
Inferring Visibility: Who’s (Not) Talking to Whom?

Gonca Gürsun, Natali Ruchansky, Evimaria Terzi, and Mark Crovella
Department of Computer Science

Boston University

ABSTRACT
Consider this simple question: how can a network opera-
tor identify the set of routes that pass through its network?
Answering this question is surprisingly hard: BGP only in-
forms an operator about a limited set of routes. By observ-
ing traffic, an operator can only conclude that a particular
route passes through its network – but not that a route does
not pass through its network. We approach this problem as
one of statistical inference, bringing varying levels of addi-
tional information to bear: (1) the existence of traffic, and
(2) the limited set of publicly available routing tables. We
show that the difficulty depends critically on the position of
the network in the overall Internet topology, and that the
operators with the greatest incentive to solve this problem
are those for which the problem is hardest. Nonetheless, we
show that suitable application of nonparametric inference
techniques can solve this problem quite accurately. For cer-
tain networks, traffic existence information yields good ac-
curacy, while for other networks an accurate approach uses
the ‘distance’ between prefixes, according to a new network
distance metric that we define. We then show how solv-
ing this problem leads to improved solutions for a particular
application: traffic matrix completion.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations.

Keywords: BGP, matrix completion.

1. INTRODUCTION
The global state of the Internet’s interdomain routing sys-

tem at any instant is an almost unknowable mystery. Yet,
absent this knowledge, a network operator cannot answer
this very simple question: ‘Which routes pass through my
network?’

Answering this simple question can be useful in many
ways. For example, it can inform traffic engineering and ca-
pacity planning; when traffic loads change, operators would
like to know whether the cause is a change in demand, or
a routing change. From a security standpoint, knowing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’12, August 13–17, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1419-0/12/08 ...$15.00.

whether a route passes through one’s network can be used
to identify packets with spoofed source addresses.

Knowing what routes pass through one’s network can also
provide business intelligence, by shedding light on the rout-
ing behavior of customers and competitors. As a concrete
example, consider a network A with competitor B. Suppose
B has customer C and A would like to make a bid for C’s
business. The price offered should depend on the proportion
of C’s traffic that is already passing through A. A simple
way to estimate this is to see what fraction of C’s routes are
passing through A.

From a scientific standpoint, this question has basic ap-
peal. It is equivalent to asking: ‘If I capture a traffic matrix
from a particular network, and see a zero value in the (i, j)
position, what does that mean?’

In this paper we develop methods to answer this visibility
question, taking the standpoint of a single network operator.
To discover whether the route from i to j passes through the
operator’s network (i.e., is visible in the network), the opera-
tor has available two kinds of potentially useful information:
observed traffic, and known BGP routes. While BGP pro-
vides knowledge of only a limited set of routes to each desti-
nation, observed traffic may potentially provide information
about any source-destination pair. Hence our methods con-
centrate on the knowledge obtained from observed traffic.
(More discussion of this issue appears in Section 8.)

Unfortunately, traffic only provides positive information
about visibility: if traffic is observed flowing from i to j then
(i, j) is known to be visible; but if no traffic is observed, then
it is not possible to conclude anything about the visibility
status of (i, j); i.e., traffic does not provide negative infor-
mation about visibility. Thus the key question comes down
to asking: if no traffic is observed from i to j, is it because
the path from i to j does not pass through the observer, or
because i is simply not sending traffic to j? Like Sherlock
Holmes, we are interested in ‘the dog that didn’t bark.’

Our approach starts from simple intuition about how
routes spread through the Internet; based on this under-
standing we develop a family of nonparametric classifiers.
We show that different kinds of networks (essentially, net-
works in different tiers) require different instantiations of
this classifier. We then show how to configure these classi-
fiers for different kinds of networks, and demonstrate that
we can answer our original question with a surprisingly high
level of accuracy. We conclude with an example showing
the utility of our classifier when applied to the traffic matrix
completion problem.

2. OVERVIEW
Our central notion is visibility: we say that a source-

destination pair (i, j) is visible to AS x if, were i to send
traffic to j, the traffic would pass through x. We refer to
the AS whose owner wishes to infer visibility as the observer
AS.1 We use the term path to refer to the sequence of ASes
taken along the route from a source (traffic generator) to a
destination (traffic recipient). We naturally group addresses
into prefixes as used in BGP, and associate prefixes with the
ASes that appear at the end of their BGP routes. Hence, in
what follows ‘source’ will mean ‘source AS’ or ‘source prefix’
(and likewise for ‘destination.’)

For any given observer AS, we define the corresponding
visibility matrix T , which has sources on the rows and desti-
nations on the columns, such that T (i, j) = 1 iff the source-
destination pair (i, j) is visible to the observer, and zero
otherwise. In our work, we assume that T is constant dur-
ing the period of study; in practice we work with snapshots
of T .

Of course, the observer does not actually have access to
T . Instead the observer can measure traffic flowing through
the network. We assume that traffic is measured over some
fixed duration, and we organize measured traffic volumes
into a matrix V , with the same rows and columns as T . For
example, the value of V (i, j) may be the number of bytes
sent from i to j during the measurement interval. We refer
to V as the traffic matrix or volume matrix. The (positive)
visibility information contained in V defines the observed
visibility matrix M , with M(i, j) = 1 iff V (i, j) > 0, and
zero otherwise. Thus, M encodes the incomplete visibility
information that is learned from observing traffic.

Hence, M is an approximation to T , with the property
that if M(i, j) = 1, then T (i, j) = 1. However, if M(i, j) =
0, then T (i, j) may be 0 or 1. Therefore, there are two
types of zeros in the observed visibility matrix M : true zeros
and false zeros. A true zero occurs when (i, j) is truly not
visible; a false zero occurs when (i, j) is actually visible, but
not communicating. In notation: M(i, j) is a true zero if
M(i, j) = 0 and T (i, j) = 0; it is a false zero if M(i, j) = 0
and T (i, j) = 1.

2.1 The Visibility-Inference problem
Our goal is to design a mechanism that outputs a matrix bT

that is a better approximation of T than M is. We call bT the
predicted visibility matrix, and we call the problem of infer-
ring bT the Visibility-Inference problem. This is a classi-
fication problem that focuses on the zero-valued elements of
M , which we denote by Z, (i.e., Z = {(i, j) | M(i, j) = 0}).
For every (i, j) ∈ Z, the classifier decides whether (i, j) cor-

responds to a true zero or a false zero and sets bT (i, j) = 0 or
1 respectively. In other words, our goal is to set the values of
bT (Z) (i.e., the subset of the elements of bT that correspond
to the indices in Z) in such a way that they agree with the
corresponding values of T (Z).

To fix terminology, we consider a classification of (i, j) ∈ Z

that outputs bT (i, j) = 0 to be a positive classification – the
element is predicted to be, in fact, a true zero. Correspond-
ingly, bT (i, j) = 1 is a negative classification – the element is
predicted to be a false zero.

The performance of a classifier can then be expressed in

1We work at the granularity of ASes, rather than ISPs; some
implications of this are discussed in Section 8.

