
.

.

eory of Computation
Freely using various textbooks, mainly the one by Sipser

Péter Gács

Computer Science Department
Boston University

Spring 2013

It is best not to print these slides, but rather to download them
frequently, since they will probably evolve during the semester.

e class structure

See the course homepage.
In the notes, section numbers and titles generally refer to the book:
Sipser: Introduction to the eory of Computation.

Some history
Computability

Hilbert, 1900 posed the problem of finding an algorithm to decide
the solvability of Diophantine equations. By 1970, it was proved
that there is no such algorithm. Hilbert could not ask for a
negative result, since there was no mathematical definition of
algorithm in 1900.

Gödel, 1931 arithmetized logic. is made possible to build, on the
paern of the paradox “I am a liar”, a sentence saying “I am not
provable”.
His constructions formed the basis of the theory of computable
functions.

Church and Turing (1936-37) proposed a formal notion of algorithm,
and proved that some problems are unsolvable by algorithms.
For example, deciding whether a certain statement of (first
order) logic has a proof.

Complexity of computations

von Neumann, Eckert, Mauchly, 1947 constructed the first
stored-program computer, the Eniac.

Shannon, 1952 showed that most Boolean functions need almost as
large circuits to compute them as the table defining them.

Karatsuba, 1958 showed that numbers can be multiplied faster than
learned in school.

Cook, Levin, Karp 1971 introduced NP-completeness theory.
Hellman, Rivest, Shamir, Adleman, 1978 public-key cryptography.
Yao, Blum, Micali, Rakoff 1985 pseudorandomness, interactive

proofs.

Notation for languages

Alphabet, string, length | · |, binary alphabet.
Empty string e .
Set Σ∗ of all strings in alphabet Σ.
Lexicographical enumeration.

Elementary encodings, cardinality

Machines can only handle strings. Other objects (numbers, tuples)
will be encoded into strings in some standard way.
.

.

Example Let 0, 1 ∈ Σ, then we can encode each element (u ,v) of
Σ∗ × Σ∗ as

⟨u ,v⟩ = 0 |u |1uv .

For example, ⟨0110, 10⟩ = 00001011010.

So a pair (an abstract concept) is represented by a string (which is
more concrete).
Similarly, for a natural number x , we may denote by ⟨x⟩ its binary
representation, and for natural numbers a,b, the string ⟨a,b⟩ is some
string encoding of the pair (a,b), for example ⟨a,b⟩ = ⟨⟨a⟩, ⟨b⟩⟩.
Triples, quadruples, are handled similarly: {a,b , c} = ⟨⟨a,b⟩, c⟩.
Even, finite sequences of natural numbers.

A relation viewed as a set of pairs. Encoding it as a language.
.

.

Example Encoding the relation

{ (x ,y) ∈ N2 : x divides y }

as a language

{ ⟨x ,y⟩ ∈ {0, 1}∗ : x ,y ∈ N, x divides y }.

Encoding a function over strings or natural numbers: first, its graph
as a relation, then this relation as a language.

Cardinality e cardinality of the set of all languages: see later.

Turing machines

In real life, we work on very complex computers, and write programs
to implement our algorithms. For theory, we do not need very
complex machines: it is more important is to understand completely,
how they work. At the beginning, instead of always working on one
and the same machine and just writing different programs, we will
devise a different machine for each task.

Basic definitions

We need:

(state, memory, an observed memory position)

is is a configuration of the machine. Defining a machine means
telling how it “works”: how it changes its configuration in each clock
cycle. e machine is as simple as possible, so

the memory is just a string of symbols (a tape)
the change in one clock cycle will be local, as described by the
transition function δ() below.

Schematic view

q

1 0 r x a b z 2 1 1

Configuration: uqv where u = 10rx , v = abz211.
Suppose δ(q, a) = (q′, a′,d), then uqv yields u ′q′v ′.
If d = −1 then u ′ = 10r , v ′ = xa′bz211.
If d = 1 then u ′ = 10rxa′, v ′ = bz211.

More precisely:

M = (Q ,Σ ⊆ Γ, δ ,qstart ∈ Q , F ⊂ Q).

Q = set of states, F is the set of final states.
Σ = set of tape symbols, NOT containing blank symbol ⊔.
Γ = tape alphabet containing Σ and ⊔.
Head for reading and writing on the one-sided tape.
δ(): δ(q, a) = (q′,b ,d) where d ∈ {−1, 0, 1}.
Configuration uqv .
Yielding: e meaning of uqv yields u ′q′v ′ .
e Sipser book writes qstart = q0, F = {q0 ,q1}, and d ∈ {L, R}: these
are unimportant variations of the definition.

Example transition table

e action of this machine is to insert the last element of the input
0-1 string at its beginning. Here, x ,y ∈ {0, 1}. e state set is
{q0 ,q1 , r , r0 , r1 , l0 , l1}.

q a q′ a′ d

q0 ␣ r ␣ 1

r x rx ␣ 1

rx y ry x 1

rx ␣ lx ␣ −1
lx y lx y −1
lx ␣ q1 x −1

Example diagram

q0 q1r

r0

r1

l0

l1

t ! t, 1
1! t, 1

0! t, 1

1! 1, 1

0! 1, 1 1! 0, 1

t ! t,�1

t ! t,�1

0! 0,�1
1! 1,�1

0! 0,�1
1! 1,�10! 0, 1

t ! 1,�1

t ! 0,�1

Diagram illustrating the above transition table.

Computing with a Turing machine

Input and output conventions:
Input-output content: the string of Σ∗ at the beginning of the tape,

aer a starting blank cell at the le end (different from Sipser)
Start configuration: head at tape start, else nothing but the

input-output content.
Computing a function: For machine M , M(x) is the output content

on input content x . M : Σ∗ → Σ∗. We writeM(x) = ∞ ifM does
not halt on input x .

Two input arguments: M(x ,y) = M(⟨x ,y⟩).
Accepting a language: the set of those strings x with M(x) = 1 is

denoted by L(M), and is called the language accepted by M .
(Sipser: halting in qacc.) We say M recognizes L(M).

Deciding versus recognizing. Turing-recognizable and
Turing-decidable languages. (In some other texts, what we call
“recognizing” is called “accepting”.)

Examples of Turing machines

Machine M2 recognizing A = { 02n : n ⩾ 0 }. See the Sipser book.

Designing a Turing machine
Fields of a tape symbol

We introduce a machine language for Turing machines. e Sipser
book uses the language of state diagrams, but I prefer a language
more similar to the machine language of a real computer.
Imagine the tape symbols as being records, (objects or structures) in
a programming language. So each symbol of the set Γ can consist of
several parts called fields (tracks of the tape).
For example, the first field of a, called a.io, the input-output field, can
be an element of Σ = {0, 1}. e other, the mark field: a.m an
element of {◦, •}, so

Γ = Σ × {◦, •} = {(0, ◦), (0, •), (0,⊥), (1, ◦), (1, •), (1,⊥)}.

So, if x = (1, •) then a.io = 1, a.m = •. Each field has a default
value. e symbol is blank when all fields have their default value.
e blank symbol is defined a ␣ = (0, ◦).

Fields of a state

e machine states can also have fields. For example, we could have

Q = {(acc), (acc), (1), (2), (3), (4), (5)} × Σ.

e first field of the state q could be called q.l for an instruction label,
the second part q.info. e default value of q.l is (1).
e state is the starting state if all fields have their default value. e
states with q.l =∈ {(acc), (acc)} are the final (halting) states.

Turing machine with fields

v

1 0 r x a b z 2 1 1

(4)

t

f 0 0 g 1 1 5 1 g g

A Turing machine with three fields of the state: here q = ((4),v , t).
ey could have names like q.label = (4), q.mark = v , and so on.
e tape symbols also have two fields, so the tape has two tracks.

Instructions

A program is a list of instructions, labeled with
(acc), (acc), (1), (2), Each instruction has the form

if condition then action

e condition involves the state q and the tape symbol a.
e action can change the state and the tape symbol, and can
move the head.
e field q.l shows the label of the program instruction which is
being read. So the action goto (8) means q.l← (8).

As an example, we implement Sipser’s program for machine M2

recognizing A = { 02n : n ⩾ 0 }. We generalize it to recognize any
x ∈ {0, 1}∗ which contains exactly 2n 0’s for some n.
On input stringw , here is Sipser’s description:

...1 Sweep right, marking every 0.

...2 If in stage 1 the tape contained a single 0, accept.

...3 If in stage 1 the tape contained more than a single 0 and the
number of 0’s was odd, reject

...4 Return the head to the le end.

...5 Go to stage 1.

Implementation as a machine:
Fields of a tape symbol: io ∈ {0, 1}, m ∈ {◦, •,⊥}, with default
values m = ◦, io = 0.
So a tape symbol x is a pair (a.io, a.m). e blank tape symbols a
have a.m = ⊥). e value a.m = • says that the symbol is
marked.
Fields of the state:

l ∈ {(acc), (acc), (1), (2), (3)}, n ∈ {0, 1, 2}, p ∈ {0, 1},

with default values l = (1), n = 0, p = 0. So a state is a 3-tuple
(q.l,q.n,q.p).
e instruction accept will mean seing q.l← (acc): halting in
an accepting state. Similarly with reject.

