprehensive perspective on all of the
records associated with particular domains including those that
may not have been actively requested. They also offer an
opportunity to seed active DNS measurements and help narrow
the space of potentially resolvable domains.

Our findings suggest that studies based on DNS records
should consider a union of multiple datasets for a more
complete coverage of FQDNs. However, it can be difficult
to gather each type of dataset—especially over longer periods
of time—and it may not be necessary to use the full union
to address certain research and operational questions. A naı̈ve
combination of all possible datasets does not inherently imply
an improvement in representativeness of the data as some
datasets (e.g., CT Logs) contain a large portion of non-active
FQDNs (See §V-E2). Additionally, a large portion of the
domains for some of the smaller datasets are already contained
within larger datasets limiting their added benefit.

Our work aims to inform future research on DNS dataset
selection and provides a critical perspective on how represen-978-3-903176-74-4 ©2025 IFIP



tative each dataset is in terms of scale and diversity of records.
Finally, our study highlights the strengths and weaknesses of
each DNS-related measurement method.

II. BACKGROUND & RELATED WORK

Owing to the vast scope and public visibility of the DNS,
it has continually been the target of study by the Internet
measurement community. Analysis of the DNS has yielded
insights on the evolution of service deployments [1]–[5],
indicators of vulnerability and exploitation [6], [7], vulner-
abilities in service management and configuration [8]–[10],
end-user behaviors [11], among myriad other findings. In
support of such studies, researchers have devised approaches
for generating datasets with a broad view of the configurations
expressed in the DNS. This is non-trivial because while the
DNS is public, it is generally non-enumerable: any user can
request a key and, through recursive resolution, obtain the
value, but the list of valid DNS keys (e.g., all FQDNs) is
not publicly visible, and in many cases may not be fixed or
defined a priori. As a result, producing a DNS dataset requires
approaches for discovering valid keys.

Researchers and practitioners have taken a variety of ap-
proaches towards measuring the DNS. At the highest level,
these fall into two categories:

• Passive approaches record network or transactional data
that reference DNS names. For instance, logs from DNS
resolver servers directly contain DNS references. Certifi-
cate transparency logs refer to domain names when TLS
certificates are issued.

• Active approaches obtain candidate names from other
sources (e.g., zone files of top-level domains provided
by operators, or web server responses) and use these as
candidate names for querying the DNS. Central to this
approach is the ability to make educated guesses on the
space of DNS keys, and various datasets have been built
around novel sources of candidate names.

Within these categories several techniques have become
accepted standards for DNS dataset collection. Characterizing
the relative efficacy of these approaches is a key focus of our
work.

To the best of our knowledge, the issue of representativeness
in DNS datasets has not been addressed in prior work. How-
ever, several prior studies inform our work. Paxson provides
guidelines for sound Internet measurement [12], which include
considering errors and bias in Internet measurement datasets.
More directly related to our work is the study by Scheitle et
al. [13], which considers representativeness, potential biases,
stability, and overlap between domain ranking lists, including
those that use DNS records to create such lists. Zeber et al.
consider representativeness in the context of web crawls as a
proxy for human crawling [14].

A. Dataset Use Cases in Prior Works

Each of the datasets we chose to analyze and compare has
been utilized in previous research studies as detailed below.
These studies motivated our comparison effort and provide a

context for why comparing collection methods is important
for further research.

a) Sonar: Rapid7’s Project Sonar [15] actively collects
various types of records from the global DNS. Sonar data has
been used to evaluate the Web’s evolution, to inform IPv6
address-space scans, and to analyze potential privacy issues
on the Internet. By analyzing the A and AAAA records in
Rapid7 and other DNS datasets, Hoang et al. [16] reported the
highly concentrated nature of web co-location. Related to user
privacy, Cangialosi et al. [17] evaluated the sharing of website
keys with third-party hosting providers using Rapid7’s forward
and reverse DNS scans in concert with other data sources.

b) OpenINTEL: Since the OpenINTEL project started
daily large-scale DNS measurement in 2016 [18], the dataset
has been used for a variety of analyses. Sommese et al. [19]
explored the evolution of anycast adoption in DNS name
service from 2017–2021. Abhishta et al. [20] evaluated the
changes in DNS configurations after DDoS attacks on man-
aged DNS service providers from the NS records in the
OpenINTEL dataset.

c) Common Crawl: Common Crawl collects content
from 3-5 billion webpages monthly and serves as an important
corpus for web-related studies and natural language tasks. For
example, Matic et al. used Common Crawl data to identify
blacklisted or censored URLs/FQDNs at large scale [21]. In
addition, due to the availability of multiple languages on many
websites, Smith et al. [22] proposed that Common Crawl
can be used as a data source of parallel texts for machine
translation.

d) CT Logs: Recording all SSL/TLS certificates issued
by Certificate Authorities, Certificate Transparency (CT) Logs
are commonly used for security and privacy analyses but also
for DNS-related studies. For example, Sommese et al. studied
both Common Crawl and CT Log data to compare ccTLD
coverage in these public data sources with ground truth DNS
zone transfer data from OpenINTEL [23], finding that public
data covers roughly 40–80% of the full data, and that coverage
is increasing over time. In security-related studies, Gustafsson
et al. [24] compared the similarities and differences in public
CT logs maintained by various entities. Finally, CT logs can
be used as a source for phishing attack detection and prevent
phishing attacks in real time. Both Fasllija et al. [25] and
Drichel et al. [26] proposed ML-based classifiers to detect
potentially malicious domains in CT logs.

e) Reverse DNS: Reverse DNS (PTR) records map IP
addresses to hostnames. Names in these records typically relate
to servers and access infrastructure on the Internet. As a result,
these domain names often include information on geographic
locations and service providers. In particular, Lee and Spring
studied broadband service providers by analyzing names in
reverse DNS entries [27]. Dan et al. [28] proposed a method
to determine the accurate geolocations of IP addresses at
the city level by extracting related information from reverse
DNS hostnames. On the other hand, automated PTR record
configuration in the global DNS may cause concerns about
user privacy. Van der Toorn et al. [29] found that automated



changes to DNS from DHCP (Dynamic Host Configuration
Protocol) and IPAM (IP Address Management) could reveal
the client’s positions from IP prefixes.

