
In Proceedings of the 1999 ACM SIGMETRICS International Conference

on Measurement and Modeling of Computer Systems, pp. 188-197, May 1999

A Performance Evaluation of Hyper Text

Transfer Protocols

Paul Barford and Mark Crovella

Computer Science Department

Boston University

111 Cummington St, Boston, MA 02215

fbarford,crovella,g@cs.bu.edu

Abstract

Version 1.1 of the Hyper Text Transfer Protocol (HTTP)
was principally developed as a means for reducing both
document transfer latency and network tra�c. The ra-
tionale for the performance enhancements in HTTP/1.1
is based on the assumption that the network is the bot-
tleneck in Web transactions. In practice, however, the
Web server can be the primary source of document
transfer latency. In this paper, we characterize and
compare the performance of HTTP/1.0 and HTTP/1.1
in terms of throughput at the server and transfer la-
tency at the client. We examine how bottlenecks in the
network, CPU, and in the disk system a�ect the rela-
tive performance of HTTP/1.0 versus HTTP/1.1. We
show that the network demands under HTTP/1.1 are
somewhat lower than HTTP/1.0, and we quantify those
di�erences in terms of packets transferred, server con-
gestion window size and data bytes per packet. We show
that when the CPU is the bottleneck, there is relatively
little di�erence in performance between HTTP/1.0 and
HTTP/1.1. Surprisingly, we show that when the disk
system is the bottleneck, performance using HTTP/1.1
can be much worse than with HTTP/1.0. Based on
these observations, we suggest a connection manage-
ment policy for HTTP/1.1 that can improve through-
put, decrease latency, and keep network tra�c low when
the disk system is the bottleneck.

Supported in part by NSF Grants CCR-9501822 and CCR-
9706685 and by Hewlett-Packard Laboratories.

1 Introduction

A source of ongoing frustration for users of the World
Wide Web is the latency associated with data retrieval.
Beyond a client's immediate connection to the Internet
(which, in the case of slow modem users, can be the pri-
mary source of latency) there are essentially two possi-
ble sources of latency: the network and the server. Bot-
tlenecks in the network exist due to congestion and/or
limited bandwidth links along the path from client to
server. Bottlenecks at the server occur when the server
is heavily utilized either in the CPU or the disk system.
When developing methods for improving performance
in the Web, it is important to consider any potential
solution from the perspectives of the client, network
and server.

Initial work on improving Web performance focused
on delays in the network as the principal source of la-
tency for Web clients [25, 30]. Based on this premise,
these studies proposed a number of enhancements to
HTTP that decrease latency by reducing the number
of network round trips required to transfer Web objects
during a browsing session (A Web object consists of an
HTML �le along with all the �les that are embedded in
it by reference, and a browsing session is a period dur-
ing which Web objects are transferred with intervening
idle periods (OFF times).). We consider the e�ects of
two of these enhancements: the use of persistent con-

nections and pipelining. A persistent connection is a
single TCP connection that is used to transfer all �les
during a browsing session. Pipelining allows a collec-
tion of requests to be sent to a server without waiting
for a response between requests, and allows the server
to respond with a minimum number of data packets.
These enhancements, along with others, paved the way
for the HTTP/1.1 speci�cation which was proposed as
an IETF standard in 1997 [13].

Initial evaluation of HTTP/1.1 indicated that un-

der certain conditions it can reduce both client latency
and network tra�c [14]. However, the enhancements
in HTTP/1.1 come at a cost. Because connections are
persistent, servers must typically manage a much larger
number of open connections. The work in [25] points
out that requiring the server to manage many open con-
nections could increase its processing and memory load.
In general, however, a comprehensive understanding of
the implications of the new features in HTTP/1.1 for
servers has not been available. In particular, the ef-
fects of bottlenecks other than the network on HTTP
performance have only recently begun to be studied [6].

Our study compares the impacts of using HTTP/1.0
and HTTP/1.1 when the server CPU or server disk is
the bottleneck resource in the system. We also analyze
in detail the network demands of each protocol. We
run tests using two popular Web servers: Apache v1.3.0
running on Linux and Internet Information Server (IIS)
v4.0 running on Windows NT. We use the Surge [7]
workload generator to create realistic Web workloads
in a local area network environment. We analyze Web
system performance by measuring throughput at the
server and �le latency at the client. We take detailed
measurements of server subsystem (CPU, memory, disk,
network) performance in order to determine where bot-
tlenecks occur and to understand their e�ects. We use
packet traces to analyze the network impact of our tests.

In order to use Surge in this project, a number of
enhancements to support HTTP/1.1 were added. Per-
sistent connections and pipelining were added to the re-
quest generator per RFC 2068 [13]. The distributional
model for �le sizes was extended and a distributional
model for the number of �les requested during a brows-
ing session was added. Details about the extensions to
Surge are given in Section 3.

We exercise each server using a range of workloads
that enable us to drive the server to overload and thereby
expose system bottlenecks. Our results indicate that:

1. When the server is not the bottleneck, the network
demands of HTTP/1.1 are somewhat lower than
those of HTTP/1.0 in our LAN test con�guration.
Our results suggest that in a WAN environment,
these di�erences could be signi�cant.

2. When the server CPU is the bottleneck resource,
there is no signi�cant di�erence in performance be-
tween HTTP/1.0 and HTTP/1.1.

3. When memory on the server is limited and the disk
system becomes the bottleneck resource, HTTP/1.1
performs signi�cantly worse than HTTP/1.0.