Figure 1: Groups of similar paths

terms of True Positive Rate (TPR) and the False Positive

Rate (FPR) of the predicted matrix bT . TPR is the classi-
fier’s accuracy on true zeros:

TPR =
number of correctly classified true zeros

total number of true zeros

while 1−FPR is the classifier’s accuracy on false zeros:

FPR =
number of incorrectly classified false zeros

total number of false zeros

Thus we can formally describe the Visibility-Inference

problem as the task of forming a predicted matrix bT such
that TPR is as close to 1 as possible and FPR is as close to
0 as possible.

The classifiers we develop will allow tradeoffs between
TPR and FPR. To examine this tradeoff and thus assess
the overall performance of the classifier, we use ROC (Re-
ceiver Operating Characteristic) curves [7]. The ROC curve

of bT plots TPR versus FPR for different settings of the clas-
sifier. The ideal classifier operates at the upper-left point
(0, 1). In order to describe the performance of the classifier
over its entire range of settings with a single number, we
use the area under the ROC curve of bT (AUC) which takes
values between 0 and 1. An ideal classifier (one which can
operate at the (0, 1) point) has an AUC of 1, and in general,

the closer to 1, the better the prediction of bT .

2.2 Our approach
Having defined our problem, we now discuss the basic in-

tuition behind our approach. We start from the observation
that at any given point in the Internet, there are groups of
(i, j) pairs that are routed similarly. This general idea is
shown in Figure 1. For example, in some region of the In-
ternet (say, a set of nearby ASes AS1, AS2, ...) one may
often find a group of paths that all pass through AS1, and
yet none passes through AS2. Another group may all pass
through AS2 but none through AS1. At the highest level,
our strategy is to identify path groups, and if traffic is ob-
served on some paths in the group, infer that all members
of the group are likely to be visible.

More concretely, for any given source-destination pair
(i, j), we look for other pairs that we believe to have a sim-
ilar visibility status as (i, j). We then use any knowledge
we have about the other pairs to form a visibility estimate
for (i, j). Essentially, this is nearest-neighbor classification
(with incomplete information). The principal challenge then
becomes to properly identify which source-destination pairs
are ‘neighbors’ to (i, j).

On a high level, our classifier takes a specific form: given
some (i, j) ∈ Z,

1. Select an (i, j)-descriptive submatrix from M . This

submatrix, denoted by M(Si, Dj), is defined by the
set of sources Si and destinations Dj .

2. Compute the value of some structural property of
M(Si, Dj). We call this the descriptive value πij .

3. If the descriptive value is above a threshold, predict
bT (i, j) = 1; otherwise, predict bT (i, j) = 0.

This approach performs classification of each (i, j) ∈ Z in-
dependently. Although more complicated mechanisms could
classify pairs jointly, our experimental evaluation indicates
that the independent approach yields very accurate predic-
tions.

The goal of the first step is to find a submatrix M(Si, Dj)
whose elements have a similar visibility status with respect
to the observer. In practice, we simplify this; we only re-
quire that sources in Si are similar in some way, and that
destinations in Dj are similar in some way, with respect to
the observer. Of course, different kinds of similarity lead to
different submatrices. We use two types of similarity, based
on different information. The first is based on the visibility
information – as encoded in the observed visibility matrix.
The second is based on proximity information – as encoded
in publicly available BGP tables. These two strategies are
described in Sections 4 and 5, respectively.

The second step evaluates different structural properties
of M(Si, Dj). These properties are discussed in detail in
Sections 4 and 5; here we just note that these are simple
properties like the number of nonzero elements in M(Si, Dj),
the size of M(Si, Dj) or its density.

The third step classifies (i, j) based on whether its de-
scriptive value πij is above a threshold. By varying this
threshold, one can trade off TPR and FPR.

In practice, it is necessary to choose a threshold value to
configure the classifier. If the classifier is robust, there will
be a reasonably wide range of threshold values that yield
good results, so its accuracy will not be highly sensitive to
threshold settings. We show that this is the case for the
classifiers we develop in Sections 4 and 5. In Section 6,
we show how to actually choose a threshold value based
on observable data, and we show that such automatically-
chosen threshold results in a highly-accurate classifier.

3. DATASETS
To evaluate our methods, we need a large survey of

ground-truth visibility matrices T . To obtain these matri-
ces, we use a collection of BGP tables (collected on midnight
UTC on December 6th, 2011) obtained from the Routeviews
[14] and RIPE [12] repositories.

The full dataset is collected from 359 unique monitors; it
consists of over 48 million AS paths, and contains 454,804
unique destination prefixes. (Note that not all BGP tables
show paths to all prefixes.) Because these paths are the
active paths at the time of collection, each path represents
the sequence of ASes that traffic flows through when going
from the particular monitor to the path’s destination prefix.

Visibility Matrices. Using this data we construct visibil-
ity matrices for every AS appearing in the dataset – 23,511
ASes. In order for visibility matrices to be comparable across
ASes, each matrix must be indexed by the same set of rows
and columns. From the full dataset, we select a subset of
monitors and a subset of prefixes such that new dataset con-
tains the AS path from every monitor to every prefix. This

results in 38 monitor ASes and 135,369 prefixes. For each of
the 23,511 ASes, we construct a 0-1 visibility matrix of size
38 × 135,369. Thus, each visibility matrix has about 5.2
million entries; each matrix entry (i, j) records the visibility
status of the pair (AS i, prefix j).

In a given observer AS’s visibility matrix T , an entry (i, j)
is 1 if the path from AS i to prefix j contains the observer
AS, and 0 otherwise. Since we have all (5.2 million) active
paths from every monitor AS to every prefix, we know with
certainty the 0-1 value of every entry in T for every observer
AS. Of course, these visibility matrices are only a portion
of the complete visibility matrix for each observer, but each
provides millions of ground-truth values for validating our
methods.

For each ground-truth matrix T , we also need an observed
visibility matrix M , which differs from T by having some 1s
turned into (false) zeros. The number of false zeros in M
is affected by the duration over which traffic is observed.
Longer traffic observation periods result in smaller numbers
of false zeros, as additional source-destination pairs generate
observable traffic. Hence we study a range of false zeros, ex-
pressed as a fraction of visible elements (1s) in T : from 10%
false zeros (corresponding to a long measurement period), to
95% false zeros (corresponding to very short measurement
period). We generate false zeros by randomly flipping 1s in
T to zeros; the result becomes the observed visibility ma-
trix M . We call the fraction of 1s flipped in M the flipping
percentage. When the flipping percentage is small (10%)
classifiers have more information to work with; when the
flipping percentage rises to 95% classifiers have very little
information to work with and the classification problem is
quite challenging.

Our bit-flipping strategy models the case where the traffic
of each source-destination pair is independent of the others.
While this reflects the basic unpredictability of traffic pat-
terns, it is possible that correlations in traffic patterns could
affect the accuracy of our classifier. For that reason, we also
use another strategy: destination-based flipping. The goal
is to model the situation where a particular destination pre-
fix receives no traffic from any source – such as when there
are no hosts provisioned with addresses from the prefix. In
destination-based flipping, all of the 1s in an entire column
are flipped to zero.