III. COLLECTION METHODOLOGIES

In this section we describe the data sets and respective
collection methods studied in this paper 1.

A. Rapid7 Sonar
Rapid7’s Project Sonar [15] has conducted active mea-

surement of the DNS since 2014. Rapid7 conducts weekly
active measurement campaigns of the DNS to determine which
names on the candidate list resolve under a set of query types
(A, AAAA, NS, CNAME, MX, TXT, and CAA). Their Forward
DNS dataset is created by extracting domain names from
Reverse DNS (PTR) Records, SSL Certificates, CT Logs,
crawled HTTP/S pages, and Zone files from com, org, net,
and other TLDs. These domains are then sent an ANY query
for each domain. Rapid7’s long-standing collection of this
candidate domain list gives it unique historical record coverage
(i.e., of records created long ago that may not be actively used).

B. OpenINTEL
Another view on the DNS is offered by OpenINTEL [18],

which has contractual relationships with DNS TLD operators
to provide direct access to lists of the second-level domains
(SLDs) in those zones. Using this, OpenINTEL performs
active scans of a variety of record types and subdomains
[30]. Notably, this approach does not aim to achieve high
coverage of subdomains and is limited to specific TLDs. In this
work, we consider data from the com, czds, net, opencc, and
org datasets that were made available to us by OpenINTEL.
OpenINTEL performs scans daily so we create a union of these
daily scans to compare them to other datasets as described in
§IV.

C. Common Crawl
Common Crawl [31] provides openly available web crawl

data which are made available as periodic snapshots. Although
the intent of Common Crawl is not to provide DNS data,
there are, of course, many DNS FQDNs that are found in the
crawled content, which currently consists of around 2.7B web
pages. NXDOMAINs encountered by the crawler are logged
but are not released as part of the main dataset. They are
however present in the WARC and WAT files that Common
Crawl utilizes as part of their web graphs [32]. It is important
to note that seed domains are updated each month and there
is an attempt to keep content overlap between crawls to a
minimum. This results in a higher level of churn compared
to other datasets which is further discussed in §V-E3. Our
comparison uses data from Common Crawl April, May, and
June Archives (CC-MAIN-2024-18, CC-MAIN-2024-22, CC-
MAIN-2024-26) [31]. We retrieved all of the URL index files
for the dataset and extracted all available FQDNs for further
analysis.

1All datasets used in this study are either publicly available or can be
requested from their sources.

D. Certificate Transparency Logs

Certificate Transparency (CT) logs, while originally in-
tended as a public record of TLS certificate issuances [33],
also serve as a de facto listing of domain names for which TLS
certificates have been issued [34] (increasingly a requirement
for hosting any Internet services). These logs are publicly
available and easily crawled by researchers. They also update
in near-realtime as certificates are issued, making them a
promising source of candidate names for DNS resolution.
Our work uses browser-trusted certificate logs as scanned
by Censys [35], though the same data can be collected by
researchers without requiring a data access agreement with
third parties. Because inclusion in TLS certificates does not
necessarily imply that a domain name resolves, we perform
DNS resolution on all domains within the CT logs with valid
certificates (Certificates that have not expired at the time of
DNS Resolution). We use zDNS [36] and public resolvers to
resolve this subset using A queries. These results are discussed
in §V-E2.

E. Reverse DNS

Rapid7 also offers a dataset of reverse DNS (rDNS), i.e.
DNS PTR records [15]. Reverse DNS records have the impor-
tant distinction that they are (for IPv4 addresses) enumerable.
However, the values of these DNS PTR records usually refer to
conventional names in the (forward) DNS. As a result, they can
be used to seed forward DNS queries. We use Rapid7’s rDNS
dataset as a listing of domains that are discoverable using
reverse DNS, though researchers can generate these listings
independently with minimal effort.

IV. COMPARISON METHODOLOGY

Due to the different collection methods employed by each
data provider, including different time spans of data collection,
we create unions of each dataset that equated to one month’s
worth of data in order to have a fair comparison on the basis of
SLD/FQDN coverage. We compare each dataset union, along
with pruning methods detailed below, for April, May, and June
2024.

A. Union Methods

a) Rapid7 Sonar and Rapid7 Reverse DNS: Rapid7
conducts their measurements over the course of a week. We
took a union of every A record and Reverse DNS dataset that
finished collection during the designated month.

b) OpenINTEL: OpenINTEL runs their collection meth-
ods every 24 hours to generate the datasets we utilized
for comparison (czds, net, opencc, org, and com). We take
a union of one month’s worth of collection for each of
the OpenINTEL datasets for the designated month. For the
main comparison, we consider all domain names present
in all record types including: query name, response name,
cname name, dname name, mx address, and ns address. For
the A Record comparison see in §V-C we only consider
query name, response name, and cname name.



c) Common Crawl: Since the collection of each common
crawl dataset occurs over the course of a month we consider
every domain that appears in the URL index files for the given
month.

d) CT Logs: For the CT Logs collected by Censys we
consider every domain that has a valid certificate for at least
some time during the designated month. We consider a valid
certificate to be one that has a validity period.not after that
is greater than or equal to the start of the month and a
validity period.not before that is less than or equal to the end
of the month. We consider all dns names and common name
values for comparison.