The insight gained in our experiments lead us to
conclude that there is a gradient along which Web per-
formance must be considered. If a server is not heav-
ily loaded or if the CPU or the network is the bot-
tleneck, the features in HTTP/1.1 are desirable due

to reduction in packet tra�c. However, if a server's
disk system is the bottleneck, the persistent connec-
tions that HTTP/1.1 maintains between Web object
transfers cause severe degradation in server throughput.
Based on this observation, we propose and evaluate a
connection management policy for HTTP/1.1 in which
clients proactively close connections after a Web object
has been transferred. This simple policy greatly im-
proves server throughput when the disk system is the
bottleneck and still reduces overall packet tra�c versus
HTTP/1.0.

2 Related Work

2.1 Hyper Text Transfer Protocols

Presentations of the dynamics of HTTP transactions,
including their interaction with TCP, can be found in
[5] and [30]. HTTP/1.0 [9] is currently the most widely
used version of the protocol. It requires a separate TCP
connection for the transfer of each �le associated with
a Web object. Since busy servers can serve millions of
requests per day, e�ciency in setting up and tearing
down connections on Web servers is important to good
server performance when using HTTP/1.0 [25].

The work in [25, 30] addresses the issue of user per-
ceived latency in Web transactions from the perspec-
tive of the network. Congestion in the Internet is a
well known cause of delay in TCP transfers [32]. When
network delays are assumed to be the primary source
of user latency, a number of features of HTTP/1.0 be-
come logical candidates for improvement. Speci�cally,
HTTP/1.1 proposes a) persistent connections, b) pipelin-
ing, c) link level document compression and d) caching.
We do not consider the e�ects of compression or caching
in our study. Persistent connections reduce packet traf-
�c since ideally only a single TCP connection is set up
and used during a client browsing session on a par-
ticular server. This means that TCP connections are
maintained between consecutive Web object requests
(i.e. connections are open during OFF times), which
means that many more connections can be open on a
server at any moment in time. E�ciently maintaining
many open connections places a di�erent kind of burden
on the server. Mogul points out in [25] that managing
many open connections on the server is the biggest risk
of HTTP/1.1.

HTTP/1.0 �le requests are made sequentially: a re-
quest is sent to the server, the response is read by the
client and then the next request is sent. Pipelining in
HTTP/1.1 enables both the client and the server to
avoid sending under-full packets by placing as much
data (either requests or responses) as possible into each
packet and placing separator strings between distinct
�les within a packet. Pipelining has the e�ect of reduc-
ing the number of request and response packets, thus

reducing the number of network round trips required to
complete a Web request/response transaction. Nielsen
et al. [14] show results indicating that pipelining is
necessary in order to signi�cantly reduce latency when
using HTTP/1.1.

A number of studies have analyzed the performance
aspects of HTTP. In particular, [10] compares the per-
formance of HTTP/1.0 versus HTTP/1.1 on a high la-
tency wireless network and �nds that there can be a
signi�cant bene�ts in HTTP/1.1. In [19], Liu and Ed-
wards show that over one quarter of the transaction
time in HTTP/1.0 is spent in TCP handshaking before
any data ows.

2.2 Server Performance

Investigations of Web server performance can be di-
vided into two categories: those which examine servers
under actual use and those which examine servers us-
ing synthetic load generators. Measurements of servers
under actual use are important not only for understand-
ing how servers perform and for diagnosing their prob-
lems, but also for comparison with loads generated syn-
thetically. Measurements of server performance using
synthetic workloads su�er from the fact that they are
an abstraction of actual use. However, these studies
are useful for demonstrating server performance over
a range of loads in a controlled fashion which is not
possible in real use studies. A number of studies have
characterized Web server performance using syntheti-
cally generated loads [7, 2, 5, 6, 23, 31]. These studies
have pointed out that system bottlenecks can occur in
a variety of places.

A number of studies have also characterized server
activity under actual use conditions [26, 18, 4, 22, 3] (in
[20] there is an analysis of Web proxy logs, which are
also relevant). The studies of actual use have focused
primarily on server log analysis and have documented a
wide variety of use characteristics. However the amount
of performance data in these studies is limited. Because
of the variability of real world studies and lack of repro-
ducibility, controlled laboratory studies using synthetic
workloads are necessary.

Web server performance studies using synthetic work-
loads have provided some key insights to system bot-
tlenecks. In particular the work in [2] points out the
overhead of lingering TCP connections in HTTP/1.0.
They also show that for the workloads they consider,
the server's CPU is typically the bottleneck. The work
in [6] goes the furthest in exploring the details of a
server under heavily loaded conditions. Through ker-
nel pro�ling Banga and Mogul �nd ine�ciencies in the
select and ufalloc system calls in Digital's UNIX. Im-
provements in the implementations of these calls lead to
signi�cant improvements in overall performance. Their
experiments were speci�cally designed to explore the

issue of open TCP connections and their solution is at
the kernel level.

2.3 Workload Generation

The task of generating workloads to test Web servers is
non-trivial and has been studied intensely for a number
of years [23]. Many tools have been developed which
generate synthetic workloads [12, 5, 11, 29, 34, 35, 1].
All of these tools are essentially based on the WebStone
model. This model makes repeated requests either at
a very uniform rate, or as fast as the client system(s)
can, for some set of �les. At the time of writing, none of
these tools were able to generate HTTP/1.1 compliant
requests. Another model for workload generators are
those which replay log traces [36, 28]. A hybrid of these
models is the tool developed in [21]. This tool gener-
ates synthetic requests based on a statistical sampling
of data from a speci�c server trace. While all these tools
are useful for some kinds of server testing, the ideal is
to measure server performance under loads which are
as realistic as possible.