(1) move right
(2) // Right sweeping loop until blank:

if x = ␣ then move le
else

if a.io = 0 and a.m = ◦ then
if q.n < 2 then q.n++ // Count unmarked 0’s up to 2
q.p← 1 − q.p
if q.p = 0 then a.m← • // Mark even unmarked 0’s

move right; goto (2)
(3) // Le sweeping loop until blank:

if x , ␣ then
move le; goto (3)

// Decision at end of le sweep:
else if q.n = 0 or q.p = 1 then reject
else if q.n = 1 then accept
else

q.n← 0; move right; goto (2)

In form of a “transition table”, where u ,v , x ,y means “anything”.
(For a pure table, expand each line by substituting all possible values
into u ,v , x ,y.)

q.l q.n q.p a.io a.m q′.l q′.n q′.p a′.io a′.m d

(1) 0 0 0 ⊥ (2) 0 0 0 ⊥ 1

(2) u v x ⊥ (3) u v x ⊥ −1
(2) u v 1 x (2) u v 1 x 1

(2) u v 0 • (2) u v 0 • 1

(2) 0 0 0 ◦ (2) 1 1 0 • 1

(2) 1 1 0 ◦ (2) 2 0 0 • 1

(2) 2 v 0 ◦ (2) 2 1 − v 0 • 1

(3) u v x y , ⊥ (3) u v x y −1
(3) 0 v x ⊥ (acc) 0 v x ⊥ 0

(3) u > 0 1 x ⊥ (acc) u 1 x ⊥ 0

(3) 1 0 x ⊥ (acc) 1 0 x ⊥ 0

(3) 2 0 x ⊥ (2) 0 0 x ⊥ 1

Recognition of languages

is is when we really will talk about:

Representing a pair of strings.
Functions with 2 or more arguments.
Recognition of a language.

Variants of Turing machines
2-tape machine

Definition: the natural one.
Many operations are easier to implement with 2 or more tapes.

.

.

Example (Binary addition)

Input, numbers x ,y represented by binary strings, on tapes 1 and
2. (If it is given as ⟨x ,y⟩ then first copy y over from tape 1 to tape
2.)
Output, M(x ,y) = x + y, say on tape 3.

Simulating 2 tapes by one

Simulation: M ′ simulates M if the input-output behavior of M ′ is the
same as that of M .
In practice: representing one “data structure” in another:
Configuration C of M is represented by a configuration C ′ of M ′.
Each step of M will be simulated by several steps of M ′. If a step
of M carries C to D then the corresponding steps of M ′ carry C ′
to D ′.

p p p H1 s5 t5 s6 t6 H2 s7 t7

6

simulated
head 1

?

simulates 5th cell
of first tape

6

simulated
head 2

?

simulates 7th cell
of second tape

ppp

If s(x) is the memory requirement and t(x) is the time requirement
of the 2-tape machine on input x then the time requirement of the
1-tape simulation is O(s(x)t(x)) = O(t2(x)).

2-dimensional Turing machine

Representing a 2-dim tape of a machine M on two 1-dim tapes of
some machine M ′:

Address on M : a pair of numbers (u ,v), represented in binary,
length ⌈logu⌉ + ⌈logv⌉ + 2.
Tape 1 of M ′ contains a sequence of (address, content) pairs of M ,
in arbitrary order.
Tape 2 contains the (address, content) pair currently observed.
Simulating one step of M : Apply the transition function to the
content on tape 2. Compute the new address on tape 2 (changing
one coordinate by ±1).
Look up this address on tape 1 (find match). is may need to
scan the whole unblank part of tape 1 of M ′, length < 2t log t .
And so on.
t steps of M are simulated by O(t2 log t) steps of M ′.

e random access machine

Memory a (potentially) infinite sequence x [0], x [1], x [2], . . . of
memory registers each containing an integer.

Program store a (potentially) infinite sequence of registers
containing instructions.

x [i] := 0; x [i] := x [i] + 1; x [i] := x [i] − 1;

x [i] := x [i] + x [j]; x [i] := x [i] − x [j];
x [i] := x [x [j]]; x [x [i]] := x [j];

if x [i] ⩽ 0 then goto p.

Input-output conventions.
How to define running time?
Simulations between the RAM and Turing machines. ere is at most
a t 7→ t2 slowdown.

Cellular automata

Let us also see a parallel computation model. It looks like a doubly
infinite Turing machine tape, except that each cell is active: it serves
both as a tape symbol and as a state.

A 1-dimensional cellular automaton is given by an alphabet Γ,
and a transition function δ : Γ3 → Γ.
A configuration is a doubly infinite string a. e content (state)
of cell n is wrien as a[n].
Here is how the machine computes. If the configuration at a
given time is a, then the configuration a′ at next time is given by

a′[n] = δ(a′[n − 1], a′[n], a′[n + 1]).

So there is a lile processor at each site n with transition function δ
whose inputs are the states of itself and of its two neighbors, and
whose output is its state in the next clock cycle.

�1 0 1 2

1 0 1 1 2 0 1 0 0 0 0 2 2 1 2 1 0 a
a'

a0[8] = �(a[7], a[8], a[9])

Example rule:

x ,y , z 000 001 010 011 100 101 110 111

δ(x ,y , z) 0 1 1 1 0 1 1 0

A sample history. Here the space is not infinite, only a cycle of
length 16: cell 13 is made the le neighbor of cell −3.

1 0 1 1 0 0 1 0 0 0 0 1 0 1 1 1 0

�1 0 1 2

0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0
1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 11

2

time

0

13 = �4

Using cellular automata

Blank state We will assume that one of the states is called the blank
state ␣, and δ(␣, ␣, ␣) = ␣. We will only consider configurations in
which all but a finite number of sites contain a the blank state.

Input-output alphabet We again assume that there is an
input-output alphabet Σ ⊂ Γ not containing ␣.

Starting and halting Cellular automata never halt, but we can
assume a distinguished starting state qstart, and halting state qhalt.
e machine is said to halt when one of the cells reaches qhalt.

Computing a function f : Σ∗ → Σ∗. Write input-output string
x1 , . . . , xn into cells 1, 2, . . . ,n. Write qstart into cell 0, and blank
everywhere else. Compute until halt, then read off the result.

Simulating a Turing machine by a CA

Let us simulate a Turing machine M with state space Q and tape
alphabet Γ, using a cellular automaton C with state set

Γ′ = (Q ∪ {∗}) × Γ.

Each cell x of C has fields called state, tape.
x .tape[n] will represent the symbol a[n] of the tape.
x .state[n] = ∗ < Q if the head is not on tape cell n. If it is then
x .state[n] = q, the state of the Turing machine.
Transition function δ ′(·, ·, ·) of C is easy to define using δ(q, a).
Let δ ′((p , a), (q,b), (r , c)) = (q′,b ′).
If p = q = r = ∗ then q′ = ∗, b ′ = b.
If p = q = ∗, r ∈ Q , δ(r , c) = (r ′, a′, −1) then q′ = r ′, b ′ = b.
And so on.

Simulating a CA by a one-tape Turing machine

is will be homework.

Universal Turing machines

Let Σ be some alphabet, called an input/output alphabet. Let T1(Σ)
be the set of all 1-tape Turing machines M whose alphabet contains
Σ, and such that whenever M(x) halts on some x ∈ Σ∗, we have
M(x) ∈ Σ∗.
We say that the 1-tape machineU in T1(Σ) with tape alphabet Γ is
universal for machines in T1(Σ) if for all machines M ∈ T1(Σ) there
is a string pM ∈ Γ∗ such that for all inputs x ∈ Σ∗ we have

M(x) = U (pM , x).

.

.

eorem For every Σ there is a machine U universal for T1(Σ).
Also,U (pM , x) accepts iff M(x) accepts.

Constructing the universal machine

For simplicity, let Σ = {0, 1}, k = ⌈log |Q |⌉ , l = ⌈log |Γ|⌉.
Encoding the states into ⟨q⟩ ∈ {0, 1}k , and the the tape symbols into
⟨a⟩ ∈ {0, 1}l . For example, Γ = {0, 1, #, ∗, ␣} can be encoded into

⟨0⟩ = 000, ⟨1⟩ = 001, ⟨#⟩ = 010, ⟨∗⟩ = 011, ⟨␣⟩ = 100.

Encode directions d ∈ {−1, 0, 1} into ⟨d⟩ ∈ {10, 00, 01}.
Encoding tuples: Entry E = (q, a) 7→ (q′, a′,d), of the table of the

transition function δ into

⟨E⟩ = ⟨q⟩⟨a⟩⟨q′⟩⟨a′⟩⟨d⟩.

Representation of M :

⟨M⟩ = 0k10l1⟨E1⟩⟨E2⟩ · · · ⟨Em⟩.

We first construct U3 with 3 tapes: this will then be simulated on a
one-tape machineU .

Preprocessing: encode the input x1 . . . xn into ⟨x1⟩ . . . ⟨xn⟩,
onto Tape 1. For example if xi ∈ {0, 1} and ⟨0⟩ = 000, ⟨1⟩ = 001
then ⟨x1⟩ . . . ⟨xn⟩ = 00x100x2 . . . 00xn .

Tape 1 represents the tape contents and head position of M .
Tape 2: ⟨M⟩.
Tape 3: 0k10l1⟨q⟩, where q is the current state of M .
Simulation: for each simulated step of M , look up the needed entry

in the transition table represented by ⟨M⟩.
Postprocessing: decode the output ⟨y1⟩ . . . ⟨yn′⟩ into

M(w) = y1 . . .yn′ : for example 00y100y2 . . . 00yn′ into
y1 . . .yn′ .