Observer AS Types. An important fact is that the ar-
rangement of 1s in the visibility matrix of an AS shows dis-
tinct patterns that depend on the AS’s topological location
in the AS graph. For instance, in the visibility matrix of
an AS that sits in the core of the graph, the 1-valued en-
tries are scattered relatively uniformly; in contrast, for an
AS that sits at the edge of the graph, the 1-valued entries
are clustered in a small set of rows and columns. This is a
natural consequence of the routing structure of the Internet.

Hence, as we will show in Sections 4 and 5, the topological
location of an AS affects the relative performance of different
classifiers. To distinguish ASes in different locations, we use
two metrics: node degree and k-shell number. We compute
these metrics using our BGP dataset; although these metrics
are sensitive to missing edges in the BGP graph, we only use
them for ranking ASes, not for quantitative comparisons.

Degree is the number of observed neighbors in the BGP
graph derived from our set of paths. K-shell number mea-
sures the centrality of a node in a graph [1]. It is computed
using the k-core decomposition, which separates the nodes of

0 200 400 600 800 1000 1200 14000

0.2

0.4

0.6

0.8

1

Node Degree

CD
F

Edge
Core 1000
Core 100

0 5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

K−core Degree

CD
F

Edge
Core 1000
Core 100

Figure 2: Properties of AS Sets Studied.

a graph into nested sets called ‘shells.’ As described in [5],
this is a parameter-free way of characterizing the AS graph,
and it corresponds to a natural notion of centrality.

Using these metrics, we define three sets of ASes to repre-
sent different topological positions. First, the Core-100 set
consists of the 100 ASes with highest k-shell number. Sec-
ond, the Core-1000 set consists of the 1000 ASes with the
highest k-shell number (and so contains the Core-100 set).
Finally, the Edge set consists of 1000 ASes that have low
degree and k-shell number. This set contains mainly stub
ASes and ASes that are topologically close to stubs. This set
is representative of ‘typical’ ASes in that almost 95% of the
ASes in our dataset are stubs. The Edge set was constructed
by randomly sampling among all the ASes not contained in
the Core-1000 set. Figure 2 shows the distribution of degree
and k-shell numbers for these three sets. The Figure shows
that the Core-1000 set is intermediate in both respects be-
tween the Edge and Core-100 sets, while the other two sets
reflect extremes: boundary and center of the AS graph.

Traffic Matrix. Some of the experiments we report use
knowledge of source-destination traffic volumes, i.e., the
traffic matrix V . Traffic matrices are generally hard to ob-
tain at the fine grain we work with in this paper (AS-prefix
traffic volumes). However we were able to obtain netflow

data from a Tier-1 provider (a member of the Core-100 set)
suitable for our purpose, and collected in the same timeframe
as the BGP data. This consists of traffic volumes measured
in bytes, over a duration of one day. We organized the flow
data according to source AS and destination prefix, using
the same row and column indices as our visibility matrices,
into a traffic matrix V .

4. THE VISIBILITY-BASED METHOD
We start our exploration of problem solutions by examin-

ing the most straightforward approach to inferring visibility
of unknown entries, namely, making use of the observed visi-
bility matrix. We term this the visibility-based method. We
first describe the visibility-based method by showing how
it instantiates the general strategy described in Section 2.2;
then, we examine the method’s accuracy and applicability.

4.1 Method description
As described in Section 2.2, our general strategy seeks to

find collections of source-destination pairs whose visibility
status is likely to be similar to the target pair (i, j). In
this section we use the positive information in M directly,
and ask“How many sources and destinations have (positive)
visibility that is similar to the target (i, j)?” To ask this

question, we instantiate the generic method presented in
Section 2.2 as follows:

Submatrix selection: Given (i, j) ∈ Z, the visibility-
based method selects the (i, j)-descriptive submatrix as:

Si = {i} ∪ {i′ | M(i′, j) = 1} and

Dj = {j} ∪ {j′ | M(i, j′) = 1}.

That is, the set Si consists of i as well as all the sources
that have have been observed to send traffic to destination
j. Similarly, the set Dj contains j as well as all the destina-
tions that have been observed to receive traffic from source
i. Then Si and Dj define the subtmatrix M(Si, Dj) that
will be used to predict whether M(i, j) is a true or a false
zero.

The intuition behind this method is as follows. Referring
back to Figure 1, imagine a set of sources S̃ = {s1, s2, ...}
that have similar behavior with respect to the observer.
That is, paths from sources S̃ to an arbitrary destination
d all either go through the observer, or not. Then the pat-
tern of 1s on the rows s ∈ S̃ of M will be similar. Likewise, if
there are destinations D̃ with similar behavior, the patterns
of 1’s in the D̃ columns will be similar. Hence, by choosing
Si and Dj according to the above rules, we select a subma-
trix which will tend to be large and contain many 1s when
the target (i, j) is a false zero.

Structural properties: There are a number of ways we
might test the (i, j)-descriptive submatrix M(Si, Dj) to see
whether it is large and contains a large number of 1s.
These correspond to the following structural properties of
M(Si, Dj):

• Size: If |Si| = s and |Dj | = d, the Size of M(Si, Dj)
is simply s × d.

• Sum: The Sum of M(Si, Dj) is the number of ones
that appear in M(Si, Dj).

• Density: The Density of M(Si, Dj) is the ratio of
the Sum to the Size of M(Si, Dj).

Classification criterion: The intuition behind this
method suggests that when the (i, j)-descriptive submatrix
is small, or contains few 1s, then (i, j) is likely a true zero;
otherwise, it is likely a false zero. In practice we set a thresh-
old β and our classifier becomes:

bT (i, j) =


1 if πij > β (False Zero)
0 if πij ≤ β (True Zero).

(1)

As already noted, in order for the classifier to be robust,
there should be a significant region of β values over which
TPR is close to 1 and FPR is close to 0.

4.2 Experimental results
Our experimental evaluation starts with the ground truth

visibility matrices as described in Section 3. We test the
classifier in each case on an equal number of true and false
zeros, randomly selected – we test as many as possible while
keeping the numbers equal, up to a limit of 2000 of each type.
This balancing of test cases allows us to examine both TPR
and FPR at the same resolution, and avoids bias stemming
from the much larger set of true zeros than false zeros.

Descriptive power of the Sum property. To interpret
the performance of the visibility-based method, it is helpful

0 1 2 3 4 5 60.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sum (log)

CD
F

10%
30%
50%
95%

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Sum (log)

CD
F

10%
30%
50%
95%

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Sum (log)

CD
F

10%
30%
50%
95%

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Sum (log)

CD
F

10%
30%
50%
95%

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Sum (log)
CD

F

10%
30%
50%
95%

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Sum (log)

CD
F

10%
30%
50%
95%

(a) (b) (c)

Figure 3: Submatrix Sum distribution for (a) Edge, (b) Core-1000, (c) Core-100. Upper: True Zeros; Lower: False Zeros.
Scale on x axis is base 10 log.

to start by looking at the Sum values for submatrices, com-
paring the case for true and false zeros. (We concentrate on
the Sum metric for reasons explained below.) Here we use
knowledge of the true and false zeros, obtained from ground
truth, in order to gain insight on the method (of course,
actual performance results do not use this knowledge).