B. Pruning Non-Domains

The union of domains detailed above results in some names
with wildcards (Rapid7 datasets), some with IP addresses
(OpenINTEL, Reverse DNS), and some invalid domain names.
We prune the set of names by removing any wildcards and
only consider FQDNs that have non NULL return values when
utilizing BigQuery’s NET.REG_DOMAIN(url) function2.

Our pruning process results in smaller coverage for the
datasets that focus primarily on second-level domains (SLDs).
With this in mind we calculated the SLD for each FQDN in
each dataset and compared each dataset using only their SLDs
(cf. §V-B).

V. EVALUATION

Our evaluation focuses on three dimensions of representa-
tivity: coverage, stability, and uniqueness. We consider these
characteristics by examining FQDNs, SLDs, and A records
over a period of 3 months. We first examine FQDN, SLD,
and A record coverage, then examine aspects of dataset
diversity in terms of how datasets evolve over time and distinct
characteristics of individual datasets. We also discuss balance
between infrastructure-related names and user-facing names.

Our quantitative assessment considers the union of all 5 data
sets which we denote as

⋃5
i=1 Ai where each Ai is one of our

data sets: respectively Sonar, OpenINTEL, Common Crawl,
CT Logs, and rDNS. We use the term coverage to convey the
contribution of any Ai to the union (including overlaps with
other sets) i.e.,

|Aj ∩
⋃5

i=1 Ai|∣∣∣⋃5
i=1 Ai

∣∣∣ (1)

As such, coverage is reported as a percentage. We also report
the unique contribution of each data set i.e., the elements in
Ai that appear only in that data set:

|Aj \
⋃

i ̸=j Ai|∣∣∣⋃5
i=1 Ai

∣∣∣ (2)

We use Euler diagrams to illustrate relative data set size and
intersections. However, depicting all intersections accurately
using only circles or ellipses in Euler diagrams presents

2This function returns the registered or registrable domain name given a
URL and is a utility function specific to BigQuery.

mathematical challenges, especially as the number of sets
increases [37], [38]. This results in some datasets (notably,
Common Crawl) appearing to be completely contained within
other datasets despite having some unique contents.

A. FQDN Coverage

Table I presents FQDN counts across all three months
and for each dataset we consider. Figure 1 depicts overlap
in FQDNs for each dataset for June 2024. We first observe
in the table and figure that the Sonar dataset is the largest
source of FQDNs, with coverage averaging 62.3% across all
three months. The Sonar dataset is followed by rDNS with
coverage of a minimum of 36.4% of domains each month.
The intersection between rDNS and Sonar for June contains
769,113,436 FQDNs (22.8 % of all the June FQDNs). The
intersections that Sonar has with the remaining datasets are
much lower, which speaks to the importance of the rDNS
dataset in seeding the Sonar measurements.

CT Logs has the 3rd largest coverage of FQDNs, with an
average of 26.0% of all FQDNs per month. Since Censys
focuses on collecting certificates utilized in TLS, it omits
domains that are not utilizing TLS during communication.
Nonetheless, it offers a vast number of unique domains that are
not present in the other datasets. Although not all the domains
found in CT Logs are active, a significant fraction are indeed
resolvable as we discuss below in §V-E2.

OpenINTEL is the other actively collected dataset and has
coverage of an average of 16.0% per month. Since OpenIN-
TEL focuses primarily on collecting SLDs [30] its coverage of
subdomains is naturally less than other data providers. This is
made more evident in Figure 4. OpenINTEL, however, does
offer daily snapshots of a variety of DNS resource records
(not just A records), which results in a considerable number
of unique domains as discussed in §V-E4.

Common Crawl is the smallest dataset by far (average of
1.77% FQDN coverage per month). As a result, there is a small
number of unique FQDNs compared with the other datasets
(7,301,443 average per month). Since the goal of Common
Crawl is to collect content from web pages—domain names
are simply collected as a side-effect—this is to be expected.
Since Common Crawl seeks to crawl new pages each month
it has a higher level of churn (see §V-D), which results in
each month having a large portion of new FQDNs and unique
FQDNs. This highlights the importance of utilizing crawling
in seeding active queries which can be seen by the large
coverage that Sonar has of Common Crawl data compared
to OpenINTEL. It is also important to note the prevalence of
TLS in HTTP/S communication resulting in a high coverage
of Common Crawl FQDNs by CT logs.

Table II provides an overview of the top TLDs and SLDs
in the union of the 5 datasets we compared in June ’24. The
FQDN count states the total number of domains that have the
given TLD/SLD while the percentage compares that count to
the total number of FQDNs for June. These results are similar
across all three months. As expected the com and net TLDs
make up a majority of all FQDNs. More surprising is the
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Fig. 1: Overlap relationships for FQDNs for June 2024.
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Fig. 2: Overlap relationships for SLDs for June 2024.

TABLE I: FQDN counts for April, May, and June, 2024.