How long does it take? e inefficiency of having to represent a
whole transition table. It can be made faster if for example the
transition function is computed by a logic circuit.

A useful picture

Imagine (M ,w) 7→ M(w) in a matrix with rows indexed by ⟨M⟩ and
columns indexed byw : at position (⟨M⟩,w) sits the result M(w), if it
is defined, namely if the computation of M halts on inputw . Let us
put∞ where it does not.

w0 = e w1 = 0 w2 = 1 w3 = 00 . . .

⟨M1⟩ e ∞ 0001 e . . .

⟨M2⟩ 1101 0 1 1
⟨M3⟩ M3(e) = 111 M3(0) = 010 M3(1) = ∞ M3(00) = ∞ . . .

⟨M4⟩
...

. . .

e concept of an algorithm – Church’s thesis

is is a “thesis”, not a theorem, since it says that a certain informal
concept (algorithmically computable) is equivalent to a formal one
(Turing computable).

History different formal definitions by Church (lambda calculus),
Gödel (recursive functions), Turing (you know what), Post
(formal systems), Markov (a different kind of formal system),
Kolmogorov (spider machine on a graph) all turned out all to be
equivalent.

Algorithm any procedure that can be translated into a Turing
machine (or, equivalently, into a program on a UTM).

Two possible uses of Church’s esis

Justified Proving that something is not computable by Turing
machines, we conclude that it is also not computable by any
algorithm.

Unjustified Giving an informal algorithm for the solution of a
problem, and referring to Church’s thesis to imply that it can be
translated into a Turing machine. It is your responsibility to
make sure the algorithm is implementable: otherwise, it is not
really an algorithm. Informality can be justified by common
experience between writer and reader, but not by Church’s
esis.

e running time of an algorithm

In the Data Structures and Algorithms courses, you must have
learned how to measure the runtime of actual programs. For
example, the Unix commands time binom_dumb 28 13

times binom_dumb 28 13
measure the time spent by the computer on a command. It is even
more convenient to find this information from inside a C++ program,
since then you can store it, tabulate it, run large-scale experiments
with different inputs. You can use the clock or times library
functions for this.

Ignoring constant factors

An algorithm is not a program: it can be implemented in programs in
various programming languages.
When we run the implementation, we can measure the time, and it
will depend on the implementation. e implementation generally
does not change the overall way in which the running time depends
on different inputs. On one machine, for input sizes n = 1, 2, 3, 4 it
may be

1, 4, 9, 16,

on another machine: 10, 40, 90, 160. e difference is only by a
constant factor (even if large).
.

.
Example binom_dumb run on my laptop or on csa3.

What is a step?

It seems possible to define running time in an abstract way that
depends only on the algorithm, not on the implementation. e
running time is the number of “elementary steps” taken.
On a Turing machine, it is simply a step. In C++, we can be a lile
more liberal:

assignment of primitive data types (integer, double, and so on).
simple arithmetic operations, though some are more expensive
than others.
comparisons of primitive data types.
function call (but not its execution).
following a pointer.
indexing into an array.

Tricky examples

Let min(A) be a function that finds the minimum of an integer vector
A of length n:

n ← A.size() // 1
m ← A[0] // 1

// e loop repeats n times
for i = 0 to n − 1 do

// Loop control: 2 steps for each i
if m > A[i] thenm ← A[i] // 1 or 2 for each i
returnm // 1

Total number of steps: 3 + n · c where 3 ⩽ c ⩽ 4. We say that the
number of steps is O(n) if it is < Cn for some constant C . We
frequently do not bother about the exact value of C , since it would be
too machine-dependent, just as the cost of the different kinds of step.

For example, min(A) takes at most 5 + 2n ⩽ 7n steps, so it takes
O(n) steps; we thankfully suppress the irrelevant detail in the
formula O(n).
We are interested in bigger differences. Compare the following two
program parts:
Part (1):

for i = 0 to n − 1 do
B[i]← min(A) · (i + 1)

Part (2):

m ← min(A)
for i = 0 to n − 1 do

B[i]←m · (i + 1)

Part (1) is O(n2), since min(A) recomputes the minimum every time
it is called. Part (2) is O(n). e big-O notation directs aention to
these big differences, by ignoring the small ones.

Worst-case analysis

Machine M terminates in worst-case-time O(f (n)) if

(∃c > 0)(∀n) max
x ∈Σn

TimeT (x) ⩽ c · f (n).

Average case analysis

.

.

Example Consider the following function called find_root(A). It
returns −1 if there is no root.

n ← A.size
for i = 0 to n − 1 do

if 0 = A[i] then return i
return −1

e worst case and best case running time are very different here.
We are generally interested in the worst case. e “average case”
may also be interesting, but is harder to say what it is.

.

.

Example e linear programming problem (solving a set of linear
inequalities). For the simplex algorithm, the worst case is
exponential, but the average case is linear (number of “iterations”).

.

.

Example Deterministic quicksort. Worst case, n2. Average case,
n logn. But how natural is here to consider average? It is quite likely
that our input will be an array that is already (maybe almost) sorted.

Complexity classes
What kinds of problem?

Complexity of a problem (informally): the complexity of the best
algorithm solving it.
Problems Compute a function

Decide a language
Given a relation R(x ,y), for input string x find an output
string y for which R(x ,y) is true. Example: R(x ,y) means
that the integer y is a proper divisor of the integer x .

Upper and lower bounds

DTIME(f (n)): a class of languages.

Upper bound given a language L and a time-measuring function
д(n), showing L ∈ DTIME(д(n)).

Lower bound given a language L and a time-measuring function
д(n), showing L < DTIME(д(n)).

.

.

Example Let DTIME(·) be defined using 1-tape Turing machines,
and let L1 = {uu : u ∈ Σ∗ }. en it can be proved that

L1 < DTIME(n1.5).

e difficulty of proving a lower bound: this is a statement about all
possible algorithms.

Why complexity classes?

Why we are just speaking about complexity classes, rather than the
complexity of a particular problem.
e difficulty of defining “the complexity” of a problem.
Speedup theorems.

Why concentrate on language classes?

e complexity of computing a function is just as interesting. But
sometimes, there are trivial lower bounds for functions: namely,
| f (x)| (the length of f (x)) is a lower bound.
.

.

Example f (x ,y) = xy where the binary strings x ,y are treated as
numbers.
Naive algorithm x · x · · · · · x (y times). is takes y multiplications,

so it is clearly exponential in the length of y.
Repeated squaring now the number of multiplications is polynomial

in |y |.
But no maer what we do, the output length is |xy | ≈ y · |x |,
exponential in |y |.

If the function values are restricted to {0, 1} (like when deciding a
language) then we cannot have such trivial lower bounds.

Eliminating duplicates: an analysis

Remove all duplicates from vector x , without changing the order. It
uses the function erase(x , j), that erases the jth element of a vector,
shiing over the others accordingly.
What is the running time of this algorithm:

if 2 > x .size then return
for i = 0 to x .size − 2 do

for j = i + 1 to x .size − 1 do
if x [i] = x [j] then

erase(x , j)
j−−;

Easy upper bound: n3. But is it really? Beer analysis shows at most
n2. (How many times can erase() really be called?)

Beer organization avoids erase() altogether. Here, only the number
of comparisons grows like n2, the number of assignments is at most
n. (You can safely skip this.)

n ← x .size
if 2 > n then return
current_end← 1
for compared1 = 1 to n − 1 do

found← false
for compared2 = 0 to current_end − 1 do

if x [compared2] = x [compared1] then
found← true
break // from inner loop

if found then continue // outer loop
else

if compared1 > current_end then
x [current_end]← x [compared1]
current_end++

for i = n downto current_end+ 1 do x .pop_back()

Sorting brings the complexity down to n logn. It also features an
important problem-solution method: try to bring some additional
order into the situation, even if it does not seem immediately
required.

Asymptotic analysis

O(), o(),Ω(),Θ(). More notation: f (n) ≪ д(n) for f (n) = o(д(n)),
f (n)

∗
< д(n) for f (n) = O(д(n)) and ∼ for (∗< and ∗

>).
e most important function classes: log, logpower, linear, power,
exponential.
Some simplification rules.

Addition: take the maximum. Do this always to simplify
expressions. Warning: do it only if the number of terms is
constant!
An expression f (n)д(n) is generally worth rewriting as
2д(n) log f (n). For example, nlog n = 2(log n)·(log n) = 2log

2 n .
But sometimes we make the reverse transformation:

3log n = 2(log n)·(log 3) = (2log n)log 3 = nlog 3.

e last form is easiest to understand, showing n to a constant
power log 3.

Examples

n/ log logn + log2 n ∼ n/ log logn.

Indeed, log logn ≪ logn ≪ n1/2, hence
n/ log logn ≫ n1/2 ≫ log2 n.

Order the following functions by growth rate:

n2 − 3 log logn ∼ n2 ,

logn/n,
log logn,
n log2 n,
3 + 1/n ∼ 1,√
(5n)/2n ,

(1.2)n−1 +
√
n + logn ∼ (1.2)n .

Solution:√
(5n)/2n ≪ logn/n ≪ 1 ≪ log logn

≪ n/ log logn ≪ n log2 n ≪ n2 ≪ (1.2)n .