3 Experimental Design

The Surge [7] workload generator is used in this project.
Workloads in Surge are based on the notion of user

equivalents. A user equivalent (UE) is approximately
the load that a single user would place on a Web server.
Loads are varied in experiments using Surge by vary-
ing the number of UE's. Surge is based on a set of
seven distinct statistical models of Web user behavior
necessary to fully exercise all aspects of a Web server.
These includes models for: �le sizes, request sizes, docu-
ment popularity, temporal locality, embedded reference
count, OFF times, and session lengths. The �le size
model was enhanced for this study in order to model
Web objects more accurately. The enhancement con-
sisted of separating the �les into three categories: base
�les, embedded �les and single �les. Base �les refer to
HTML �les which contain embedded �les. Embedded
�les refer to �les which are referenced by base �les. Sin-
gle �les are �les which are neither base nor embedded.
A session length model was added so that persistent
connections could be investigated. A session refers to
the number of page requests a client will make before
it closes a persistent connection. The model we used
was proposed in [16]. The nature of the distributional
models in Surge are one reason why our results di�er
from some previously reported results. In particular,
our model for object sizes is signi�cantly di�erent from
the model used in [14]. The basic con�guration param-
eters used in Surge were the same as those used in
[7].

Our experiments were conducted in an environment
consisting of three PC's connected via a 100Mbps net-

work. This was a stand alone local area network with no
intervening external tra�c. The PC's were con�gured
with 200Mhz Pentium Pro CPU's with 128MB of RAM
on the two Surge client systems and between 32MB
and 256MB of RAM on the server system. The Surge
client systems ran Linux 2.0.30. The server ran either
Apache v1.3.0 on Linux 2.0.30, or Microsoft IIS v4.0
Windows NT Server 4.0. These servers were selected
because of their popularity [27] and because they are
based on a di�erent implementation models. Apache
creates a separate process for each HTTP connection,
while IIS uses a lighter weight threaded model which
requires less system resources for each HTTP connec-
tion. The con�gurations for each of the servers were
taken from [24] and [15].

We measured the average throughput on the server
system in terms of HTTP GET operations initiated per
second. On the Surge client systems we measured the
average latency for each HTTP GET. Detailed perfor-
mance measurements of the servers were taken using
Webmonitor (under Linux) [2], and PerfMon (under
NT) with samples taken once per second during tests.
When packet traces were taken, tcpdump [33] was run
on the client systems.

Each experiment exercised the server over a range
of loads between 20 and 640 UE's. The heavy load
test levels were able to push the server into an overload
state. Each experiment was run for ten minutes which
was a su�cient amount of time to stabilize the subse-
quent measurements. Surge was con�gured with 2000
unique �les, resulting in about 50MB of data on the
server. Tabular results in Section 4 are given for low
(40 UE) and high (520 UE) load levels; medium load
level results are given in [8].

Experiments were divided into three groups. The
�rst set measures and compares the details of the
network e�ects of each protocol using TCP packet
traces. It is important to note that the development
of HTTP/1.1 was based on the assumption of delays
in a wide area network. In that environment, round
trip times between clients and server can be long (hun-
dreds of milliseconds). Our tests were run in a local
area environment which means that �le transfer times
and connection durations tend to be much shorter on
average.

The second set of experiments compares the perfor-
mance of HTTP/1.0 and HTTP/1.1 when the server's
CPU is the bottleneck. We increased the amount of
memory on the server by powers of two until the mea-
sured performance did not change. Once this thresh-
old size was determined, we took detailed system per-
formance measurements using Webmonitor and Perf-
mon to verify that the CPU was the system bottleneck.
The list of system characteristics which were tracked
are given in Table 1. In these experiments we measure

Abbr Webmonitor Value Perfmon Value

USR % CPU server processes % CPU server processes
KER % CPU kernel processes % CPU kernel processes
IDL % CPU idle process % CPU idle process

PGR Pages read from disk Pages read from disk
PGW Pages written to disk Pages written to disk

TPS TCP packets sent N/A
TPR TCP packets received N/A

BYS N/A Bytes sent by server
BYR N/A Bytes received by server

Table 1: Detailed PerformanceMeasurement Categories

performance at three di�erent load levels (low, medium
and high).

The third set of experiments was designed to ex-
plore the performance di�erences between HTTP/1.0
and HTTP/1.1 when the disk system was the bottle-
neck resource on the server. To create a bottleneck at
the disk, it su�ces to reduce the amount of RAM avail-
able. This forces paging under heavy load since not all
data �les can be cached in main memory. In these ex-
periments, we measure the latency and throughput for
both Apache and IIS when memory size ranges between
32MB and 256MB. In each case the server is driven to
overload.

4 Experimental Results

4.1 Network Performance

Our �rst set of experiments compares the network de-
mands of HTTP/1.0 and HTTP/1.1. In order to un-
derstand the e�ects of both persistent connections and
pipelining we capture traces of all packets transferred
during tests. The network e�ects of persistent connec-
tions and pipelining can be expressed in terms of their
impact on the quantity of each type of packet (SYN,
FIN, ACK, DATA) sent during the test. Figure 1 shows
the relative di�erences under three di�erent client loads.
The �gure shows that there is a signi�cant reduction in
the number of SYN, FIN and ACK packets between
HTTP/1.0 and HTTP/1.1 reecting the bene�t of per-
sistent connections. However, the �gure also shows that
there is only a small change in the number of DATA
packets transferred during tests. This is important be-
cause SYN, FIN and ACK packets are typically small
in size when compared to DATA packets thus the to-
tal byte tra�c is not greatly a�ected by the change in
protocol. This is shown quantitatively in the �rst four
rows of Table 2.