Label April
(% of Total)

May
(% of Total)

April to May
(% Change)

June
(% of Total)

May to June
(% Change)

In All 303,956 (0.01) 304,012 (0.01) 56 (0.02) 273,018 (0.01) -30994 (-10.19)
CT Logs 865,613,944 (25.44) 869,657,868 (25.78) 4,043,924 (0.47) 880,883,137 (26.16) 11,225,269 (1.29)
CT Logs Unique 531,242,365 (15.62) 529,947,195 (15.71) -1,295,170 (-0.24) 534,843,872 (15.88) 4,896,677 (0.92)
Common Crawl 57,094,127 (1.68) 60,609,268 (1.80) 3,515,141 (6.16) 58,740,058 (1.72) -1,869,210 (-3.08)
Common Crawl Unique 6,246,748 (0.18) 7,858,220 (0.23) 1,611,472 (25.80) 7,799,361 (0.23) -58,859 (-0.75)
OpenINTEL 542,440,345 (15.95) 540,344,985 (16.02) -2,095,360 (-0.39) 540,167,272 (16.04) -177,713 (-0.03)
OpenINTEL Unique 217,599,838 (6.40) 212,290,246 (6.29) -5,309,592 (-2.44) 207,935,524 (6.17) -4,354,722 (-2.05)
rDNS 1,290,813,367 (37.94) 1,229,794,819 (36.45) -61,018,548 (-4.73) 1,225,731,680 (36.40) -4,063,139 (-0.33)
rDNS Unique 543,727,497 (15.98) 460,516,810 (13.65) -83,210,687 (-15.30) 456,324,345 (13.55) -4,192,465 (-0.91)
Sonar 2,048,058,315 (60.20) 2,104,587,720 (62.38) 56,529,405 (2.76) 2,096,721,826 (62.27) -7,865,894 (-0.37)
Sonar Unique 900,726,415 (26.48) 935,521,153 (27.73) 34,794,738 (3.86) 929,713,415 (27.61) -5,807,738 (-0.62)

Total 3,401,924,923 (100.0) 3,373,884,647 (100.0) -28,040,276 (-0.82) 3,367,361,613 (100.0) -6,523,034 (-0.19)

TABLE II: Top 10 TLDs and SLDs by count and percentage
for June 2024.

Rank TLD (FQDN Count, %) SLD (FQDN Count, %)

1 com (1,418,964,927, 42.14%) amazonaws.com (173,655,967, 5.16%)
2 net (558,235,445, 16.58%) spectrum.com (62,306,873, 1.85%)
3 de (106,758,827, 3.17%) comcast.net (46,552,981, 1.38%)
4 ne.jp (61,614,200, 1.83%) azure.com (38,684,456, 1.15%)
5 com.br (61,344,556, 1.82%) bbtec.net (34,711,863, 1.03%)
6 org (58,736,129, 1.74%) sbcglobal.net (31,550,892, 0.94%)
7 fr (50,440,227, 1.50%) myvzw.com (30,276,580, 0.90%)
8 it (47,277,429, 1.40%) t-ipconnect.de (25,774,757, 0.77%)
9 io (42,224,536, 1.25%) hinet.net (23,834,413, 0.71%)

10 ru (41,203,584, 1.22%) rr.com (22,510,163, 0.67%)

prevalence of infrastructure FQDNs as shown by the top SLDs
by FQDN count. Cloud and infrastructure providers make up
the vast majority of the top SLDs by FQDN count, highlighting
the fact that these providers utilize a large number of unique
FQDNs. The coverage of these infrastructure FQDNs differs
across the 5 datasets as discussed in §V-E.

B. SLD Coverage

Since SLD’s are important in certain research studies
(e.g., [39]) we also conducted an analysis of SLD coverage
for each dataset. For this analysis, we took the SLDs of every
FQDN from our FQDN analysis. For individual datasets we
considered an SLD to be in the dataset if any of its FQDNs
had a given SLD.

There is a higher level of overlap as shown in Figure 2 and
the SLDs coverage by Sonar, OpenINTEL, and CT Logs is
more comparable (74.3%, 69.0%, 65.6% average respectively).
125,781,755 (38 %) of the SLDs appear in all three datasets in
June. The smaller number of SLDs for OpenINTEL can partly
be attributed to the limited datasets we chose to evaluate, but
Sonar (and other datasets) still have unique names in the TLDs
covered by the OpenINTEL datasets we utilized.



TABLE III: Summary of SLD counts for April, May, and June, 2024.

Label April
(% of Total)

May
(% of Total)

April to May
(% Change)

June
(% of Total)

May to June
(% Change)

All 327,330,012 (100.0) 328,415,193 (100.0) 1,085,181 (0.33 ) 328,684,464 (100.0) 269,271 (0.08 )
In All 1,065,599 (0.33) 1,059,357 (0.323) -6242 (-0.59) 953,395 (0.29) -105962 (-10.00)
CT Logs 211,039,772 (64.47) 214,009,838 (65.16) 2,970,066 (1.41 ) 216,848,806 (65.97) 2,838,968 (1.33 )
CT Logs Unique 42,040,961 (12.84) 42,893,498 (13.06) 852,537 (2.03 ) 43,265,742 (13.16) 372,244 (0.87 )
Common Crawl 46,264,231 (14.13) 48,276,678 (14.70) 2,012,447 (4.35 ) 46,690,164 (14.21) -1,586,514 (-3.29)
Common Crawl Unique 618,383 (0.19 ) 681,096 (0.21 ) 62,713 (10.14) 668,554 (0.20 ) -12,542 (-1.84)
OpenINTEL 226,798,738 (69.29) 226,827,194 (69.07) 28,456 (0.01 ) 226,777,911 (68.99) -49,283 (-0.02)
OpenINTEL Unique 26,880,222 (8.21 ) 26,393,974 (8.04 ) -486,248 (-1.81) 26,314,161 (8.01 ) -79,813 (-0.30)
rDNS 6,783,894 (2.07 ) 6,794,517 (2.07 ) 10,623 (0.16 ) 6,782,172 (2.06 ) -12,345 (-0.18)
rDNS Unique 2,317,579 (0.71 ) 2,326,661 (0.71 ) 9,082 (0.39 ) 2,333,056 (0.71 ) 6,395 (0.27 )
Sonar 243,396,564 (74.36) 244,182,982 (74.35) 786,418 (0.32 ) 243,774,794 (74.17) -408,188 (-0.17)
Sonar Unique 15,643,644 (4.78 ) 15,130,463 (4.61 ) -513,181 (-3.28) 15,002,747 (4.56 ) -127,716 (-0.84)