Sums: the art of simplification

Arithmetic series
Geometric series its rate of growth is equal to the rate of growth of

its largest term.
.

.

Example

logn! = log 2 + log 3 + · · ·+ logn = Θ(n logn).

Indeed, upper bound: logn! < n logn.
Lower bound:

logn! > log(n/2) + log(n/2 + 1) + · · ·+ logn > (n/2) log(n/2)
= (n/2)(logn − 1) = (1/2)n logn − n/2.

.

.

Example Prove the following, via rough estimates:

1 + 23 + 33 + · · ·+ n3 = Θ(n4),

1/3 + 2/32 + 3/33 + 4/34 + · · · < ∞.

.

.

Example

1 + 1/2 + 1/3 + · · ·+ 1/n = Θ(logn).

Indeed, for n = 2k−1, upper bound:

1 + 1/2 + 1/2 + 1/4 + 1/4 + 1/4 + 1/4 + 1/8 + . . .

= 1 + 1 + · · ·+ 1 (k times).

Lower bound:

1/2 + 1/4 + 1/4 + 1/8 + 1/8 + 1/8 + 1/8 + 1/16 + . . .

= 1/2 + 1/2 + · · ·+ 1/2 (k times).

Fast polynomial multiplication
For simplicity, assume n is a power of 2 (otherwise, we pick
n < n′ ⩽ 2n that is a power of 2). Letm = n/2, then

f (x) = a0 + a1x + · · ·+ am−1x
m−1 + xm(am + · · ·+ a2m−1x

m−1)

= f0(x) + xm f1(x).

Similarly for д(x). So,

f д = f0д0 + xm(f0д1 + f1д0) + x2m f1д1.

In order to compute f д, we need to compute

f0д0 , f0д1 + f1д0 , f1д1.

How many elementary multiplications does this need? (We do not
count additions.) If we compute fiдj separately for i , j = 0, 1 this
would just give the recursion

M(2m) ⩽ 4M(m),

which suggests that we need n2 multiplications.

Trick (found by Karatsuba) that saves us a (polynomial)
multiplication:

f0д1 + f1д0 = (f0 + f1)(д0 + д1) − f0д0 − f1д1. (1)

is gives M(2m) ⩽ 3M(m), saving a lot more when we apply it
recursively.

M(2k) ⩽ 3kM(1) = 3k .

So, if n = 2k , then k = logn,

M(n) < 3log n = 2(log n)·(log 3) = nlog 3.

Since log 4 = 2, so log 3 < 2 and hence nlog 3 is a smaller power of n
than n2.
(It is possible to do much beer than this for polynomial
multiplication.)

Fast multiplication of numbers

Taking additions in account in polynomial multiplication. e result
will not change, since the recursion is controlled by the
multiplications.
Numbers. What we count here are the elementary steps (bit
operations) of a Turing machine (or other machine). e analysis is
similar to polynomial multiplications, but the carry needs to be taken
into account.

Polynomial time
Invariance with respect to machine model

We have seen that 2-tape Turing machines and even 2-dimensional
and random-access machines can be simulated by 1-Tape Turing
machines, with a slowdown similar to t 7→ t2. erefore to some
questions (“is there a polynomial-time algorithm to compute function
f ?”) the answer is the same on all “reasonable” machine models.

Does it capture “practical”?

e polynomial time requirement is too weak: in many
situations, (data mining) only linear-time algorithms are
affordable. Moreover, sometimes only logarithmic-time
algorithms can be allowed.
It may miss the point. On small data, an 0.001 · 20.1n algorithm is
beer than a 1000n3 algorithm.

Still, in typical situations, the lack of a polynomial-time algorithm
means that we have no beer idea for solving our problem than
“brute force”: a run through “all possibilities”.

Shortest path

PATH between points s and t in a graph (remember the algorithms
course CS330). Breadth-first search.
e same problem, when the edges have positive integer lengths.
Reducing it to PATH in the obvious way (each edge turned into a
path consisting of unit-length edges) may result in an exponential
algorithm (if edge lengths are large). But Dijkstra’s algorithm works
in polynomial time also with large edge lengths.

Algorithms on integers

Every algorithm (a,b) 7→ ab over positive integers is at least
exponential: look at the length of the output.
Repeated squaring trick: now the number of multiplications is
polynomial, but these will be performed, eventually, on very large
numbers. But: this gives a polynomial algorithm for computing
(a,b ,m) 7→ ab modm.
e customary algorithm for deciding whether a number is prime, is
exponential (in the length of input).
e greatest common divisor of two numbers can be computed in
polynomial time, using:
.

.
eorem gcd(a,b) = gcd(b , a mod b)

is gives rise to Euclid’s algorithm. Why polynomial-time?

Extended Euclidean algorithm

Gives us numbers x ,y with

gcd(a,b) = xa + yb .

For this, simply maintain such a form for all numbers computed
during the algorithm. If

a′ = x1a + y1b ,

b ′ = x2a + y2b ,

r ′ = a − qb ′ < b ′

then
r ′ = (x1 − qx2)a + (y1 − qy2)b .

Analysis of the Euclidean algorithm on numbers of length n, it
finishes in 2n iterations. So, there is a simple polynomial
algorithm to decide whether two numbers are relatively prime.

Primality It is much harder to decide about a number x whether it is
prime. e simple-minded algorithm of trying all numbers less
than x (or, even only

√
x) is exponential.

By now, a polynomial algorithm has been found for prime
testing, but that algorithm is quite complex. ere is a much
faster, randomized algorithm. Both of these algorithms rely on
deeper ideas than our simple-minded enumeration.

Longest common subsequence

e diff program in Unix. Given sequences x ,y of length n, it is
possible to find the longest common subsequence of x and y in O(n2)
steps. (is needs insight: the simple-minded algorithm of trying all
subsequences is exponential.)

X = <A,B, C, B,D,A,B>
Y = < B,D,C,A,B, A>

< B, C, B, A>

Formally, if x = (x1 , . . . , xn) and y = (y1 , . . . ,yn) then a common
subsequence of length k is given by a1 < · · · < ak , b1 < · · · < bk with
xa i = ybi for i = 1, . . . , k .

You must have learned the method, dynamic programming, in your
Algorithms class. A recursive solution to subproblems. Let c[i , j] be
the length of the longest common subsequence of (x1 , . . . , xi) and
(y1 , . . . ,y j).

c[i , j] =


0 if i = 0 or j = 0,

c[i − 1, j − 1] + 1 if i , j > 0 and xi = y j ,

max(c[i , j − 1], c[i − 1, j]) otherwise.

Non-recursive solution: compute the table c[i , j] boom-up. Also,
store the value b[i , j] = 1, 2 or 3 depending on whether the optimum
is c[i , j − 1], c[i − 1, j] or c[i − 1, j − 1] + 1. (Can be represented by
le, up and back-diagonal arrows in a diagram of the table.)
Recursive solution with saving the results in a table, called caching
(memoization).

Gaussian elimination

(Skip in CS332.)
Solving a set of linear equations. e problem of round-off errors.
Rational inputs, exact rational solution.
How large can the numerators and denominators grow?
Determinant, properties:

...1. It is a polynomial of its entries.

...2. Row operations do not change it.

...3. Interpreting it as volume, hence upper bound: product of vector
lengths.

Expressing entries during Gaussian elimination as a quotient of
determinants. Hence, bound on the size of numerator/denominator;
hence, polynomial algorithm.

e class NP
Examples

Hamilton cycle, traveling salesman problem.
Euler cycle.

Witness verifying relation

.

.

Example V1(x ,w) is true if, x ,w are integers andw is a proper
divisor of x .
.

.

Example V2(G ,C) is true if G is a graph and C is a sequence of
edges of G that is a Hamiltonian cycle of G.

.

.
Example Connectivity of a graph.

.

.
Example Non-connectivity of a graph.

Polynomial-verifiable witness relations

e witness verifying relation V must be
polynomially bounded (|w | is polynomial in |x | when V (x ,w) is
true).
polynomial-time computable.

All this makes sense aer integers, graphs, and so on, are encoded
into strings.
Relation V ⊂ Σ∗ × Σ∗, encoded as a language:

⟨V ⟩ = { ⟨x ,w⟩ : V (x ,w) }
V (x ,w)(= true)⇔ (x ,w) ∈ V ⇔ ⟨x ,w⟩ ∈ ⟨V ⟩.

So, instead of a witness relation, we can talk about witness language.

.

.

Example Take a set of linear equations

a11x1 + · · ·+ a1nxn = b1 ,

. . .

an1x1 + · · ·+ annxn = bn .

Assume ai j ,bi are integers. Consider the verification relation
V ({ai j ,bi }, x), which is true if the sequence of fractions
x = (x1 , . . . , xn), xi = yi/zi (now the witness) is a solution.

Is this relation polynomial-time computable? Yes, but not obviously,
since rounding is not allowed! Fortunately, we can compute a
common denominator z1z2 · · · zn: big, but still
polynomial-length.

Is it polynomially bounded? Yes, but much less obviously! It is
possible to prove that if there is a solution then there is one in
which the numerators and denominators are not too large
(“Cramer’s rule”).

Definition of NP

L ∈ NP if there is a polynomial-verifiable witness relation R such that

L = { x ∈ Σ∗ : ∃w ∈ Σ∗ V (x ,w) }.

We associate two problems with a witness relation V . Given input
(instance) string x ∈ Σ∗,
Decision problem Decide whether x ∈ L.
Search problem As above, but if yes, also findw with V (x ,w).