Figure 3 shows the CDF of Sum values on a log (base
10) scale for true zeros (upper) and false zeros (lower). To
interpret these figures in the context of our classification
problem, one can visualize a classification threshold drawn
as a single vertical line through both an upper and lower
plot. On the upper plot, a good classifier will place the
majority of the distribution to the left of the line (yielding
low FPR); on the lower plot, the majority should be to the
right of the line (yielding high TPR).

The figure shows that the best case is for the Edge net-
works, shown on the left. Here it can be seen than there is
a significant range of thresholds – values between about 10
and 50 – which almost completely separate the true and false
zeros, in all cases except the extreme 95% case. Even in the
95% case, there is a significant opportunity for separating
the two classes (at a different threshold).

The Core-1000 networks are also generally separable at
certain thresholds, but the Core-100 networks less so. Ex-
amining the reasons for the difference between the Edge and
Core networks, we find the following. Networks in the Edge

class are typically ‘stubs’ in the AS graph (or close to stubs).
The paths passing through a stub network are typically only
those with sources or destinations in the set of prefixes that
are announced by the network. Likewise, paths passing
through a network that is near the edge, but not a stub, are
primarily those that have sources or destinations announced
by an AS in the network’s customer cone. These situations
correspond to a visibility matrix that is quite sparse, but
having a few rows and columns that are almost completely
filled.

In such cases, the Sum and Size properties behave sim-
ilarly: for a true zero, both return very small values (Fig-

ure 3(a) upper) while for a false zero, both capture the 1s in
the same row and column as (i, j) resulting in large values
(Figure 3(a) lower). This explains why we only show re-
sults for Sum – the results for Size are very similar, and the
results for Density are poor because the density is nearly
constant.

In contrast, for the highest-tier networks (Core-100, Fig-
ure 3(c)) the arrangement of 1s in M is much more complex
because of the spreading of paths through the network core.
In such an AS, many pairs are visibile, so the likelihood of
unrelated pairs having similar visibility is much higher than
for Edge networks.

Classification accuracy. The differences between Edge

and Core networks are reflected in the performance of the
classifier. Figure 4 shows an ‘aggregate ROC’ curve across
all networks in each set. The aggregate ROC is a compos-
ite constructed by collecting results for all (i, j) pairs tested
in all networks. While this curve does not reflect the per-
formance of any actual network (those results are next), it
serves to give an overall sense of the classifier’s performance.

The results show that it is possible to achieve excellent
performance in the case of the Edge networks. Figure 4
shows a TPR of over 90% when FPR is zero, and an FPR of
about 20% when TPR is 100%, for moderate flipping per-
centages. Thus, either the true or the false zeros can be
labeled essentially perfectly, with small error for the other
class. However, the picture is not so good for Core-1000

and Core-100 networks. For those networks, achieving TPR
greater than about 95% requires a relatively high FPR, as
high as 50% or more, even for moderate flipping percentages.

To give better insight into how the classifier performs in
individual networks, we turn to Figure 5. In the Figure
the AUC metric is used to judge the classifier’s performance
on each network, and the resulting CDF of AUC across all
networks is presented. The Figure shows that for moderate
flipping percentages the AUC for Edge networks is almost

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

10%
30%
50%
95%

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

10%
30%
50%
95%

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

10%
30%
50%
95%

(a) (b) (c)

Figure 4: Aggregate ROC Curves for (a) Edge, (b) Core-1000, (c) Core-100.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

AUC

CD
F

10%
30%
50%
95%

0.9 0.95 1
0

0.05

0.1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

AUC

CD
F

10%
30%
50%
95%

0.9 0.95 1
0

0.05

0.1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

AUC

CD
F

10%
30%
50%
95%

(a) (b) (c)

Figure 5: CDFs of AUC for (a) Edge, (b) Core-1000, (c) Core-100.

always very close to 1, while for Core-1000 and Core-100

networks, up to half of the AUCs are less than 1.
These results show that for Edge networks, the visibility

method is quite accurate. However, the same is not true
for Core networks; such networks apparently require a more
sophisticated approach. We develop such an approach in the
next section.

5. THE PROXIMITY-BASED METHOD
The challenge presented by Core networks is that ob-

served visibility patterns are not sufficiently helpful in find-
ing source-destination pairs that are routed similarly to the
(i, j) target. In this section we develop a new distance metric
for prefixes (sources and destinations) that helps infer visi-
bility in such networks. We compute this metric using the
limited amount of BGP state observable in publicly avail-
able datasets (as described in Section 3). We refer to this
approach as the proximity method.

5.1 Routing-state distance
Intuitively, we seek a measure of distance (or dissimilarity)

between prefixes. Our intent is that if the distance between
prefixes is low, then we expect that paths to or from those
prefixes have a similar visibility status for an arbitrary ob-
server.

A natural measure of distance in this setting would be hop
distance. Let prefixes p1 and p2 be announced by AS1 and
AS2 respectively. Then the hop distance between p1 and p2

is simply the length of the path (e.g., shortest path) between
AS1 and AS2 in the AS graph.

Unfortunately, this is a poor metric to use. One way to see
this is simply to note that most ASes are very close in hop
distance. For example, Figure 6(a) shows the distribution
of hop distances for a random sample of 1000 AS-AS pairs

in our data. Almost half of the hop distances are 1, 2, or
3. Such a metric clearly hides significant routing differences
across prefix pairs.

What is needed is a metric that measures whether two
prefixes are ‘routed similarly in general.’ To that end we
define routing-state distance (RSD). First we define RSD
formally, then we describe how we compute it in practice.

RSD: Definition. We start with a connected graph G =
(V, E). We make the following assumption: for each source-
destination pair (x1, x2) ∈ {V × V } we assume that there is
a unique node x3 = nexthop(x1, x2), and that by following
the nexthop(·, x2) function recursively, one will eventually
reach x2. We assume as well that nexthop(x, x) = x. Thus,
nexthop(x1, x2) is the next node on the unique path from x1

to x2; and that path stops at x2.
We then define:

routestate(x) =

〈nexthop(x1, x),nexthop(x2, x), ..., nexthop(x|V |, x)〉

and:

rsd(x1, x2) = #{xi |nexthop(xi, x1) (= nexthop(xi, x2)}

Intuitively, routestate(x) tells us what the ‘direction’ is to
x from each node in the graph. Further, rsd(x1, x2) is the
number of positions where the vectors routestate(x1) and
routestate(x2) differ. Thus, two nodes which appear to most
other nodes to be in the same ‘direction’ are considered close
under the rsd metric.

Referring again to Figure 1, assume that the next hop
from d1 to each si is AS1, and that the next hop from d2 to
each si is AS2. Then the nodes s1, s2, s3 would be considered
close to each other under the rsd metric. That is because d1

considers all the si to be in the same direction, as does d2.