Evaluation of the e�ects of pipelining can also be
seen in Table 2. The last row in the table shows that
the average number of data bytes per packet remains

HTTP/1.0 HTTP/1.1 No Pipe HTTP/1.1

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

DATA
 ACK
SYN
 FIN

HTTP/1.0 HTTP/1.1 No Pipe HTTP/1.1

0
5*

10
^5

10
^6

DATA
 ACK
SYN
 FIN

Figure 1: Counts of the total number of packets trans-
ferred of each type for 40 UE load (left) and 520 UE
load (right) in Apache v1.3.0 and 128MB

relatively constant across loads and protocols, indicat-
ing that there is no signi�cant impact due to pipelining.
This result di�ers from results reported by Nielsen et al.

[14]. This di�erence is due to the distributional model
for Web object sizes used in our experiments. Object
sizes in our study are based on an empirically derived
model with a mean of 3.3 �les per object and a me-
dian of 1.0 �le per object. The object transferred in
the Nielsen et al. study was composed of 43 �les. We
consider this size to be much larger than what is seen
in typical Web objects. A similar observation is made
in [19].

As we show in the next section, there is very
little performance di�erence between HTTP/1.0 and
HTTP/1.1 in the absence of a bottleneck in the disk.
However, these results may be due to the use of a LAN
for testing. Performance in a WAN would be strongly
a�ected by the value of the server's congestion window1

[17]. For this reason, we examined how the TCP con-
gestion window (CWND) size di�ered between the two
protocols. In the absence of congestion in the network,
persistent connections should enable the server to avoid
TCP slow start for successive �le transfers by keeping
CWND large. This means that HTTP/1.1 should be
more e�cient in using available network bandwidth. In
the presence of congestion in the network, persistent
connections should more consistently keep CWND in
its congestion avoidance mode. This means HTTP/1.1
should be more e�cient when network bandwidth is lim-
ited as well.

We tracked the CWND size with an instrumented
version of Linux 2.0.30. The modi�cations of Linux
simply made the CWND size for each active TCP con-
nection available for sampling. The mean (per second)
and maximum CWND sizes under low and high client

1The TCP congestion window (CWND) is a means for throttling
the ow of TCP packets in the presence of network congestion. The
size of CWND begins small but grows exponentially as ACK's are
received until a threshold size is reached. This mode of operation
is called slow start. Slow start keeps the initial packet sending rate
low in order to avoid saturating the network. Beyond the slow start
threshold, CWND enters its congestion avoidance mode where it
grows linearly. CWND will grow in either mode until a packet loss is
detected. When a packet is lost, CWND size is dramatically reduced
in order to ease network congestion.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
Congestion Window Size

HTTP/1.0
HTTP/1.1 No Pipelining

HTTP/1.1 Pipelining

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
Congestion Window Size

HTTP/1.0
HTTP/1.1 No Pipelining

HTTP/1.1 Pipelining

Figure 2: Cumulative Distribution Function plots of
congestion window sizes for 40 UE load (left) and 520
UE load (right)in Apache v1.3.0 and 128MB

loads are given in Table 2. The table shows that the
CWND size is much larger on average in HTTP/1.1
which should have a bene�cial e�ect on latency reduc-
tion in the wide area. In the switched 100Mbps local
area environment in which the tests are run, there is no
packet loss due to congestion. Thus, CWND will typi-
cally grow exponentially through the slow start thresh-
old and then grow linearly until the connection is closed.

The distribution of CWND sizes under each protocol
and load level can be seen in the cumulative distribu-
tion function (CDF) plots in Figure 2. The plots il-
lustrate that there is relatively little di�erence between
pipelined and non-pipelined HTTP/1.1 but a signi�-
cant di�erence between HTTP/1.0 and HTTP/1.1. The
plots show that under heavy load, nearly 80% of all
HTTP/1.0 connections have a CWND size of 1 or 2
which means that most of the connections have just
opened and have not yet gone through slow start. The
plots also show that over 50% of the HTTP/1.1 have a
CWND size above 7 indicating that in a WAN, much
higher average transfer rates should be achievable under
HTTP/1.1.

4.2 CPU Constrained Performance

In this section we examine the case in which the CPU
is the bottleneck in the system's performance. We ran
performance tests with the server con�gured with su�-
cient RAM to contain the Web server, operating system
and all data �les in main memory. Our test �le set con-
sists of approximately 50MB of data; Apache on Linux
2.0.30 uses approximately 14MB while IIS on NT 4.0
uses approximately 30MB. The server for this set of ex-
periments was con�gured with 128MB of memory.

Performance monitoring data gives us better insight
into the details of system utilization in this con�gu-
ration. The performance monitors enable us to track
the low level system components on the servers that
are listed in Table 1. The results of the detailed sys-
tem performance measurements for Apache and IIS are
given in Tables 3 and 4 respectively. Each test was run
with a warm �le cache, meaning that each test was run
twice and measurements were taken during the second

Type HTTP/1.0 HTTP/1.1 No Pipelining HTTP/1.1 Pipelining
40 UE 520 UE 40 UE 520 UE 40 UE 520 UE

Data Packets 0.107 1.327 0.101 1.330 0.099 1.308
Total Packets 0.201 2.571 0.134 1.784 0.133 1.784

Total Data Bytes 128.2 1,602.9 119.0 1,607.4 118.6 1,608.7
Total Bytes 136.2 1,705.7 124.4 1,678.8 123.9 1,680.0

Data Byts/Data Pkts 1,197 1,207 1,180 1,208 1,198 1,229

CWND Average 5.79 3.81 10.48 9.28 11.04 9.72
CWND Max 29 99 68 150 106 141

Table 2: Packet Counts, Byte Counts (in millions of packets or bytes) and Congestion window sizes (in TCP
segments) for Apache v1.3.0 with 128MB RAM

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t (

G
E

T
S

/s
ec

on
d)

Number of User Equivalents

HTTP/1.0
HTTP/1.1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500 600 700

La
te

nc
y

(s
ec

on
ds

)