One and the same language L can be associated with several witness
relations.
.

.

Example

V1(x ,w)⇔ x is odd,w is a proper divisor of x .
V2(x , ⟨a,b⟩)⇔ x is odd, x = a2 − b2 , a − b > 1.

If V1(x ,w) then x = v ·w , where v ,w > 1 are odd. Let
a = (v +w)/2, b = (v −w)/2, then a − b = w > 1 and
a2 − b2 = v ·w = x , so V2(x , ⟨a,b⟩) holds.
If V2(x , ⟨a,b⟩) then a − b > 1 and x = a2 − b2 = (a + b)(a − b).
Letw = a − b, then V1(x ,w) holds.

Optimization problems

Maximum clique, minimum node cover, traveling salesman problem.
In general, a question of the sort:

given x , maximize f (x ,y)

where f (x ,y) is polynomial-time computable.
Turning an optimization problem into a witness relation:

V (⟨x , k⟩,w)⇔ ∃w f (x ,w) ⩾ k .

.

.

Example Given graph G and integer k , does G have an
independent set of size ⩾ k?

.

.

Example Example graph in Figure 6-9 of Lewis-Papadimitriou:
find maximum independent set, maximum clique, minimum node
cover.

Nondeterministic computations
Recognition and enumeration

(Skip in CS332)
Recall: notion of language recognized by a Turing machine.
Definition of a langage enumerated by a Turing machine.
.

.

eorem A language is Turing recognizable iff it is Turing
enumerable.

Nondeterminism

Definition of a nondeterministic Turing machine.
Not a real machine: just another way of speaking about witnesses.
A language recognized by a nondeterministic Turing machine. (We
do not define the notion of a language decided by a nondeterministic
machine.)
.

.

eorem Language L is in NP iff it is recognized by some
nondeterministic polynomial-time bounded Turing machine.

Rewrite rules and grammars

(Skip in cs332)
Grammars also illustrate nondeterminism.
Fix an alphabet Σ.
Rewrite rule (production) P : u → v for u ,v ∈ Σ∗.
A rewrite process is a finite set Π of productions. e meaning of
u⇒Πv and u⇒∗Πv . e word problem of a rewrite process: to decide,
given Π,u ,v , whether u ⇒∗Π v .
Grammar: Γ = (Σ0 ⊂ Σ, S ∈ Σ \ Σ0).
e language L(Γ) = {w ∈ Σ∗0 : S ⇒∗ w }.
Grammars are also more naturally related to nondeterministic
computations than to deterministic ones.

More examples of NP problems
Subset sum

Given a1 , . . . , an ,b, are there x1 , . . . , xn ∈ {0, 1} with

a1x1 + · · ·+ anxn = b?

Example: {4, 11, 16, 21, 27}, 25.
A dynamic programming algorithm (eorem 5.5.7 of Sipser). Let Si
be the set of numbers ⩽ b of form a1x1 + · · ·+ aixi . en

Si = Si−1 ∪ (ai + Si−1), deleting all numbers > b .

We are working with subsets of {0, 1, . . . ,b − 1,b}, so the complexity
of this algorithm is

O(b · n)

times the cost of additions involved.
Is this polynomial?

Partition similar to subset sum. Example: for
38, 17, 52, 61, 21, 88, 25. the subset {38, 52, 61} will do.
Example application: divide some manuscripts between two
secretaries.

Maximum cut Proof of NP-completeness (not in cs332)? (See an
earlier assignment on “diversity clauses”.)

Satisfiability
Propositional logic

Logic formulas If this is new to you, review it from your discrete
math book, or from the course cs210.

Boolean variables xi ∈ {0, 1}, where 0 stands for false, 1 for true.
A logic expression is formed using the connectives x ∧ y = x · y
(conjunction), ¬x = 1 − x (negation), x ∨ y = ¬(¬x ∧ ¬y)
(disjunction), for example

F (x1 , x2 , x3 , x4) = (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3 ∨ x4).

Other connectives: say x ⇒ y = ¬x ∨ y, x ⊕ y = x + y mod 2
(XOR).
A (truth-) assignment (say x1 = 0, x2 = 0, x3 = 1, x4 = 0) allows
to compute a value (in our example, F (0, 0, 1, 0) = 0).

Properties, normal forms

Associativity, commutativity of ∨,∧ and ⊕: a ∧ b = b ∧ a,
a ∨ (b ∨ c) = (a ∨ b) ∨ c .

Distributivity of ∧ over ∨ and of ⊕, of∨ over ∧.
De Morgan rules move the negation inside: ¬(a ∨ b) = ¬a ∧ ¬b.
Conjunctive normal form (CNF) F (x1 , . . . , xn) = C1 ∧ · · · ∧Ck

where each Ci is a clause, with the form Ci = x̃ j1 ∨ · · · ∨ x̃ jr .
Here each x̃ j is either x j or ¬x j , and is called a literal.

Disjunctive normal form (DNF) Similar, with disjunctions outside
and conjunctions inside.

Transform a formula into CNF by distributing ∨ over ∧, or into DNF
by distributing ∧ over ∨.

.

.

eorem Expressing every Boolean function f : {0, 1}n → {0, 1}
via a Boolean formula.
.

.

Example ∆(x ,y , z) = 1 if x ,y , z are not all equal.
Disjunctive normal form (DNF)

∆(x ,y , z) = (x ∧ y ∧ ¬z) ∨ (x ∧ ¬y ∧ z) ∨ (x ∧ ¬y ∧ ¬z)
∨ (¬ ∧ y ∧ z) ∨ (¬x ∧ ¬y ∧ z) ∨ (¬x ∧ ¬y ∧ z).

(List all cases in which ∆(x ,y , z) = 1.)
Conjunctive normal form (CNF)

∆(x ,y , z) = (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z).

(More interesting for satisfiability, since it is a list of constraints.)

Satisfiability

For a given formula, witness is a satisfying assignment.
Tautologies.
Special case of satisfiability problem for conjunctive normal
forms: SAT.
A 3-CNF is a conjunctive normal form in which each clause
contains at most 3 literals—gives rise to 3SAT.
2SAT: as will be seen, solvable in polynomial time.

.

.

Example Matching in an undirected graph.

We reduce to SAT, for graph G = (V , E). To each edge {u ,v} ∈ E
(u , v , order does not maer) we assign a variable x {u ,v }, with the
meaning that this edge is selected into the matching. e formula
ΦG to which translate the graph is the conjunction of a list of
constraints. To each point u ∈ V , belong two kinds of constraint.

For pairs of edges {u ,v}, {u ,w } ∈ E, we write ¬x {u ,v } ∨ ¬x {u ,w },
since each point is in at most 1 matching edge.
If {u ,v1}, . . . , {u ,vk } are all the edges adjacent to point u then we
write x {u ,v1 } ∨ · · · ∨ x {u ,vk }, since each point is in at least 1
matching edge.

Logic circuits

Logic formulas can be generalized to logic circuits.

Acyclic directed graph, where some nodes and edges have labels.
Nodes with no incoming edges are input nodes, each labeled by
some logic variable x1 , . . . , xn .
Nodes with no outgoing edges are output nodes.
Some edges have labels ¬. Non-input nodes are labeled ∨ or ∧.
If there is just one output node, the circuit C defines some
Boolean function fC(x1 , . . . , xn). Circuit satisfiability is the
question of satisfiability of this function.
Assume also that every non-input node has exactly two incoming
edges.

e circuit satisfiability problem.
Specialize: formula satisfiability problem.
Specialize: CNF satisfiability, that is SAT.
Specialize: 3SAT.

On the other hand:
.

.
eorem Circuit satisfiability can be reduced to 3SAT.

is is our first nontrivial example of reduction now.
Proof. Introduce a new variable yi for the output of each gate. e
relation of each gate output to its inputs can be expressed by a
formula of at most 3 variables: for example yi ⇔ x j ∧ yk . Transform
this into a 3CNF G i . e conjunction of all these gives a 3CNF

F (x1 , . . . , xn ,y1 , . . . ,ym) = G1 ∧ · · · ∧Gm ,

where ym is the output. e satisfiability of the circuit is equivalent
to the satisfiability of F (x1 , . . . , xn ,y1 , . . . ,ym) ∧ ym □

Completeness
Reductions

Many-one reduction.
Reduction of the decision problems, of the search problems.
.

.

Example Shortest path with edge length to shortest path with unit
edge length. Why not a reduction?

.

.

Example Euler circuit to Hamilton circuit. is does not show
that Euler circuit is as difficult as Hamilton circuit; only that
Hamilton circuit is as difficult as Euler circuit.
.

.
Example CLIQUE ≡ INDEPENDENT

.

.
Example INDEPENDENT ≡ NODE COVER

Hardness and completeness

NP-hard problems (Some kind of reduction is understood.)
.

.

Example All NP-complete problems given below. Also the halting
problem. Also: given a graph, does it have at least k matchings?

NP-complete problems We will see many examples.

e NP-completeness of SAT
.

.
eorem (Cook-Levin) SAT is NP-complete.