0 200 400 600 800 10001

2

3

4

5

6

7

Ho
p

Di
st

an
ce

Prefix Pairs
0 200 400 600 800 10000

50

100

150

200

250

RS
D

Prefix Pairs
0 50 100 150 200 2501

2

3

4

5

6

7

Ho
p

Di
st

an
ce

RSD

(a) (b) (c)

Figure 6: Distance distribution: (a) hop distance (b) crsd (c) Comparison.

RSD has a number of good properties. It is in fact a metric
(it is symmetric, positive definite, and obeys the triangle
inequality). Further, it can be applied to many different
situations, as long as the notion of a unique next hop is
satisfied (as for example when using shortest paths, or for
many routing situations). And, unlike hop-distance, it is
fine-grained – taking on a wide range of values (from 0 to
|V |).

RSD and BGP. We will compute the RSD between pairs
of ASes, and then extend RSD to prefixes by noting the AS
that announces the prefix. The general idea is to use the
(comparatively small) set of publicly observable BGP paths
to compute RSD. However, computing RSD from BGP data
raises some implementation considerations. There are two
main issues: (1) we cannot observe the nexthop function for
every AS pair in the Internet; and (2) for some AS pairs the
nexthop function is not uniquely defined.

The first issue concerns the fact that the publicly avail-
able BGP data consists (essentially) of paths from a set of
monitor ASes to a large collection of prefixes. For any given
AS pair (x1, x2), these paths may not contain information
about nexthop(x1, x2). We address this by approximating
RSD. We make the following observation: some ASes have
a much larger impact on RSD than others. For example, a
stub AS has a highly uniform contribution to each routestate
vector. If the stub AS x has a small set of providers, then
for many AS pairs (x1, x2),nexthop(x, x1) = nexthop(x, x2).
Hence most ASes contribute little information to RSD.

Thus, we conclude that we can approximate RSD using
a subset of all ASes, in particular those ASes with many
neighbors; these ASes contribute the most information to
RSD. We call these ASes the basis set. We select the basis set
by identifying 77 ASes with the largest number of neighbors
in our data. Happily, such ASes tend to appear on many
paths in the publicly available data; hence we can often find
nexthop(x1, x2) when x1 is in the basis set.

To address the case when nexthop(x1, x2) is not available
(for AS x1 in the basis set), we performed extensive studies
of the effect of missing nexthop information on RSD. Space
does not permit a full summary of our findings; we note only
that proportional approximation yields results that work
well in practice. This approximation extends the routes-
tate vector to include ‘don’t know’ elements. We then de-
fine crsd(x1, x2) as the fraction of known positions in which
routestate(x1) and routestate(x2) differ, times the number of

ASes in the basis set. This normalizes crsd so that it always
ranges between zero and the size of the basis set.

The second issue is that for some AS pairs there is more

than one next hop. This happens when an AS uses detailed
routing policies (such as hot-potato routing) that are not
strictly per-neighbor. That is, traffic destined for the same
prefix may take different next hops depending on where it
enters the network. We address this problem the same way
as in [10], i.e., by introducing the notion of ‘quasi-routers.’
Using the algorithm in [10] we divide each AS in the basis
set into a minimal set of quasi-routers such that for each
(quasi-router, prefix) pair there is a unique next hop AS.
This expands the size of the basis set from 77 to 243.

Having addressed these two issues, we can compute crsd
for each pair of prefixes in our dataset. In Figure 6(b) we
show the RSD values for the same set of prefix pairs as in
Figure 6(a) (sorted in increasing order in both cases). The
steep slope on the left of the figure shows that RSD can
make fine distinctions between prefix pairs. Furthermore,
it is clear that RSD is not simply another measure of hop
distance: Figure 6(c) shows a scatterplot of RSD versus hop
distance, indicating that there is little relationship between
the two metrics. A last observation about RSD applied to
prefixes is that it can be interpreted as a generalization of
the notion of BGP atoms [3]. A BGP atom is a set of prefixes
which are routed the same way everywhere in the Internet;
so a BGP atom is a prefix set in which each prefix pair has
an RSD of zero.

5.2 Method description
Using RSD, we again instantiate the generic method pre-

sented in Section 2.2.

Submatrix selection: Given (i, j) ∈ Z and threshold τ ,
the proximity method selects the (i, j)-descriptive subma-
trix by selecting rows and columns from M that correspond
to sources and destinations that are close to i and j respec-
tively. That is,

Si = {i} ∪ {i′ | crsd(i′, i) ≤ τ} and

Dj = {j} ∪ {j′ | crsd(j′, j) ≤ τ}.

We explored various threshold values τ . Space does not
permit reviewing those results, but we found that τ = 50
works well in practice. As can be seen in Figure 6(b), this
means that we are placing a relatively small subset of rows
and columns into M(Si, Dj).

Structural properties: As in the visibility-based ap-
proach we again compute the Size, Sum and the Density

of the M(Si, Dj) as input to the classifier. In this case, Sum

and Density prove to be equally effective discriminating
features; we report only results for Sum.

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Sum (log)

CD
F

10%
30%
50%
95%

0 0.2 0.4
0.9

0.95

1

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Sum (log)

CD
F

10%
30%
50%
95%

0 0.2 0.4
0.9

0.95

1

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Sum (log)

CD
F

10%
30%
50%
95%

0 0.2 0.4
0.9

0.95

1

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Sum (log)

CD
F

10%
30%
50%
95%

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Sum (log)
CD

F

10%
30%
50%
95%

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

Sum (log)

CD
F

10%
30%
50%
95%

(a) (b) (c)

Figure 7: Submatrix Sum distribution for (a) Edge, (b) Core-1000, (c) Core-100. Upper: True Zeros; Lower: False Zeros.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

10%
30%
50%
95%

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

10%
30%
50%
95%

0 0.05 0.1

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

10%
30%
50%
95%

0 0.05 0.1

0.8

0.9

1

(a) (b) (c)

Figure 8: Aggregate ROC Curves for: (a) Edge, (b) Core-1000, (c) Core-100.

Classification criterion: The intuition behind the prox-
imity method suggests that the target element (i, j) should
have similar visibility to the paths captured in the M(Si, Dj)
submatrix. Both Sum and Density are large when the paths
captured in M(Si, Dj) are visible; hence we use the same
classification criterion as for the visibility method (Equation
(1)).

5.3 Experimental results
We again start by examining the distribution of Sum val-

ues for submatrices M(Si, Dj), which are shown in Figure 7.
The upper row of plots shows that in each set of ASes, the
Sum metric is almost always zero when (i, j) is a true zero
(i.e., more than 95% of the time). This makes sense, since
the paths captured in M(Si, Dj) are similar to the path (i, j)
in terms of routing behavior. For the case of false zeros,
M(Si, Dj) is typically nonzero, but with different behav-
ior for the Edge versus Core networks. The Core-1000 and
Core-100 true-zero submatrices are easily separated from
the false-zero submatrices. For moderate flipping levels, a
threshold value anywhere in the range 1-10 is effective. How-
ever for the Edge networks, there is no similarly good thresh-
old.