Number of User Equivalents

HTTP/1.0
HTTP/1.1

Figure 3: Throughput (left) and latency (right) for
Apache v1.3.0 with 128MB memory

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t (

G
E

T
S

/s
ec

on
d)

Number of User Equivalents

HTTP/1.0
HTTP/1.1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500 600 700

La
te

nc
y

(s
ec

on
ds

)

Number of User Equivalents

HTTP/1.0
HTTP/1.1

Figure 4: Throughput (left) and latency (right) for IIS
v4.0 with 128MB memory

test. This gives a clearer picture of the steady state op-
eration of the server under each of the loads. The disk
activity data shows that there is virtually no paging
taking place during tests (except for writing, which is
due to server log �le generation) indicating that the disk
system is not the bottleneck during tests. The network
activity data shows a mean transfer rate of approxi-
mately 22Mbps for Apache and 25Mbps for IIS. These
are well below the 100Mbps capacity of the network in-
dicating that the network is not a signi�cant bottleneck
during tests. Furthermore, the very low CPU percent
idle times indicate that the CPU is the limiting resource
under the 520 UE load. For loads above 520 UE's CPU
idle times reduce even further.

Performance results are shown over a range of client
loads in Figure 3 for Apache and Figure 4 for IIS.
The graphs indicate that for the Apache server, per-

Value HTTP/1.0 HTTP/1.1
40 UE 520 UE 40 UE 520 UE

USR 1.66 27.15 1.33 20.84
KER 7.89 69.96 6.90 72.02
IDL 90.45 2.89 91.77 7.14

PGR 0.00 0.01 0.02 0.02
PGW 11.16 48.93 12.44 46.38

TPS 233 3,515 188 2,135
TPR 125 1,745 66 710

Table 3: Detailed Performance Measurements for
Apache v1.3.0 with 128MB RAM

Value HTTP/1.0 HTTP/1.1
40 UE 520 UE 40 UE 520 UE

USR 1.07 7.32 1.10 7.59
KER 6.77 78.26 6.46 80.92
IDL 92.16 14.42 92.44 11.49

PGR 0.00 0.00 0.00 0.00
PGW 0.00 0.00 0.00 0.00

BYS 232K 2,967K 230K 3,177K
BYR 1,045 12,332 1,362 16,769

Table 4: Detailed Performance Measurements for
IIS/NT with 128MB RAM

formance does not vary greatly between HTTP/1.0 and
HTTP/1.1, and that for the IIS server, performance
under HTTP/1.1 is only slightly better than under
HTTP/1.0. These results show that the new features
added to HTTP/1.1 do not signi�cantly reduce the
server's CPU processing load per byte transferred.

4.3 Disk Constrained Performance

As the amount of RAM on the server is reduced to a
level where paging of data �les becomes necessary, the
disk system becomes the bottleneck in the system. The

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t (

G
E

T
S

/s
ec

on
d)

Number of User Equivalents

32MB
48MB
64MB

128MB
256MB

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t (

G
E

T
S

/s
ec

on
d)

Number of User Equivalents

32MB
48MB
64MB

128MB
256MB

Figure 5: Throughput for Apache v1.3.0 under
HTTP/1.0 (left) and HTTP/1.1 (right)

e�ects on server throughput are shown over a range of
memory con�gurations and client loads for Apache and
IIS under both HTTP/1.0 and HTTP/1.1 in Figures 5
and 6. The graphs show that performance degrades dra-
matically when memory on the server is limited. While
this by itself may not be surprising, what is particu-
larly interesting is that the degradation of performance
is much more pronounced under HTTP/1.1 than under
HTTP/1.0. The e�ects on latency for the same experi-
ments are given in [8].

4.3.1 Memory Use and TCP Connections

The di�erences in performance between HTTP/1.0 and
HTTP/1.1 when the disk system is the constraining re-
source can be understood through more detailed mea-
surements of memory use. We measured the amount
of memory used and the number of TCP connec-
tions in the ESTABLISHED state1 for HTTP/1.0 and
HTTP/1.1 on Apache under a range of low loads. (We
attempted to take the same measurement for IIS how-
ever, due to NT's methods of memory allocation, this
was not possible.) We �t a least squares line to the
points to determine the per connection memory use.
The results on the left side of Figure 7 show the per
connection memory cost under HTTP/1.0 to be approx-
imately 378KB, while the plot on the right side of of
Figure 7 shows the per connection memory cost under
HTTP/1.1 to be about 81KB. These �gures indicate
that the memory needed by a connection in Apache
is large; for an active connection (i.e., an HTTP/1.0
connection) the memory demand is four times higher
than for a mostly-idle connection (i.e., an HTTP/1.1
connection). A case is made in [25] that a risk of
HTTP/1.0 is that the number of connections in the
TIME WAIT state can become large and consume ad-
ditional server resources. This has been addressed in
Apache 1.3 through the use of lingering close which, in
the absence of errors, virtually eliminates connections
in the TIME WAIT state.

1A TCP connection is in the ESTABLISHED state after the three
way packet exchange which sets up a connection has been completed
and before a connection has been closed. Data can be transferred in
either direction when a connection is in the ESTABLISHED state.