C. A Records

Since A records are the focus of many research studies we
analyzed just the A records for the Sonar and OpenINTEL
datasets. Full results are shown in Table A1. Sonar has
greater overall coverage than the combination of OpenINTEL’s
datasets that we utilized with roughly 82% of FQDNs being
unique to Sonar each month. OpenINTEL had better cover-
age of SLDs compared to FQDNs but Sonar still has more
coverage overall.

D. Longitudinal Stability

As illustrated in Sankey diagram in Figure 3 the relative
sizes of the datasets and total number of domains stay fairly
consistent over our 3 month period of study with a large num-
ber of domains appearing in multiple datasets. Common Crawl
has the largest percent change in the number of unique FQDNs
from April to May (25% increase) resulting in the overall
percentage of unique domains increasing from 0.18% to 0.23%
(See Table I). The relatively small change in relation to the
total number of domains for each dataset and their number of
unique FQDNs shows the consistency in each dataset’s ability
to provide unique domains. This consistency extends to the
relative SLD coverages with the highest percentage changes
in the smallest datasets (Common Crawl and SLDs that appear
in all five datasets) as shown in Table III.

E. Unique Domain Evaluation

Each of the datasets contain unique FQDNs and SLDs. In
this section we provide explanations for why this is the case
by examining the distinct attributes of each dataset.

1) Subdomain Length: Assembling datasets by querying
the DNS requires a candidate set of FQDNs. Deep coverage
of the FQDN name space means an increase in subdomain
length, which we define as the number of characters including
dots after the SLD (e.g., so www.example.com would have a
subdomain length of 4). For most data sets (excluding rDNS
and Sonar), the subdomain length of FQDNs in a given data
set is longer on average for FQDNs that are unique to the
data set, as shown in Figure 4 and Table IV. The FQDNs that
appear in the union of all datasets have the shortest subdomain

lengths, highlighting the fact that it is easier to fully query
the space of subdomains that have a shorter length. Since
CT Logs are a representation of TLS records, no guessing of
subdomains is required. This results in the median subdomain
length for unique domains being higher than the other datasets
(see Figure 4). In order to extend coverage, datasets assembled
by querying the DNS should consult CT Logs to narrow the
space of potentially resolvable FQDNs.

2) CT Logs: A large portion of the unique domains con-
tained within the CT Logs can be explained by looking at
the domains that are only associated with a pre-certificate
(precert). Precerts are submitted from a Certificate Authority
to CT Logs to obtain the log’s signed certificate timestamp
(SCT). Censys lists a certificate as a precert “[i]n the case
where only the pre-cert was submitted to a CT log and
the corresponding certificate has not been observed during a
Censys scan of the Internet” [40]. Between 38.53% and 41.4%
of the FQDNs that are unique to CT Logs are only associated
with a precert each month, and over 98% of all precert domains
are unique each month.

The same phenomena can be seen in the percentage of total
FQDNs associated with revoked certificates that are unique.
When a certificate holder believes that their private key may
have been compromised they can initiate a revocation request
with the Credential Authority (CA) of their certificate. This
revocation is then added to the CT Logs by the CA. These re-
voked certificates are normally of interest to security research.
FQDNs with revoked certificates make up only 0.62% of total
FQDNs associated with CT Logs but the majority of these
revoked domains are unique to CT Logs. Between 87.7 and
88.4% of all revoked domains are unique each month.

This still leaves over half of the unique domains unac-
counted for. In September 2024 we began resolving FQDNs
with valid certificates present in the CT Logs. Since our latest
comparison was conducted in June 2024 we select FQDNs
from June that were present in the CT Logs that also have
valid domains in September and check their resolution rates.
See Table A2 for full results. For September the resolution
rate of all of the FQDNs present was 59.6% with 62.92% of
the domains that had a valid certificate in June successfully



April All (303,956)April All (303,956)April All (303,956)April All (303,956)April All (303,956)

April CT Logs Unique (531,242,365)April CT Logs Unique (531,242,365)April CT Logs Unique (531,242,365)April CT Logs Unique (531,242,365)April CT Logs Unique (531,242,365)

April Common Crawl Unique (6,246,748)April Common Crawl Unique (6,246,748)April Common Crawl Unique (6,246,748)April Common Crawl Unique (6,246,748)April Common Crawl Unique (6,246,748)

April OpenINTEL Unique (217,599,838)April OpenINTEL Unique (217,599,838)April OpenINTEL Unique (217,599,838)April OpenINTEL Unique (217,599,838)April OpenINTEL Unique (217,599,838)