This can be understood as follows. The proximity method

is not effective for Edge networks because it typically selects
only a small set of sources and destinations for inclusion
in M(Si, Dj) – those that are close to i and j in terms of
crsd. Since Edge networks have sparse visibility matrices in
general, the small size of M(Si, Dj) makes it possible that
most or all 1s are flipped to zeros, leading to false zeros
that are misclassified as true zeros. On the other hand,
comparison of the top and bottom of Figure 7(b) and (c)
shows that RSD is able to pick out those prefixes that are
similar in routing behavior when the network is in the core
and has denser visibility matrices, and this is what is needed
for accurate classification.

The accuracy of classification in terms of aggregate ROC
curves is shown in Figure 8. The figure shows that classi-
fication in general is very accurate for Core networks: for
moderate flipping levels, accuracy is as high as 95% TPR
with zero FPR. For Edge networks, as expected, classifi-
cation accuracy is generally poorer, with an unavoidably
nonzero FPR.

Figure 9 summarizes AUCs over all networks. For Edge

networks, a significant number of AUCs are in the 0.5 range.
An AUC of 0.5 is typically characteristic of a straight-line
ROC curve from the origin to the upper-right corner. This
happens when there is essentially no discriminatory power in

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

AUC

CD
F

10%
30%
50%
95%

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

AUC

CD
F

10%
30%
50%
95%

0.8 0.9 1
0

0.2

0.4

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

AUC

CD
F

10%
30%
50%
95%

0.8 0.9 1
0

0.2

0.4

(a) (b) (c)

Figure 9: CDFs of AUC for (a) Edge, (b) Core-1000, (c) Core-100.

0 20 40 60 80 1000.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Flip Percentage

AU
C

Visibility
Proximity

0 20 40 60 80 1000.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Flip Percentage

AU
C

Visibility
Proximity

0 20 40 60 80 1000.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Flip Percentage

AU
C

Visibility
Proximity

(a) (b) (c)

Figure 10: AUC Means for (a) Edge, (b) Core-1000, (c) Core-100.

the classifier. On the other hand, for Core networks, AUCs
are generally quite high, typically 0.95 or higher.

5.4 Comparison
The AUC means for both methods are shown in Figure 10.

Figure 10(a) shows that for Edge networks, the visibility-
based method is vastly preferable, and maintains an accu-
rate classification rate even for flipping percentages as high
as 95%. However, Figures 10(b) and (c) show that the
visibility-based method breaks down, especially for high flip-
ping percentages, for Core networks. Since the Visibility-

Inference problem is likely to be of more interest to Core

networks in general, this motivates the effort to develop a
more refined method targeted specifically to Core networks.

Figure 10 shows that this more refined method (proximity-
based) is in fact clearly effective in both Core-1000 and
Core-100 networks. For those networks, even at very high
flip percentages, the proximity-based method using RSD is
capable of AUCs that are nearly always close to 1.

6. CLASSIFICATION
The results in Sections 4 and 5 demonstrated both meth-

ods have high TPR and low FPR for large range of threshold
values. Nonetheless, in practice we need to choose a thresh-
old value (without access to ground-truth data). Here, we
show that such a value can be picked automatically, by ex-
ploiting the information hidden in the 1s of the observed
visibility matrix M .

The key idea is that, intuitively, we expect the descriptive
submatrices of the 1-valued entries of M to be similar to
the descriptive submatrices of the false-zero entries of M .
Therefore, we can use the distribution of the characteristic
values of the former, in order to choose a threshold that will
correctly classify the latter.

To demonstrate the effectiveness of this strategy, we per-
form the following experiment. For each network in Edge,
with visibility matrix M , we choose entries M(i, j) = 1 and
form their corresponding (i, j)-descriptive submatrices using
the methods described in Section 4.1. Then, we set the clas-
sification threshold to the low end of the distribution of Sum

values obtained. Based on experience with the classifier, we
selected the 3rd percentile of the distribution as a reasonable
choice.

The leftmost part of Table 1 shows the the average (and
standard deviation) of TPR and FPR of the visibility-based
classifier across all the networks in Edge and for all four flip-
ping percentages. The results show that the 3rd-percentile
rule for picking the threshold value leads to average TPR
of almost 1 and very small FPR for flip percentages up to
50%. Even for 95% flipping percentage, the average TPR
drops only to 0.85 and the average FPR increases only to
0.17.

The last four columns of Table 1 show the same results
for the Core-1000 and Core-100 networks. These results
are obtained by performing the same experiment in those
networks, with the only difference that the (i, j)-descriptive
submatrices of the 1-valued entries of M were obtained using
the proximity-based method described in Section 5.2. We
use the proximity-based method since it was identified to
outperform visibility-based classification for these networks.

The results show again that a threshold set to the 3rd-
percentile of the sum of the descriptive submatrices of the
1-valued entries yields excellent average TPR and FPR for
all flip percentages. Overall, these experiments confirm our
intuition that the descriptive submatrices of the 1-valued
entries of M are similar to the submatrices of the false ze-
ros, and that using this information to select the classifier
threshold leads to excellent prediction accuracy.

The results above are for the random bit-flipping strat-

Table 1: Mean and standard deviation of TPR and FPR for Edge, Core-1000 and Core-100; 3rd-percentile Sum threshold.

Edge Core-1000 Core-100

Flip % TPR FPR TPR FPR TPR FPR

10% 0.99 (0.062) 0.032 (0.15) 0.98 (0.033) 0.03 (0.04) 0.95 (0.067) 0.027 (0.022)
30% 0.99 (0.061) 0.045 (0.15) 0.98 (0.035) 0.03 (0.04) 0.95 (0.071) 0.028 (0.021)
50% 0.99 (0.067) 0.061 (0.17) 0.98 (0.033) 0.03 (0.05) 0.95 (0.064) 0.034 (0.025)
95% 0.85 (0.18) 0.08 (0.18) 0.98 (0.027) 0.21 (0.18) 0.96 (0.054) 0.069 (0.046)

Table 2: Mean and standard deviation of TPR and FPR for
destination-based flipping on Edge and Core-100.

Edge Core-100

TPR FPR TPR FPR

1.0 (0) 0.98 (0.11) 0.78 (0.30) 0.027 (0.17)

egy, corresponding to the case where traffic for each source-
destination pair is independent. As described in Section 3,
we also consider the case of correlated bit-flipping, in which
all of the 1s for a specific destination (column) are flipped
to zero. For each AS in the Edge and Core-100 datasets,
we applied this stategy 1000 times to a randomly chosen
column. We report results for only the zeros in the chosen
column, because classification accuracy of zeros outside of
the chosen column is not significantly changed.

Table 2 shows the resulting classification accuracy, again
using the visibility-based method for Edge networks and the
proximity-based method for Core-100 networks. It shows
that for Edge networks, essentially all zeros are classified
as true zeros. This occurs because of the nature of the
visibility-based method. In that method, the 1s in the same
column and rows as the zero (i.j) determine the size of the
submatrix. If the entire column is set to zero, the subma-
trix is necessarily too small to identify any false zeros. Note
that classification accuracy for the rest of the matrix is not
strongly affected, however.

The situation is quite different for the proximity-based
method operating on Core-100 networks. Here the classifier
performs quite well, with a high TPR and a FPR of almost
zero. That is, even when traffic patterns are such that a
destination prefix receives no traffic at all, the traffic pat-
terns in similarly-routed prefixes are sufficient to accurately
separate true and false zeros.