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t (

G
E

T
S

/s
ec

on
d)

Number of User Equivalents

48MB
64MB

128MB
256MB

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t (

G
E

T
S

/s
ec

on
d)

Number of User Equivalents

48MB
64MB

128MB
256MB

Figure 6: Throughput for IIS v4.0 under HTTP/1.0
(left) and HTTP/1.1 (right)

600000

650000

700000

750000

800000

850000

900000

950000

1e+06

1.05e+06

1.1e+06

0.2 0.4 0.6 0.8 1 1.2 1.4

M
em

or
y

U
se

 (
B

yt
es

)

Average Number of TCP Connections

378681.4 * x + 564769.5

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

1.1e+07

1.2e+07

20 40 60 80 100 120

M
em

or
y

U
se

 (
B

yt
es

)

Average Number of TCP Connections

81259.3 * x + 822544.8

Figure 7: Memory use per TCP connection for
HTTP/1.0 (left) and HTTP/1.1 (right) for Apache
v1.3.0 and 128MB

These results are signi�cant because when main
memory is full, creating a new HTTP connection will
require that data �les be paged from memory; subse-
quent requests for these �les will no longer hit in the
cache and will require disk I/O. The mean �le size for
our data set was 26KB, and the median was 3KB. In
the case of HTTP/1.1, this means that when memory
is full, about 3 �les on average must be paged out of
memory in order to accommodate a new connection |
and in the common case (�les of median size or less),
25 �les or more may be evicted in order to create a new
connection.

While these results show that Apache uses a large
amount of memory per connection, obtaining corre-
sponding results for the IIS server is more di�cult (be-
cause precise memory allocation measurements in Win-
dows NT are hard to obtain from the Perfmon tool).
However, our initial investigations indicate that IIS
uses less memory per connection, perhaps because of
its thread-based implementation. This helps to explain
why the performance degradation under HTTP/1.1 as
compared to HTTP/1.0 is less pronounced in the IIS
server (Figure 6).

Since connection e�ects are so important, we mea-
sured the number of TCP connections made under each
protocol. Table 5 shows these measurements under
three di�erent load levels. The second line in the ta-
ble shows the mean number of TCP connections in the
ESTABLISHED state. This shows that there are many
more TCP connections made in HTTP/1.0 but that
they are very short lived on average. The third line in

the table, average connection duration, highlights the
e�ect of persistent connections. Connection duration
for HTTP/1.0 is simply the average �le transfer la-
tency, but connection duration for HTTP/1.1 includes
both �le transfer latency and idle (\OFF") periods. The
table shows that connection duration in HTTP/1.1 is
dominated by the OFF periods. The last line in the
table is the product of lines one and three. It is the to-
tal number of connection seconds during the test. The
connection seconds for HTTP/1.0 represent demands to
transfer data, while this value for HTTP/1.1 includes
open but idle connections. The ratio of these two values
shows that for high loads, HTTP/1.1 can place more
than 20 times the connection load on the server that
HTTP/1.0 does.

The per connection cost can also explored by con�g-
uring Surge clients to open multiple connections per
UE. The results of tests which open two connections
per client suggest that multiple connections per client
can have a negative impact on server performance. The
details of these tests are given in [8].

4.4 HTTP/1.1 Connection Management

Analysis of the low utilization of most connections un-
der HTTP/1.1 leads us to conclude that when a server
is constrained by its disk system, the relative bene�t of
keeping connections open across successive Web object
transfers is much smaller than the bene�t of keeping the
connection open during the transfer of a single object.
Thus, an e�ective policy for managing connections may
be to keep the persistent, pipelined connection open for
the transfer of a Web object but to close the connec-
tion after each web object transfer. This enhancement
is similar to the GETALL construct proposed in [30].
GETALL is a request sent by the client in which the
server responds by sending an entire Web object. In
our policy, the client simply closes the connection after
each GETALL. We call this policy early close.

If we consider that there are F �les per object and N
objects requested during a browsing session to a single
server, then the e�ects of each protocol are as follows:

� HTTP/1.0 will make F �N connections per client
which are only open during the transfer of each
�le,

� HTTP/1.1 with early close will make N connec-
tions per client which are only open during the
transfer of each Web object,

� Typical HTTP/1.1 will maintain 1 connection per
client (note: servers are typically con�gured with a
timeout on persistent connections, thus 1 connec-
tion per client is the best possible case), which is
open during Web object transfers and OFF times.

0

50

100

150

200

0 50 100 150 200 250 300 350 400 450

T
hr

ou
gh

pu
t (

G
E

T
S

/s
ec

on
ds

)

Number of User Equivalents

HTTP/1.0
HTTP/1.1

HTTP/1.1 EC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400 450

La
te

nc
y

(s
ec

on
ds

)

Number of User Equivalents

HTTP/1.0
HTTP/1.1

HTTP/1.1 EC

Figure 8: Throughput (left) and latency (right) for
Apache v1.3.0 with 32MB memory and HTTP/1.1 with
early close (EC)

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

T
hr

ou
gh

pu
t (

G
E

T
S

/s
ec

on
ds

)

Number of User Equivalents

HTTP/1.0
HTTP/1.1

HTTP/1.1 EC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300 400 500 600 700

La
te

nc
y

(s
ec

on
ds

)

Number of User Equivalents

HTTP/1.0
HTTP/1.1

HTTP/1.1 EC

Figure 9: Throughput (left) and latency (right) for
Apache v1.3.0 with 128MB memory and HTTP/1.1
with early close (EC)

We expect that HTTP/1.1 with early close should
perform somewhere between HTTP/1.0 and standard
HTTP/1.1 in terms of server throughput and network
e�ciency. The performance results of HTTP/1.1 with
early close can be seen in Figures 8 and 9 for Apache
under 32MB and 128MBmemory con�gurations. In our
tests, the clients have knowledge of Web object con�gu-
rations and close connections after requesting the �nal
�le in an object. The �gures show that HTTP/1.1 with
early close actually performs as well as HTTP/1.0 in
terms of throughput in either con�guration and much
better than standard HTTP/1.1 in the disk constrained
test.