Proof. Let V (x ,w) be a witness verification relation, computable in
time |x |c on, say, a cellular automaton, over alphabet Γ, with
transition function δ(a,b , c).
Represent the space-time history by a table of size |x |c × 2|x |c ,
where yp ,t is the state of cell p at time t . At time t = 0, initial
condition: y−p ,0 = xp for p ⩽ |x |, and yp ,0 = wp for p ⩽ |x |c .
Convention: V (x ,w) = y0 , |x c | .
Represent the elements of Γ as binary strings of length log |Γ|. en
δ(a,b , c) is implementable by a constant-size logic circuit. Put
together the copies of this lile circuit, to compute each yp ,t+1 from
yp−1 ,t , yp ,t , yp+1 ,t , into a big circuit. Hardwire the x part of the
initial condition, then we got a circuit Cx .
is reduces the problem ∃wV (x ,w) to the satisfiability problem of
the circuit: is there a witnessw producing output Cx(w) = 1? □

Other NP-complete problems
Independent sets

Combinatorial meaning of SAT. Translate the constraints into the
independent set problem of a graph.

Completeness of subset sum

Set of linear equations for variable x j ∈ {0, 1}:

ai1x1 + · · ·+ ainxn = bi , ai j ,bi ⩾ 0, i = 1, . . . ,m.

We reduce 3SAT to the solvability of such a system. Let
F = C1 ∧ · · · ∧Cm be a 3CNF. SayCi = x1 ∨¬x2 ∨¬x5. e values of
x1 , x2 , x5 satisfy this if and only if the 0-1 equations

x1 + x ′2 + x ′5 + yi1 + yi2 = 3,

x2 + x ′2 = 1, x5 + x ′5 = 1

are solved by them, with appropriate values given to the new
variables x ′2 , x

′
5 ,yi1 ,yi2. is reduces satisfiability of F to the

solvability of a set of equations with 0-1 coefficients ai j . Also, at
most 5 of these are different from 0, in each equation.

Reduce the solvability of the above linear 0-1 equations with 0-1
coefficients, at most 5 of which are different from 0, to the solvability
of a single equation

A1x1 + · · ·+Anxn = B.

For this, sum up the above equations, multiplying the ith one by
6i−1, that is for example A2 = a12 + a22 · 6 + · · ·+ am2 · 6m−1,
B = b1 + b2 · 6 + · · ·+ bm · 6m−1.
Why did we multiply equation i by the coefficient 6i−1 before
summing up?

Hamilton paths

Reducing the SAT to dHAMPATH, the problem of directed Hamilton
paths.

Points vstart ,vend, and one point for each of them clauses C j .
For each of the n variables xi , a doubly linked chain
X i = vi ,0 ↔ vi ,1 ↔ · · · ↔ vi ,3m−1 ↔ vi ,3m .
vstart → v1 ,0 ,v1 ,3m; vn ,0 ,vn ,3m → vend.
vi ,0 ,vi ,3m → vi+1 ,0 ,vi+1 ,3m if i < n.
If xi occurs in C j then vi ,3j−2 → C j → vi ,3j−1.
If ¬xi occurs in C j then vi ,3j−1 → C j → vi ,3j−2.

Making xi true corresponds to traversing X i from le to right.

Uncomputability
Diagonalization

Recall the picture aer the discussion of a universal Turing machine.
A matrix with rows indexed by ⟨M⟩ and columns indexed byw : at
position (⟨M⟩,w) sits the result M(w), if it is defined, namely if the
computation of M halts on inputw . Let us put∞ where it does not.

w0 = e w1 = 0 w2 = 1 w3 = 00 . . .

⟨M1⟩ e ∞ 0001 e . . .

⟨M2⟩ 1101 0 1 1
⟨M3⟩ M3(e) = 111 M3(0) = 010 M3(1) = ∞ M3(00) = ∞ . . .

⟨M4⟩
...

. . .

Let us define a non-computable function D(w) explicitly. Recall that
w1 ,w2 , . . . lists all binary strings, and M1 ,M2 , . . . lists all Turing
machines, with corresponding codes ⟨Mi⟩.

D(w i) =

1 if Mi(wi) = 0,

0 otherwise.

is function is not computable, since at positionw i we made it
different from Mi(w i), and M1(w),M2(w), . . . is a list of all
computable functions.
e construction of D(·) is called the diagonal method, since we
defined D(·) as the “complement” of the diagonal of the above table.

Halting problem

e above definition of D(w) sounds like a presciption to compute it,
but we just proved that D(w) is not computable. Where is the rub?
e condition Mi(w i) = 0 is not simple to test, sinceMi may not halt
on inputwi . In fact, let us define the language

H = { (⟨M⟩,w) : M halts on inputw }

called the Halting Problem. If there was an algorithm to decide the
question (⟨M⟩,w) ∈ H for all pairs (⟨M⟩,w) then we could compute
D(w). But we know D(w) is uncomputable. So we proved
.

.
eorem e halting problem is undecidable.

is proof is an example of a reduction: the computation problem of
D(·) was reduced to that of H . (Since D(·) is uncomputable, so is H .)

Computable enumerability

Narrower class Computable. Other names for the same notion:
decidable, recursive.

Wider class A language is called computably enumerable if it is
recognized by some (deterministic) Turing machine.
Other names for the same notion: computably enumerable,
recursively enumerable, semidecidable, recognizable.

.

.

eorem A language is computably enumerable if and only if
there is a Turing machine that lists its elements on its output tape.

We had this in a homework problem.

You need the following theorem if you learn about nondeterministic
machines:
.

.

eorem e languages recognizable by non-deterministic Turing
machines are just the computably enumerable languages.

Proof. Deterministic⇒ nondeterministic: this direction is easy.
Recognized by nondeterministic M ⇒ recognized by deterministic
one: breadth-first search over all possible computations of M . is is
also called dovetailing. □

A not computably enumerable language

e language H (halting problem) is computably enumerable:
indeed, the universal Turing machine can simulate M onw to accept
exactly whenever M halts onw .
.

.

eorem A language is decidable iff both it and its complement is
computably enumerable.

Hence:
.

.
eorem e complement of H is not Turing recognizable.

Reductions

Reduction for the sake of proving undecidability is similar to
reduction for the sake of proving NP-completeness.
Problem A can be reduced to problem B if a solution of problem B
can be used to solve problem A. We will use a more restricted
definition, called “mapping reducibility”, or many-one reducibility,
similar to the polynomial reducibility of NP theory.
Reduction enables us to prove many problems undecidable, even
problems that have nothing to do with Turing machines.
.

.

Example We have shown that the halting problem H is
undecidable by reducing the computation of the diagonal function
D(w) to it.

For a machine M , let L(M) denote the set of strings accepted by M .
Let E = { ⟨M⟩ : L(M) = ∅ }.
.

.
eorem E is undecidable.

Proof. Reduce the halting problem to E.
Input of H : a pair (⟨M⟩,w).
Output decision about whether M halts onw .
Input of E: a machine T .
Output decision about whether T accepts anything.
From pair (⟨M⟩,w), we create a machine TM ,w . On input x :

if x , w reject.
else simulate M on x ; accept if M does.

L(TM ,w) =

∅ if M does not acceptw ,
{w } if M acceptsw .

We do not run TM ,w , just create it. Now, if a TM S could decide
whether L(TM ,w) = ∅ then using S , we could decide whether M
acceptsw . □

Let EQ = { ⟨M1 ,M2⟩ : L(M1) = L(M2) }.
.

.
eorem EQ is undecidable.

We will solve this in class.

A simple undecidable problem

Post Correspondence Problem (PCP), see the Sipser book.
.

.

Example

Kit
{ [

b
ca

]
,
[
a
ab

]
,
[
ca
a

]
,
[
abc
c

] }
.

Match
[
a
ab

]
,
[
b
ca

]
,
[
ca
a

]
,
[
a
ab

]
,
[
abc
c

]
.

.

.
eorem PCP is undecidable.

Let MPCP be the problem in which there is a distinguished tile that is
required to come first. Let A be the set of pairs (⟨M⟩,w) such that M
acceptsw . is is undecidable. We will reduce A to MPCP. Given
M ,w (assume M never tries to move le from the le end).

Parts of the kit:
...1

[#
#q0w1 . . .wn#

]
...2 Head moving right: (q, a) 7→ (r ,b , R). For each pair (q, a) a tile[qa

br

]
.

...3 Head moving le: (q, a) 7→ (r ,b , L). For each triple (q, a, c) a
tile

[cqa
rcb

]
.

...4
[
a
a

]
for all a in Γ.

...5
[#
#

]
,
[#
␣#

]
. is extends the tape if needed.

...6
[aqaccept
qaccept

]
,
[qaccepta
qaccept

]
. is eats up the rest of the tape.

...7
[qaccept##

#

]
completes the match.

.

.

Example Γ = 0, 1, 2, ␣,

(q0 , 0)→ (q7 , 2, R), (q7 , 1)→ (q5 , 0,R), (q5 , 0)→ (q9 , 2, L),

where q9 = qacc. Starting configuration q0010. Kit:[#
#q0010#

]
,
[
0
0

]
,
[
1
1

]
,
[
2
2

]
,
[#
#

]
,
[#
␣#

]
,
[q00
2q7

]
,
[q71
0q5

]
,
[2q50
q920

]
,[q90

q9

]
,
[q92
q9

]
,
[2q9
q9

]
,
[
q9##
#

]
A correspondence:[#

#q0010#

] [q00
2q7

] [
1
1

] [
0
0

] [#
#

] [
2
2

] [q71
0q5

] [
0
0

] [#
#

] [
2
2

] [0q50
q902

] [#
#

]
[2q9
q9

] [
0
0

] [
2
2

] [#
#

] [q90
q9

] [
2
2

] [#
#

] [q92
q9

] [#
#

] [q9##
#

]

Reducing MPCP to PCP. Notation:

∗u = ∗u1 ∗ u2 ∗ · · · ∗ un ,
u∗ = u1 ∗ u2 ∗ · · · ∗ un∗,
∗u∗ = ∗u1 ∗ u2 ∗ · · · ∗ un ∗ .