7. APPLICATION: TM COMPLETION
In Section 1, we described a number of reasons one might

seek a solution to the Visibility-Inference problem. Here
we demonstrate an example in depth: improving the accu-
racy of traffic matrix completion.

The problem. Traffic matrix (TM) completion refers to
estimating traffic volumes that are not directly measurable,
whether due to missing or dropped data [16], lack of visibil-
ity [2], or other reasons. The general notion builds on work
in statistical signal processing [4] that has identified suffi-
cient conditions and appropriate algorithms for estimating
missing elements of a partially-observed matrix.

TM completion starts with a partially-observed traffic ma-
trix V . The known (i.e., observed) entries of V are the set

Ω. Using Ω one seeks to estimate the remaining, unknown
elements of V . If ground truth is not available, TM comple-
tion accuracy can be assessed through cross-validation, i.e.,
by holding a subset R ⊂ Ω out as a validation set. Then,
Ω \ R is given as input to the matrix-completion method,

which predicts the entire matrix bV , including elements R.
Accuracy is measured by the Normalized Mean Absolute
Error (NMAE) on the validation set R:

NMAE(R) =

P
(i,j)∈R |V (i, j) − bV (i, j) |

P
(i,j)∈R V (i, j)

.

Prior work on TM completion has been forced to treat
zeros in V as missing values (e.g., [2]). This is because, as
we have discussed throughout this paper, lack of observed
traffic for an element (i, j) is ambiguous: it may or may not
reflect a valid traffic measurement. Thus, a large amount
of information – all false zeros in V , which represent valid
traffic measurements – is thrown away.2 We demonstrate the
significance of this loss, and the improvement possible with
our classification methods, using LMaFit [15], a well-known
matrix-completion algorithm.

Data. We use the traffic matrix V described in Section 3; it
comes from a large Tier-1 provider that is a member of the
Core-100 set. We also use the corresponding ground-truth
matrix T for the same network, for validation (only). The
only preprocessing we perform is to remove any rows and
columns that are fully-zero in V , since it is well understood
that matrix completion cannot estimate elements in such
rows and columns. After this filtering step, we wind up with
versions of V and T having 28 rows (source ASes) and 6198
columns (destination prefixes); V has a density of about 4%.

Improving TM completion accuracy. To evaluate the
benefit of solving Visibility-Inference in this setting, we
consider four possible cases for TM completion:

Ground Truth (GT): TM completion using perfect
knowledge of false zeros (valid zero-valued traffic mea-
surements). So for GT the set of known entries given
to LMaFit consists of Ω \ R plus the known false zero
entries as given by T .

Visibility (Vis): TM completion after labeling false zeros
via the visibility-based method. So for Vis the set of
known entries given to LMaFit consists of Ω\R plus the
false zeros identified by the visibility-based method.

Proximity (Prox): TM completion after labeling false ze-
ros via the proximity-based method. Input to LMaFit

2We extend the notion of true and false zeros to V by iden-
tifying them with the true and false zeros of M . This means
that a false zero in V is actually a valid traffic measurement;
a true zero is not.

0 0.1 0.2 0.3 0.40.9

1

1.1

1.2

1.3

1.4

NM
AE

Unknown Ratio

NK
VIS
PROX
GT

0 0.1 0.2 0.3 0.4
1

1.5

2

2.5

3

3.5

4

4.5

5

NM
AE

Unknown Ratio

NK
VIS
PROX
GT

0 0.1 0.2 0.3 0.40.9

1

1.1

1.2

1.3

1.4

NM
AE

Unknown Ratio

NK
VIS
PROX
GT

Figure 11: Accuracy of matrix completion for GT, Vis, Prox and NK for (a) all, (b) small, (c) large unknown elements in R.

is Ω\R plus the false zeros identified by the proximity-
based method.

No Knowledge (NK): TM completion with no knowledge
of false zeros, i.e., as it has been done previously in the
literature. In this case, the set of known entries given
to LMaFit consists only of Ω \ R.

Figure 11 shows the results, in which the fraction of Ω that
is held out in R is varied from 0.05 to 0.3 (denoted on the
plots as the unknown ratio). All results are averages over
20 different cross-validation sets R. We expect the results
to depend on the size of the TM elements being estimated;
additional knowledge of zero-values has a bigger influence
on estimation of small elements. Hence, in Figure 11(a)
we report results for all values in R, while in Figure 11(b)
we show results for small values (entries smaller than the
median) and in Figure 11(c) we show results for large values.

The results show that knowledge of false zeros can signifi-
cantly improve the accuracy of TM completion. Comparing
NK and GT one sees that accuracy can be improved as much
as a factor of 3.5 when predicting small values. With respect
to our classifiers, as we expect, Prox outperforms Vis since
this is a Core-100 AS. Most significantly, we observe that
labeling false zeros using Prox yields improvements that are
essentially the same as those obtained using ground truth.

8. DISCUSSION AND RELATEDWORK
To the best of our knowledge, we are the first to define and

address the Visibility-Inference problem, whose goal is
inferring visibility from traffic. Therefore, we are not aware
of any existing methods that solve exactly the same prob-
lem. Despite the unique question prompting our work, our
methods have connections to much previous work. Here, we
discuss those connections as well as the limitations of our
approach.

BGP paths. The analysis of the properties of observed
BGP paths has a long history, initially enabled by the Route-
views project [14]. Our work draws on the notion of BGP
Atoms [3], which resulted from the observation that some
sets of prefixes are routed identically everywhere in the In-
ternet. The specifics of how routing policies affect observed
BGP paths have been studied extensively [10]; these stud-
ies informed our work and guided our adaptation of RSD to
BGP data.

Data Limitations. It is well-known that publicly available
BGP tables provide an incomplete view of the AS graph.
This has been reported widely, and recently reviewed in [13].
In this regard, it is important to note that our results are not

based on the AS graph; in fact, the way we use BGP data
does not introduce ambiguities due to missing links. As we
describe in Section 3, we construct visibility matrices over
only the set of sources and destinations for which we have
every active path between a source and a destination. Thus,
we omit source-destination pairs for which our BGP data
may be missing links, and we can have high confidence in
the 0-1 status of each element of each ground-truth T matrix.
While we cannot rule out inaccuracies due to configuration
errors, false BGP advertisements, or path changes that have
not yet reached the monitors, we believe that these issues
have negligible effect on our results. In the few cases where
we discuss the AS graph (Section 3) we only take from it
qualitative, not quantitative observations.

The experiments we perform make the assumption that
paths visible in BGP match those that are actually taken
by traffic. It is known that this is not always the case [8].
However, as [8] notes, “the two AS paths usually match.”
That paper shows that mismatches are rare — a few per-
cent at most. Hence we don’t expect that these mismatches
dramatically change our results.

Scaling Considerations. As noted in Section 2, we con-
sider observers to be ASes rather than ISPs. We don’t be-
lieve this has a major impact on our results. While ISPs can
certainly merge visibility and traffic information obtained
from multiple ASes that they operate, such merging does
not seem to fundamentally change the nature or difficulty
of the Visibility-Inference problem. On the other hand,
studying visibility at the AS level is natural because the AS
is the granularity at which BGP selects routes.