The drawback of HTTP/1.1 with early close is that
closing connections between Web object transfers will
increase network tra�c due to the extra connection
startups. Details of the impact of HTTP/1.1 with early
close on the network are given in Table 6. From this
we can see that HTTP/1.1 with early close roughly
falls in between HTTP/1.0 and standard HTTP/1.1 in
terms of total connections opened during tests and that
only 17% more packets are transferred versus standard
HTTP/1.1. Details of the counts for each type of packet
are compared in Figure 10. This �gure again shows
that HTTP/1.1 with early close falls roughly between
HTTP/1.0 and standard HTTP/1.1 as expected.

HTTP/1.0 HTTP/1.1
40 UE 520 UE 40 UE 520 UE

Total Connects 10,902 153,231 2,278 26,456
Average ESTABLISHED Connections 0.16 23.82 35.41 398.05
Average Connection Duration (sec) 0.02 0.12 13.02 15.59
Connect Seconds 218 18,388 29,659 412,449

Table 5: TCP Connection Measurements for Apache v1.3.0 with 128MB RAM

Type HTTP/1.0 HTTP/1.1 Pipelining HTTP/1.1 early close
40 UE 520 UE 40 UE 520 UE 40 UE 520 UE

Total Connects 10,902 153,231 2,278 26,456 7,876 96,776

CWND Average 5.79 3.81 11.04 9.72 4.87 4.39
CWND Max 29 99 106 141 35 182

Data Packets 0.107 1.327 0.099 1.309 0.105 1.220
Total Packets 0.201 2.571 0.133 1.784 0.176 2.089

Total Data Bytes 128.2 1,602.9 118.6 1,608.7 127.3 1,493.6
Total Bytes 136.2 1,705.7 123.9 1,680.0 134.3 1,577.1
Data Byts/Data Pkt 1,197 1,207 1,198 1,229 1,210 1,224

Table 6: Network impact and Packet/Byte Counts (in millions) for HTTP/1.1 with early close on Apache v1.3.0
with 128MB RAM

HTTP/1.0 HTTP/1.1 HTTP/1.1 early close

0
5*

10
^5

10
^6

DATA
 ACK
SYN
 FIN

Figure 10: Counts of the total number of packets trans-
ferred of each type for 520 UE load in Apache v1.3.0
and 128MB using HTTP/1.1 with early close

5 Conclusions

In this paper we have measured and compared the rel-
ative performance impact of HTTP/1.0 and HTTP/1.1
in terms of both transfer latency and �le throughput
for two popular Web servers. We conducted our exper-
iments in a LAN using the Surge workload generator.
We measured the network demands of each protocol
by taking packet traces during tests, and used detailed
performance monitoring to understand the the server
demands.

Our study is limited to performance e�ects that oc-
cur in a LAN in which round trip times are short and
packet loss is rare. For that reason we do not ob-
serve some performance improvements of HTTP/1.1
that would occur in a wide area network setting. How-
ever, we do measure quantities such as the server con-

gestion window that help us infer how HTTP/1.1 per-
forms in a wide area setting.

Our measurements con�rm and quantify the degree
to which HTTP/1.1 reduces network load compared to
HTTP/1.0. We show that the persistent connection fea-
ture of HTTP/1.1 lowers the number of SYN, FIN and
ACK packets transferred signi�cantly. Our measure-
ments of server congestion window size indicate that
HTTP/1.1 should enable more e�cient utilization of
network bandwidth in the wide area. On the other
hand, our measurements of the number of data packets
transferred and the number of data bytes per packet
indicate that the pipelining feature of HTTP/1.1 has
very little impact on the network. Our measurements
indicate that pipelining does not signi�cantly reduce �le
transfer latency which di�ers from previously reported
results in [14]. This di�erence can be traced to the
shorter round trip times in a LAN environment and the
smaller Web object size used in our study.

We show that there is relatively little di�erence in
performance between HTTP/1.0 and HTTP/1.1 when
the CPU is the bottleneck in the system. These results
show that the new features added to HTTP/1.1 do not
signi�cantly reduce the server's CPU processing load
per byte transferred.

We conducted experiments in which we forced the
disk system to become the bottleneck. We �nd that
when there is insu�cient RAM to accommodate the en-
tire data �le set, that performance using HTTP/1.1 can
be much worse than HTTP/1.0. This is because when

using persistent connections, there are many more open
connections on average on the server. We show that per
connection memory cost can be as high as 81KB per
connection on Apache v1.3.0 which means that paging
is more likely to occur in HTTP/1.1 when memory is
limited. We show that multiple connections per client
causes server throughput to degrade compared to a sin-
gle connection per client.

Our observation of the underutilization of persis-
tent connections in HTTP/1.1 leads us to propose a
connection management policy. This policy, which we
call early close, closes connections at the end of a Web
object transfer. The intention of early close is to in-
crease server throughput, while maintaining the ben-
e�cial network e�ects of persistent connections, when
the disk system is the bottleneck. We measure the
e�ect of the early close policy by having clients close
their HTTP connections after the transfer of each Web
object. Our measurements show that early close gen-
erates approximately 17% more network packet tra�c
than standard HTTP/1.1. However, our measurements
show that when the disk system is the bottleneck, server
throughput is greatly increased by using early close.

Acknowledgements The authors of this paper would
like to thank Robert Frangioso for help with the set-up
and con�guration of the Microsoft NT/IIS environment.
The authors would like to thank David Martin for his
help with Linux, Webmonitor and Apache. The authors
would also like to thank Virg��lio Almeida for making
Webmonitor available to us.

References

[1] WebBench 2.0. http://www.zdnet.com/zdbop/webbench/
webbench.html.

[2] Jussara Almeida, Virgilio Almeida, and David Yates. Measur-
ing the behavior of a world wide web server. In Proceedings of
the Seventh IFIP Conference on High Performance Network-
ing (HPN), White Plains, NY, April 1997.