Convert an instance
{ [
t1
b1

]
, . . . ,

[
tn
bn

] }
of MPCP into the following

instance of PCP: [∗t1
∗b1∗

]
,[∗t1

b1∗
]
, . . . ,

[∗tn
bn∗

]
,[∗@

@

]
.

is will force
[∗t1
∗b1∗

]
to be the first tile used, without requiring it

specially.

Approximations

In case of NP problems, the approximation question makes sense
for optimization. We will formulate it only for maximization
problems, where we maximize a positive function. For object
function obj(x ,y) for x ,y ∈ {0, 1}n , the optimum is

M(x) = max
y

obj(x ,y)

where y runs over the possible .
For 1 ⩽ k < ∞, an algorithm A(x) is a k-approximation if

obj(x ,A(x)) ⩾ M(x)/k .

Analogous concept for miminization.

Maximum cut

Given an undirected graph G = (V , E) with edge lengthwi j ⩾ for
each edge (i , j). If (i , j) is not an edge thenw i j = 0. Special case:
unit edgelengths: w i j = 1.

A cut: a nonempty set S ⊂ V . e value of the cut:
val(S) = ∑

i∈S , j<S w i j .
We want to find S with maximal val(S).

.

.

Example e nodes in G are points in some space, say a
many-dimensional space corresponding data about customers. e
edge lengths are distances.
A maximum cut divides the nodes into two groups (clusters) with the
property that in general, elements in the same cluster are close to
each other and elements in different clusters are far from each other.

Greedy algorithms (local search)

Try local improvements as long as you can.
.

.

Example (MAXIMUM CUT) Repeat: find a point on one side of
the cut whose moving to the other side increases the cutsize.

.

.

eorem If you cannot improve anymore with this algorithm then
you are withing a factor 2 of the optimum.

Proof. e unimprovable cut contains at least half of all edges. □

Maximum cut for weighted edges

e greedy algorithm brings within factor 2 of the optimum also
in the weighted case. But does it take a polynomial number of
steps?

Yes, when edge weights are 0 or 1 (you must know why).
No, in the general case: there are examples when it can take an
exponential number of steps (what is an upper bound?).

New idea: decide each “v ∈ S?” question by tossing a coin. (See
later.) e expected weight of the cut is 1

2

∑
e we , since each edge

is in the cut with probability 1/2.
Semidefinite programming increases the ratio of expected cut
further.

Less greed is sometimes beer

What does the greedy algorithm for vertex cover say? e following,
less greedy algorithm has beer performance guarantee.

C ← ∅
E ′ ← E[G]
while E ′ , ∅ do

let (u ,v) be an arbitrary edge in E ′

C ← C ∪ {u ,v}
remove from E ′ every edge incident on u or v

return C

.

.
eorem e above algorithm has a ratio bound of 2.

Indeed, each added pair of nodes belongs to an edge that is disjoint
from all edges chosen earlier. So even the optimal cut must contain
at least one of each of these node pairs.

is algorithm does not help at all in the approximation of the size of
the maximum independent set, even though finding it is equivalent
to findind a minimum vertex cover.
Indeed, consider an example where a maximum independent set has
size n1/2. A minimum vertex cover, of size n − n1/2, is approximated
within 2 even when we choose all points: a vertex cover of size n. Its
complement, of size 0 (but even if we choose a set of size 1) is not a
good approximation to n1/2.

Fully approximable version of knapsack

e knapsack problem is defined as follows.
Given: integers b ⩾ a1 ⩾ . . . ⩾ an , and integer weights
w1 ⩾ · · · ⩾ wn .
Maximize ∑

j w jx j , subject to
∑

j a jx j ⩽ b, with x j ∈ {0, 1}.
Example: a thief, items with volumes a j and valuesw j , knapsack
of volume b.
NP-hard, since we get SUBSET SUM by seingw j = a j and
asking whether the optimum is b.
For every ε , we show a polynomial, (1 + ε)-approximation
algorithm.
Even in the subset sum case, the equivalent problem: minimizing
b −∑

i xiai , is not approximable, for a trivial reason. Can be 0,
and no non-zero approximation is within constant factor of 0.

Dynamic programming: For 1 ⩽ k ⩽ n,

Ak(p) = min{aTx : wTx ⩾ p , xk+1 = · · · = xn = 0 }.

If the set is empty the minimum is∞, and let Ak(x) = 0 for x ⩽ 0.
Letw = w1 + · · ·+wn . e vector (Ak+1(0), . . . ,Ak+1(w)) can be
computed by a simple recursion from (Ak(0), . . . ,Ak(w)).

Ak+1(p) = min{Ak(p), ak+1 +Ak(p −wk+1) }.

e optimum is max{p : An(p) ⩽ b }.
Complexity: roughly O(nw) steps.
Why is this not a polynomial algorithm?

Idea for approximation: break eachwi into a smaller number of big
chunks, and use dynamic programming. Let r > 0,w ′i = ⌊w i/r⌋.

maximize (w ′)Tx
subject to aTx ⩽ b ,

x i = 0, 1, i = 1, . . . ,n.

For the optimal solution x ′ of the changed problem, estimate
wT x ′
opt = wT x ′

wT x∗ . We have

wTx ′/r ⩾ (w ′)Tx ′ ⩾ (w ′)Tx∗ ⩾ (w/r)Tx∗ − n,
wTx ′ ⩾ opt − r · n = opt − εw1 ,

where we set r = εw1/n. is gives

(w)Tx ′

opt
⩾ 1 −

εw1

opt
⩾ 1 − ε .

Withw =
∑

i w i , the amount of time is of the order of

nw/r = n2w/(w1ε) ⩽ n3/ε ,

which is polynomial in n, (1/ε).

Approximation classes

Fully approximable For every ε , there is a 1 + ε-approximation.
Example: appropriate version of KNAPSACK

Partly approximable ere is an constant lower bound kmin > 1 on
the achievable approximation ratio.
Example: MAXIMUM CUT, VERTEX COVER, MAX-SAT.

Inapproximable Example: INDEPENDENT SET (deep result). e
approximation status of this problem is different from VERTEX
COVER, despite the close equivalence between the two
problems.

Random variables, expected value

I assume that you learned about random variables already in an
introductory course (Probability in Computing, or its equivalent).
For a random variable X with possible values a1 , . . . , an , its expected
value EX is defined as

a1 P {X = a1 } + · · ·+ an P {X = an } .

Example: if Z is a random variable whose values are the possible
outcomes of a toss of a 6-sided die, then

EZ = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5.

Example: If Y is the random variable that is 1 if Z ⩾ 5, and 0
otherwise, then

EY = 1 · P {Z ⩾ 5 } + 0 · P {Z < 5 } = P {Z ⩾ 5 } .

Sum theorem

.

.

eorem For random variables X ,Y (on the same sample space):

E(X + Y) = EX + EY .

.

.

Example For the number X of spots on top aer a toss of a die, let
A be the event 2|X , and B the event X > 1. Dad gives me a dime if A
occurs and Mom gives one if B occurs. What is my expected win?
Let IA be the random variable that is 1 if A occurs and 0 otherwise.

E(IA + IB) = EIA + EIB = P(A) + P(B) = 1/2 + 5/6 dimes.

Chebyshev-Markov inequality

e following theorem helps draw implications about probabilities
with the help of the expected value.
.

.

eorem (Chebyshev-Markov) If X is a nonnegative random
variable then

P{X > c · E(X) } < 1/c .

Randomization
Two uses of randomness in complexity

icksort(A)

Partition(b,A) // into arrays A1,A2
icksort(A1)
icksort(A2)

Average case analysis Assume that b is chosen as A[1]. Worst case
Θ(n2) comparisons. Average case (over all possible orders of A):
only O(n logn) comparisons.

Randomization Choose b randomly. en for every order of A, the
average number of comparisons (over all possible choices of b in
all recursive calls) is only O(n logn).

We are now interested in the second kind of use of randomness:
algorithms of this kind are called randomized.

Analysis of icksort

is works both for average case and for randomization.
Let the sorted order be z1 < z2 < · · · < zn . If i < j then let

Zi j = {zi , zi+1 , . . . , z j }.

Let Ci j = 1 if zi and z j will be compared sometime during the sort,
and 0 otherwise.
e only comparisons happen during a partition, with the pivot
element. Let πi j be the first (random) pivot element entering Zi j . A
lile thinking shows:
.

.

Lemma We have Ci j = 1 if and only if πi j ∈ {zi , z j }. Also, for
every x ∈ Z i j , we have

P
{
πi j = x

}
=

1

j − i + 1
.

It follows that P
{
Ci j = 1

}
= ECi j =

2
j−i+1 . e expected number of

comparisons is, with k = j − i + 1:

∑
1⩽i< j⩽n

ECi j =
∑

1⩽i< j⩽n

2

j − i + 1
= 2

n∑
k=2

n−k+1∑
i=1

1

k

= 2
n∑

k=2

n − k + 1

k
< 2(n − 1)

(1
2
+

1

3
+ · · ·+ 1

n

)
.