April Sonar Unique (900,726,415)April Sonar Unique (900,726,415)April Sonar Unique (900,726,415)April Sonar Unique (900,726,415)April Sonar Unique (900,726,415)

April RDNS Unique (543,727,497)April RDNS Unique (543,727,497)April RDNS Unique (543,727,497)April RDNS Unique (543,727,497)April RDNS Unique (543,727,497)

April Other (1,202,078,104)April Other (1,202,078,104)April Other (1,202,078,104)April Other (1,202,078,104)April Other (1,202,078,104)

May All (304,012)May All (304,012)May All (304,012)May All (304,012)May All (304,012)

May CT Logs Unique (529,947,195)May CT Logs Unique (529,947,195)May CT Logs Unique (529,947,195)May CT Logs Unique (529,947,195)May CT Logs Unique (529,947,195)

May Common Crawl Unique (7,858,220)May Common Crawl Unique (7,858,220)May Common Crawl Unique (7,858,220)May Common Crawl Unique (7,858,220)May Common Crawl Unique (7,858,220)

May OpenINTEL Unique (212,290,246)May OpenINTEL Unique (212,290,246)May OpenINTEL Unique (212,290,246)May OpenINTEL Unique (212,290,246)May OpenINTEL Unique (212,290,246)

May Sonar Unique (935,521,153)May Sonar Unique (935,521,153)May Sonar Unique (935,521,153)May Sonar Unique (935,521,153)May Sonar Unique (935,521,153)

May RDNS Unique (460,516,810)May RDNS Unique (460,516,810)May RDNS Unique (460,516,810)May RDNS Unique (460,516,810)May RDNS Unique (460,516,810)

May Other (1,227,447,011)May Other (1,227,447,011)May Other (1,227,447,011)May Other (1,227,447,011)May Other (1,227,447,011)

May New (171,589,254)May New (171,589,254)May New (171,589,254)May New (171,589,254)May New (171,589,254)

May Removed (199,629,530)May Removed (199,629,530)May Removed (199,629,530)May Removed (199,629,530)May Removed (199,629,530)

June All (273,018)June All (273,018)June All (273,018)June All (273,018)June All (273,018)

June CT Logs Unique (534,843,872)June CT Logs Unique (534,843,872)June CT Logs Unique (534,843,872)June CT Logs Unique (534,843,872)June CT Logs Unique (534,843,872)

June Common Crawl Unique (7,799,361)June Common Crawl Unique (7,799,361)June Common Crawl Unique (7,799,361)June Common Crawl Unique (7,799,361)June Common Crawl Unique (7,799,361)

June OpenINTEL Unique (207,935,524)June OpenINTEL Unique (207,935,524)June OpenINTEL Unique (207,935,524)June OpenINTEL Unique (207,935,524)June OpenINTEL Unique (207,935,524)

June Sonar Unique (929,713,415)June Sonar Unique (929,713,415)June Sonar Unique (929,713,415)June Sonar Unique (929,713,415)June Sonar Unique (929,713,415)

June RDNS Unique (456,324,345)June RDNS Unique (456,324,345)June RDNS Unique (456,324,345)June RDNS Unique (456,324,345)June RDNS Unique (456,324,345)

June Other (1,230,472,078)June Other (1,230,472,078)June Other (1,230,472,078)June Other (1,230,472,078)June Other (1,230,472,078)

June New (138,479,628)June New (138,479,628)June New (138,479,628)June New (138,479,628)June New (138,479,628)

June Removed (145,002,662)June Removed (145,002,662)June Removed (145,002,662)June Removed (145,002,662)June Removed (145,002,662)

Fig. 3: FQDN hurn from April to June 2024.

TABLE IV: Median subdomain
lengths for April, May, and June,
2024.

Category April May June

All FQDNs 20 20 20
In All 4 4 4
Common Crawl 8 8 8
Common Crawl Unique 9 10 10
CT Logs 14 14 14
CT Logs Unique 30 30 27
OpenINTEL 3 3 3
OpenINTEL Unique 3 6 6
Sonar 19 20 20
Sonar Unique 19 19 19
rDNS 21 22 22
rDNS Unique 22 20 20
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Fig. 4: CDF of Subdomain Lengths in June 2024

resolving. When looking at domains associated with revoked
certificates we see that 18.31% of the domains present in both

June and September resolve. Not all domains associated with
a revoked certificate are malicious and many of these domains



get a reissued certificate after initiating a revocation request.
The most interesting observation is that unique domains have
a 39.55% resolution rate: 412,034,006 FQDNs are unique to
CT Logs and still resolve.

Focusing on unique SLDs, we find that between 19.9%
to 20% of SLDs present in the CT Logs dataset are unique
each month. The number of SLDs that only have a precert or
revoked domain is much smaller than when considering only
FQDNs. We find that 85.18% of the June SLDs remaining
in September have at least one FQDN that resolves. This
decreases to only 56.15% for the unique SLDs. The number
of unique FQDNs and SLDs that resolve highlight how CT
Logs offer a unique coverage of domains as compared to the
other actively collected datasets.

Finally it is important to recognize the coverage that CT
Logs have of domains utilized in cloud infrastructure. CT Logs
cover 66.3 % of the 173,655,967 FQDNs with the amazon-
aws.com SLD versus Sonar (34.1%) and rDNS (33.7%). CT
Logs coverage of azure.com FQDNs is even more impressive
with 99.4% of the FQDNs with the SLD azure.com in June
2024. Further examination of top SLDs in CT Logs indicates
that a large portion are associated with cloud service and
infrastructure providers.