[3] Virgilio Almeida, Azer Bestavros, Mark Crovella, and Adriana
de Oliveira. Characterizing reference locality in the WWW. In
Proceedings of 1996 International Conference on Parallel and
Distributed Information Systems (PDIS '96), pages 92{103,
December 1996.

[4] Martin Arlitt and Cary Williamson. Web server workload char-
acterization: The search for invariants. In Proceeding of the
ACM SIGMETRICS '96 Conference, Philadelphia, PA, April
1996.

[5] Gaurav Banga and Peter Druschel. Measuring the capacity of a
web server. In Proceedings of the USENIX Annual Technical
Conference, Monterey, CA, December 1997.

[6] Gaurav Banga and Je�rey Mogul. Scalable kernel performance
for internet servers under realistic loads. In Proceedings of the
USENIX Annual Technical Conference, New Orleans, LA, June
1998.

[7] Paul Barford and Mark Crovella. Generating representative
workloads for network and server performance evaluation. In
Proceedings of ACM SIGMETRICS '98, pages 151{160, Madi-
son, WI, June 1998.

[8] Paul Barford and Mark Crovella. A performance evaluation of
hyper text transfer protocols (long version). Technical Report
BU-TR-98-016, Computer Science Department, Boston Univer-
sity, 1998.

[9] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer
protocol { HTTP/1.0. IETF RFC 1945, October 1995.

[10] Stephen Cheng, Kevin Lai, and Mary Baker. Analysis of
HTTP/1.1 on a Wireless Network. Technical report, Stanford
University, 1998.

[11] HTTP Client. http://www.innovation.ch/java/HTTPClient/.

[12] The Standard Performance Evaluation Corporation. Specweb96.
http://www.specbench.org/org/web96/, 1997.

[13] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-
Lee. Hypertext transfer protocol { HTTP/1.1. IETF RFC 2068,
January 1997.

[14] H. Frystyk-Nielsen, J. Gettys, A. Baird-Smith,
E. Prud'hommeaux, H. Wium-Lie, and C. Lilley. Network
performance e�ects of HTTP/1.1, CSS1 and PNG. In Pro-
ceedings of ACM SIGCOMM '97, Cannes, France, September
1997.

[15] Apache HTTP Server Project highperformance.conf.
http://www.apache.org, 1998.

[16] Bernardo Huberman, Peter Pirolli, James Pitkow, and Rajan
Lukose. Strong regularities in world wide web sur�ng. Science,
280:95{97, 1998.

[17] Van Jacobson. Congestion avoidance and control. In Proceedings
of ACM SIGCOMM '88, pages 314{329, August 1988.

[18] T.T. Kwan, R.E. McGrath, and D.A. Reed. User access patterns
to NCSA's WWW server. Technical Report UIUCDCS-R-95-
1934, University of Illinois, Department of Computer Science,
February 1995.

[19] Binzhang Liu and Edward Fox. Web tra�c latency: Character-
istics and implications. In WebNet98, Orlando, FL, November
1998.

[20] C. Maltzahn, K. Richardson, and D. Grunwald. Performance
issues of enterprise level web proxies. In Proceedings of ACM
SIGMETRICS '97, Seattle, WA, June 1997.

[21] S. Manley, M.Courage, and M. Seltzer. A self-scaling and self-
con�guring benchmark for web servers. Harvard University,
1997.

[22] Stephen Manley and Margo Seltzer. Web facts and fantasy. In
Proceedings of the 1997 USENIX Symposium on Internet Tech-
nologies and Systems, Monterey, CA, December 1997.

[23] Robert McGrath. Measuring the performance of http dae-
mons. http://www.ncsa.uiuc.edu/InformationServers/ Perfor-
mance/Benchmarking/bench.html, 1996.

[24] Mindcraft. WebServer Comparison: Microsoft Windows NT
Server 4.0 on a Compaq ProLiant 3000 and Sun Solaris 2.6
with Sun WebServer 1.0 on a Sun Ultra Enterprise 450.
http://www.mindcraft.com/whitepapers/.

[25] Je�rey Mogul. The case for persistent-connection HTTP. Tech-
nical Report WRL 95/4, DEC Western Research Laboratory,
Palo Alto, CA, 1995.

[26] Je�rey Mogul. Network behavior of a busy web server and its
clients. Technical Report WRL 95/5, DEC Western Research
Laboratory, Palo Alto, CA, 1995.

[27] Netcraft. Netcraft web server survey.
http://www.netcraft.co.uk/, August 1998.

[28] Henrik Frystyk Nielsen. Libwww. http://www.w3.org/Library/.

[29] University of Minnesota. Gstone version 1.
http://web66.coled.umn.edu/gstone/info.html.

[30] Venkat Padmanabhan and Je�rey Mogul. Improving HTTP la-
tency. Computer Networks and ISDN Systems, 28:25{35, De-
cember 1995.

[31] Vivek Pai, Peter Druschel, and Willy Zwaenepoel. IO-Lite: A
Uni�ed I/O Bu�ering and Caching System. In Usenix Sympo-
sium on Operating Systems Design and Implementation, New
Orleans, LA, February 1999.

[32] Vern Paxson. End-to-end internet packet dynamics. In Pro-
ceedings of ACM SIGCOMM '97, Cannes, France, September
1997.

[33] tcpdump. http://ftp.ee.lbl.gov/tcpdump.tar.Z.

[34] Gene Trent and Mark Sake. Webstone: The �rst generation
in http server benchmarking, February 1995. Silicon Graphics
White Paper.

[35] WebCompare. http://webcompare.iworld.com/.

[36] Webjamma. http://www.cs.vt.edu/~chitra/webjamma.html.