Another issue concerns the scale of the full problem. The
matrices we work with, although they have over 5 million
elements, are small compared to a full Internet-wide matrix.
A conservative estimate of of the size of a full AS-prefix
matrix is on the order of 5 billion elements. For our Tier-
1 provider, the fraction of nonzero traffic elements in V is
about 0.1%. On the other hand, that provider’s data was
based on a sampling rate of 1/1000; hence very many small
elements of V were lost due to the sampling process. So
for the case of this provider, we can estimate that a day’s
traffic occupies on the order of 5 million nonzero elements
in V , and probably much more.

It is not clear the extent to which routing changes affect
the estimation process. The notion of visibility itself can
be attributed to an instant in time, during which routing
changes are assumed to be negligible. However, the need to
collect traffic to populate M introduces sensitivity to routing
changes. The effect of route changes is to inflate the number
of 1s in M . The sensitivity of the inference process to this

inflation needs more study; we only note here that a small
fraction of prefixes are responsible for most route changes;
and those prefixes receive comparatively little traffic [11].

Additional Approaches. Finally, we ask whether there
are other ways ISPs could attack this problem.

One direction, as mentioned in Section 2, is for ISPs to
make note of the routes that they learn through BGP. How
many entries in bT could the observer fill in using BGP-
learned routes? From BGP, the observer learns a path to
each destination from each of its neighbors. Each path as
well contains sub-paths. This implies that the number of
bT elements that can be learned in this way for any given
destination is equal to the number of unique ASes found in
all neighbor paths to the destination. Experience with BGP
suggests that this is not usually a large number, except for
the small set of ASes with very high degree. For example, for
each of the Routeviews monitors, the average number of ele-
ments per destination that can be learned by such a method
is ∼40. In comparison, for ASes in the Core-1000 set, the
average number of elements per destination potentially vis-
ible through traffic observation is ∼500. Thus, we believe
that BGP-learned paths are likely to add only incremental
improvement to estimation of bT .

Another approach would be for ISPs to use information
about the volume of traffic observed. The general idea is to
assume a distributional model for traffic – one which includes
a nonzero probability that a traffic element is zero. One then
models the observed data as a mixture of the values taken
from two sources: the assumed traffic distribution (which
generates false zeros), and an additional source of (true)
zeros. Such ‘zero-inflated’ models are used, for example
in ecology, in settings loosely analogous to the Visibility-

Inference problem [9]. Taking this approach requires im-
position of modeling assumptions, with all the difficulties
that accompany it: addressing the model selection problem,
estimating parameters, and assessing confidence in the re-
sults. However the potential exists to estimate the number
of false zeros via this sort of method. While this approach
presents many hurdles, a considerable amount of theory has
been developed around how to do this in various settings,
and some issues relevant to traffic models are being ad-
dressed [6].

9. CONCLUSIONS
We started from the simple question ‘what routes pass

through a network?’ We showed that using the network’s
traffic data to answer this question is equivalent to identify-
ing source-destination pairs that are not communicating at
a given time.

Answering these questions prompted us to look for ways
to identify sets of source-destination paths that are routed
similarly in general. This can be thought of as an consid-
erable generalization of the notion of BGP atoms: rather
than groups of prefixes that are routed identically , we look
for groups of paths that are routed similarly . Surprisingly,
we show that such groups of paths can be identified in a
large set of representative locations in the Internet.

A key enabling idea has been the definition of a new dis-
tance metric for network prefixes: routing-state distance.
Using it we were able to extrapolate from the relatively small
amount of information available in publicly accessible BGP

tables to estimate routing similarity between any two prefix
pairs in the Internet.

We realized these ideas in the form of a family of classi-
fiers; applying these classifiers to traffic measurements we
showed that one can generally answer our motivating ques-
tion with a high degree of accuracy.

While a number of challenges remain and considerable ad-
ditional work is warranted, we are hopeful that the methods
we develop here can improve knowledge of route visibility
and further inform both operators and researchers.

Acknowledgements. This work was supported by NSF
grants CNS-1017529, CNS-0905565, CNS-1018266, CNS-
1012910, CNS-1117039, by a GAANN Fellowship, and by
grants from Microsoft, Yahoo!, and Google. The authors
thank the SIGCOMM referees and shepherd for their help
in improving the paper.

10. REFERENCES
[1] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and

A. Vespignani. K-core decomposition: a tool for the
visualization of large scale networks. Technical report,
Arxiv, 2005.

[2] V. Bharti, P. Kankar, L. Setia, G. Gürsun, A. Lakhina, and
M. Crovella. Inferring invisible traffic. In CoNEXT,
Philadelphia, PA, 2010.

[3] A. Broido and k. claffy. Analysis of RouteViews BGP data:
policy atoms. In NRDM, 2001.

[4] E. J. Candès and B. Recht. Exact matrix completion via
convex optimization. Found. Comput. Math., 9(6):717–772,
2009.

[5] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and
E. Shir. A model of internet topology using k-shell
decomposition. In PNAS, 2007.

[6] D.-L. Couturier and M.-P. Victoria-Feser. Zero-inflated
truncated generalized Pareto distribution for the analysis of
radio audience data. Annals of Applied Statistics, 2010.

[7] T. Fawcett. An introduction to ROC analysis. Pattern
Recogn. Lett., 2006.

[8] Z. M. Mao, J. Rexford, J. Wang, and R. H. Katz. Towards
an accurate AS-level traceroute tool. In Proceedings of
ACM SIGCOMM, August 2003.

[9] T. G. Martin, B. A. Wintle, J. R. Rhodes, P. M. Kuhnert,
S. A. Field, S. J. Low-Choy, A. J. Tyre, and H. P.
Possingham. Zero tolerance ecology: improving ecological
inference by modelling the source of zero observations.
Ecology Letters, 2005.

[10] W. Mühlbauer, S. Uhlig, B. Fu, M. Meulle, and
O. Maennel. In search for an appropriate granularity to
model routing policies. In SIGCOMM, 2007.

[11] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang. BGP routing
stability of popular destinations. In SIGCOMM Workshop
on Internet measurment, 2002.

[12] RIPE routing information service raw data project. http:
//www.ripe.net/data-tools/stats/ris/ris-raw-data.

[13] M. Roughan, W. Willinger, O. Maennel, D. Perouli, and
R. Bush. 10 lessons from 10 years of measuring and
modeling the internet’s autonomous systems. IEEE Journal
on Selected Areas in Communications, 2011.

[14] University of Oregon route views project.
http://www.routeviews.org/.

[15] Z. Wen, W. Yin, and Y. Zhang. Solving a low-rank
factorization model for matrix completion by a nonlinear
successive over-relaxation algorithm. Technical report, Rice
University, 2010.

[16] Y. Zhang, M. Roughan, W. Willinger, and L. Qiu.
Spatio-temporal compressive sensing and internet traffic
matrices. SIGCOMM Comput. Commun. Rev., 2009.