3) Common Crawl: Common Crawl is the smallest dataset
that we considered and focuses on the Web. It is predominantly
covered by the Sonar A records with an average of an 81%
intersection between Common Crawl FQDNs and Sonar A
records each month. Over half of the remaining domains are
unique to Common Crawl with a minimum of 10.94% (From
April). Of these unique domains over 83% have at least one
page with a 200 HTTP status code indicating that content
is being hosted on the domain (or the domain has some
active server serving a successful HTTP/S request). This is
compared to roughly 84% in the complete dataset. The number
of unresponsive domains (domains that only have status codes
greater than or equal to 400) is relatively unchanged from
the unique to complete FQDN sets (around 8%). This means
that unique domains for Common Crawl are as likely to host
content as domains that are in other datasets and it presents
a motivation for including crawled domains when conducting
active DNS measurements.

Common Crawl seeks to minimize re-crawling pages each
month. This results in a higher level of churn compared to
the other datasets. On average 24% of FQDNs are new each
month and 25% of domains are removed. Despite this, there
is relative stability in the percentage of unique domains.

When focusing on SLDs not much is different outside of
the much smaller portion of unique SLDs compared to the
total SLDs present each month in the Common Crawl dataset.
It is important to note that SLDs make up a large portion
of the FQDNs present within the Common Crawl dataset
hinting that most domains hosting HTTP/S content that are
crawled by Common Crawl may not have extensive subdomain
hierarchies. Finally, when considering the top SLDs, the list
is dominated by blogging and personal website-making sites
such as wordpress.com, blogspot.com, and weebly.com.

4) OpenINTEL: Over 38% of all OpenINTEL FQDNs are
unique each month. Of these unique FQDNs, the majority
(over 52% each month) are associated with non-A records.
This is also evident by our A record analysis in §V-C,
despite FQDNs with A records making up roughly 72% of
all FQDNs each month. This highlights the importance of
incorporating multiple types of record queries when building
a comprehensive DNS dataset based on active measurement.

Despite Sonar’s larger coverage of the A record space, over
6% of the FQDNs associated with A records are unique to
OpenINTEL. Table A1 shows that Sonar’s A record dataset
is not fully comprehensive and that there are FQDNs and SLDs
not covered by Sonar.

When considering SLDs, we note that OpenINTEL has the
2nd highest percentage of unique SLDs – over 8% each month
(see Table III). This is despite having fewer SLDs overall
compared to Sonar. This lends credence to their focus on
collecting DNS records for SLDs as opposed to FQDNs.

5) Rapid7 Sonar and Reverse DNS: The Sonar A record
dataset is the most comprehensive that we studied based on
FQDNs, SLDs, and A records. With this in mind, it is no
surprise that Sonar has the highest number and percentage of
unique FQDNs (over 26.4% each month). This number would
be even larger without the inclusion of the rDNS dataset,
which Sonar draws from to seed their forward measurements.
We find that 44% of all Sonar FQDNs are unique when
including rDNS, but when removing rDNS 80% of Sonar
FQDNs are unique when compared to the remaining datasets
as shown in Table A4.

The same can be said for Rapid7’s rDNS dataset. The
overlap in FQDNs for rDNS is minimal with all of the datasets
except for Sonar as shown in Figure 1 (Also see Table A5).
Less than 0.45% of rDNS FQDNs are present in non-Sonar
datasets each month.

However, this does not extend to SLDs. The overall cov-
erage for SLDs is drastically reduced for rDNS and a large
portion of its non-unique domains are also present in all of the
other datasets as shown in Figure 2. The top SLDs (by FQDN
count) present in the Rapid7 datasets are dominated by ISP
and Cloud providers (Spectrum, Amazon, Comcast, Verizon).
These domains are not as widely covered by the other datasets
and provide motivation for using Rapid7 datasets when inves-
tigating infrastructure domains.

VI. CASE STUDY

To illustrate the benefit of combining DNS datasets we par-
tially reproduce the combosquatting collection methodology
described in [41]. Combosquatting is a type of domain name
abuse where attackers register domain names that are similar
to legitimate ones but with additional words, prefixes, or
suffixes (e.g., a combosquatted domain for paypal.com might
be secure-paypal.com). These domains are designed to deceive
users into thinking they are interacting with a trusted site.

We start by gathering the top 500 domains for June 2024 as
reported by Tranco [39]. We then look for all combosquatting
domains within our combined dataset by finding all SLDs that



TABLE V: Case study of combosquatting for the Tranco top
500 domains identified in each DNS dataset for June 2024.

Category Count (Percentage) of combosquatting domains

Sonar 454,793 (0.19%)
OpenINTEL 495,304 (0.22%)
Censys 397,597 (0.18%)
rDNS 9,892 (0.15%)
Common Crawl 66,795 (0.14%)
Sonar or OpenINTEL 569,685 (0.20%)
All 665,532 (0.20%)

are in the form .*AD.* (where AD is the Authoritative domain
from the Tranco Top 500). We remove exact matches with the
original authoritative domain in the subdomain portion of the
SLD. The results can be seen in Table V. The combination
of both active datasets (Sonar and OpenINTEL) provides
an increase of 25% and 15% respectively. Combining the
remaining datasets results in an additional 16.8% increase in
combosquatting domains whilst maintaining the same ratio of
combosquatting domains to total domains.

VII. SELECTING REPRESENTATIVE DNS DATASETS

Our findings on the coverage, stability and uniqueness of
the data sets considered in our study lead us to propose
the following guidance for assembling representative DNS
datasets for research:

1) Studies seeking to examine and analyze the contents of
the DNS based on submitting queries for FQDNs should
use the full union of all data sets.

2) Studies that seek to examine Internet infrastructure
should start with Sonar and rDNS and consider including
CT logs for the broadest coverage.

3) Studies that seek to understand details of individual
zones would be well-served by using a combination of
Sonar and OpenINTEL.

4) Studies focused on Web crawling and content that
currently use Common Crawl could be expanded by
crawling SLDs from CT logs.

5) The unique features of certain data sets mean that there
is no benefit to considering other data sets for certain
studies (e.g., CT logs for security and SLD name churn,
and OpenINTEL for diverse record types).

VIII. CONCLUSION

The goal of our work is to improve the understanding of
different DNS data sets that are commonly used in empiri-
cal research studies. We report on our study that compares
and contrasts five different popular DNS datasets from four
different providers collected using different methods over a
period of 3 months. We describe the methods used to collect
each data set and details of each of the data sets that in total
comprise over 10B records. We focus on three dimensions of
representativity: coverage, stability, and uniqueness. We find
that data sets collected through active querying of the DNS
(e.g., Sonar) provide the broadest coverage and that there
is significant overlap between the records provided by each

dataset. We also assess how each data set changes over the
course of our study and show that all data sets are relatively
stable with the most churn in the DNS records extracted from
Common Crawl, which is a consequence of its design. We
also find that each data set provides unique records not found
in the other datasets that are important in different use cases.
Our results highlight the opportunities in using these datasets
in research and operations, and how combinations of datasets
can provide broader and more diverse perspectives. In future
work, we plan to examine how DNS data collection can be
enhanced to expand coverage i.e., add new FQDNs that do not
exist in the union of the current datasets. This will include data
collected via passive monitoring that offers the opportunity to
gain unique insights on DNS use.
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APPENDIX

A. Ethics

This work does not raise any ethical issues.

B. Additional Comparison Tables
TABLE A1: Counts and Percentages for OpenINTEL and Sonar A Records

OpenINTEL Sonar April FQDN May FQDN June FQDN April SLD May SLD June SLD

243,859,243 (11.10%) 241,773,498 (10.73%) 241,551,746 (10.76%) 186,196,181 (72.73%) 185,285,945 (72.39%) 185,331,300 (72.48%)
149,802,888 (6.82%) 148,521,222 (6.59%) 148,953,985 (6.63%) 12,603,865 (4.92%) 11,774,830 (4.60%) 11,930,310 (4.67%)

1,804,199,072 (82.09%) 1,862,814,222 (82.68%) 1,855,170,080 (82.61%) 57,200,383 (22.34%) 58,897,037 (23.01%) 58,443,494 (22.86%)

Total 2,197,861,203 2,253,108,942 2,245,675,811 256,000,429 255,957,812 255,705,104

TABLE A2: CT Logs Data with June Domains Still Valid in September

Type Count Remaining (%) Resolution Rate (%)

September FQDN Count 738,097,343 100 62.92
Revoked FQDN Count 5,336,354 0.723 18.31
Precert FQDN Count 156,573,218 21.21 5.33
Unique FQDN Count 412,034,006 55.82 39.55
September SLD Count 201,965,602 100 85.18
Revoked SLD Count 377,031 0.187 82.64
Precert SLD Count 1,995,153 0.988 28.79
Unique SLD Count 35,214,644 17.44 56.15

TABLE A3: Analysis of OpenINTEL FQDN Data Across April, May, and June
Label Count (% of All OpenINTEL) % of Unique OpenINTEL

April May June April May June

All FQDNs 542,440,345 (100.00) 540,344,985 (100.00) 540,167,272 (100.00)
All Unique FQDNs 217,599,838 (40.11) 212,290,246 (39.29) 207,935,524 (38.49) 100.00 100.00 100.00
A Record FQDNs 393,662,516 (72.57) 390,295,095 (72.23) 390,506,097 (72.30)
A Record Unique FQDNs 102,760,072 (18.94) 98,063,279 (18.15) 93,722,682 (17.35) 47.22 46.19 45.07

TABLE A4: Sonar Unique FQDNs
Category April (% of All Sonar FQDN) May (% of All Sonar FQDN) June (% of All Sonar FQDN)

Sonar FQDNs 2,048,058,315 (100%) 2,104,587,720 (100%) 2,096,721,826 (100%)
Sonar Unique FQDNs 900,726,415 (43.98%) 935,521,153 (44.45%) 929,713,415 (44.34%)
Sonar Minus RDNS Unique FQDNs 1,642,298,172 (80.19%) 1,699,268,683 (80.74%) 1,693,608,872 (80.77%)

TABLE A5: RDNS Unique FQDNs
Category April (% of All RDNS FQDNs) May (% of All RDNS FQDNs) June (% of All RDNS FQDNs)

RDNS Total FQDNs 1,290,813,367 (100%) 1,229,794,819 (100%) 1,225,731,680 (100%)
RDNS Unique FQDNs 543,727,497 (42.12%) 460,516,810 (37.45%) 456,324,345 (37.23%)
RDNS and Sonar FQDNs 741,571,757 (57.45%) 763,747,530 (62.10%) 763,895,457 (62.32%)
RDNS and other FQDNs 5,514,113 (0.43%) 5,530,479 (0.45%) 5,511,878 (0.45%)