From analysis we know 1 + 1
2 + 1

3 + · · ·+ 1
n = lnn +O(1). Hence

the average complexity is O(n logn).

e Chebyshev-Markov inequality helps now estimate the
probability that the number of comparisons is larger than, say,
10n logn.
Analysis of the variance of the random cost can also give lower
bounds.

Primality tests

e factoring problem seems very hard. But to test a number for
having factors is much easier than to find them.
Recently, a polynomial algorithm has been found for testing primes.
But the randomized algorithms found around 1980 are still much
faster. e book shows how it is done, I discuss it here only on a high
level. It is an algorithm A(x , r) that, given number x and some
coin-toss sequence r , says “yes”/“no”.

If x is prime then A(x , r) = “yes”.
If x is composite then A(x , r) = “no” with probability ⩾ 1/2. In
this case, r serves as a witness of nonprimality.

Aer repeating the test k times, the probability of “yes” for
composite x is decreased to (1/2)k .
e witness above is not a factor of x , and does not help in
factorization.

Polynomial identity

Given a function f (x), is it 0 for all input values x?
e function may be given by a formula, or by a complicated
program.
.

.

Example
det(A1x1 + · · ·+Akxk +Ak+1)

where the Ai are n × n matrices.

.

.
Lemma A degree d polynomial of one variable has at most d roots.

Proof. See book, this is very well-known. □

So, if we find P(r) = 0 on a random r , this can only happen if r hits
one of the d roots.

.

.

Lemma (Schwartz) Let p(x1 , . . . , xm) be a nonzero polynomial,
with each variable having degree at most d . If r1 , . . . , rm are selected
randomly from {1, . . . , f } then the probability that p(r1 , . . . , rm) = 0
is at mostmd/f .

Proof. Induction onm. p(x1 , . . . , xm) = p0 + x1p1 + · · ·+ xd1pd ,
where at least one of the pi , say p j , is not 0. Let
p ′(x1) = p(x1 , r2 , . . . , rm).

p j(r2 , . . . , rm) = 0 p ′(r1) = 0

(m − 1)d/f + d/f =md/f .

□

Randomized complexity classes

Benefits of a randomized algorithm? Some possibilities:
Expected running time e result is always correct, but only a

polynomial expected running time is guaranteed. Example:
icksort

Optimization Runs in polynomial time, and the expected value of
the result is close to the optimum. Example: Maximum cut.

Deciding a language, one-sided Runs in polynomial time, to answer
the question “x ∈ L?” If the answer is “yes”, it is never wrong. If
the answer is “no”, it is wrong probability ⩽ 1/2. Example 1: L is
the set of composite numbers, and the algorithm is the
randomized primality test. Example 2: Polynomial non-identity.
We say that L is in the class RP if there is such an algorithm.

Deciding a language, two-sided Runs in polynomial time, to answer
the question “x ∈ L?” e answer can be wrong with probability
⩽ 1/3. We say that L is in the class BPP if there is such an
algorithm. Example: I do not have a natural one. . .

RP versus BPP

e examples we have seen are for RP. I do not know of simple
and natural examples of a language that is in BPP but probably
not in RP. Here is an artificial one: L = L1 \ L2, where Li ∈ RP.
Still, BPP is a very important class: the class of languages
decidable in randomized polynomial time.

Amplification: decreasing the error probability

Very simple for RP: just repeat the experiment.
For BPP: repeat and take majority. e proof is a version of the Law
of Large Numbers.
Given a language L, let algorithm M decide whether input x is in L,
with error probability q < 1/2. Construct another algorithm M ′ that
recognizes L with a much smaller probability (4q(1 − q))k .
(Show that this is always less than 1!)
So, the error probability can be made even exponentially small.
Algorithm M ′, on input x repeats 2k times the calculations of M(x),
then takes the majority.

x 2 Lx < L

k = 6

k = 8

0 11/3 2/3

e value of each curve shows (for x < L, x ∈ L, k = 6, k = 8), at
position i/k , the probability of i successes aer k repetitions. e
grey area is the probability that with x < L, the majority decision is
acceptance aer k = 8 repetitions.

ere are 2k + 1 possibilities for the numberm of accepting
computatons: 0, 1, . . . , 2k . Accept ifm ⩾ k .

P
{
M ′ accepts when it should not } =

P {m ⩾ k } =
2k∑
i=k

P {m = i } =
2k∑
i=k

(
2k

i

)
qi(1 − q)2k−i .

Since i ⩾ k and q < 1/2, we have qi(1 − q)2k−i < qk(1 − q)k , so

P {m ⩾ k } ⩽
2k∑
i=0

(
2k

i

)
qk(1 − q)k = 22kqk(1 − q)k = (4q(1 − q))k .

Similarly, of course,

P
{
M ′ rejects when it should not } ⩽ (4q(1 − q))k .

Branching programs

Example that is hard for a deterministic algorithm but easy for a
randomized one.

L1: x_1 ? goto L3 : goto L2
L2: x_2 ? goto L6 : goto L4
L3: x_3 ? goto L7 : goto L5
L4: x_3 ? goto L7 : goto L6
L5: x_2 ? goto L7 : goto L6
L6: return 0
L7: return 1

Each line outputs 0 or 1, or reads a variable and depending on its
value, performs a GOTO to some later lines.
Equivalent description: a directed acyclic graph. Each node
corresponds to a program line, outgoing edges are labeled by 0/1. At
each node it is shown which variable it reads.
Draw the graph corresponding to the above program.

.

.

eorem e equivalence problem for branching programs is
co-NP-complete.

A branching program is read-once (ROBP) if each variable is read at
only once in each execution (directed path from start to finish).
Every Boolean function can be computed by a read-once branching
program. Language

EROBP = { (B1 , B2) : B1 and B2 are equivalent ROBP }.

.

.

eorem EROBP is in BPP (decidable in randomized polynomial
time).

Can testing on some random inputs help? It is hard to get guarantees
when xi is chosen from {0, 1}.
Arithmetization View Boolean expressions as polynomials. Namely,

assign polynomials to each node recursively.

Nodes e input node gets 1.
Each non-input node gets the sum of polynomials on its
incoming edges

Edges If a node testing x has polynomial p, assign
px to the 1 out-edge
p(1 − x) to the 0 out-edge

Represent as sum of products over all paths. Example product:

x1x2(1 − x3)(1 − x5).

Make sure each variable appears in each product:

x1x2(1 − x3)x4(1 − x5) + x1x2(1 − x3)(1 − x4)(1 − x5).

Like DNF, but + in place of ∨, and xi is not restricted to {0, 1}.
.

.

Lemma Two read-once programs are equivalent if and only if
their polynomials are equal.

Gödel’s incompleteness theorem

e topic of these lectures is a new kind of undecidability. In
computation theory, undecidability is the property of a language L.
is language gives rise to a family of questions of the type x ∈ L?.
e language is undecidable if there is no Turing machine that
answers the whole family of such questions.
Most mathematics can be represented formally. Mathematical proof,
when wrien out in all formal detail, can be checked algorithmically.
A theory is a method to prove theorems, and a sentence S is
undecidable if neither S nor its negation can be proved. So, in
logic/mathematics, undecidability is the property of a sentence in
relation to a theory.

.

.

Example e continuum hypothesis: the statement that there is
no cardinality between the size of the set of natural numbers and the
size of the set of real numbers. ere is a logical theory, ZFC (the
Zermelo-Fraenkel set theory with the axiom of choice) suitable for
deriving essentially all known theorems of mathematics. It is known
(by theorems of Gödel and Cohen) that the continuum hypothesis is
undecidable in ZFC.
.

.

Example Euclidean geometry is the first example of a
mathematical theory. e so-called axiom of parallels is known to be
undecidable in the rest of the theory (independent from it).

Language

Mathematics deals with sentences (statements about some
mathematical objects). For a while, let us abstract away from the
structural content of these sentences: they are just strings in some
finite alphabet. Assumptions:
...a Permied sequences form a decidable language L: they are

distinguishable from (formal) nonsense.
...b ere is a computable function Neg assigning to each sentence
φ, another sentenceψ called its negation.

So, a logical language is a pair L = (L,Neg).
.

.

Example For logical language L1 = (L1,Neg), the set L1 consists
of all expressions of the form l(a,b) and l ′(a,b) where a,b are
natural numbers (in decimal representation). So, l(2, 4) and l(15, 0)
are examples of sentences. e sentences l(a,b) and l ′(a,b) are each
other’s negations: Neg(l(a,b)) = l ′(a,b), Neg(l ′(a,b)) = l(a,b).

Formal system
A formal system F = (L,V) is given by a logical language L and a
decidable relation

V (T , P)

(the proof verifying relation). A sentence T for which there is a proof
in F is called a theorem of F. e set of theorems of system F is called
the theory of F, wrien as

Th(F) = {T ∈ L : ∃P V (T , P) }.

Proofs are like witnesses in the NP framework.
.

.

Example A simple formal system T1 based on the language L1

above. Let us call axioms all l(a,b) where b = a + 1. A proof is a
sequence S1 , . . . , Sn of sentences with the following property. Si is
either an axiom or there are j , k < i and a,b , c with S j = l(a,b),
Sk = l(b , c) and Si = l(a, c). is is a proof for Sn .
is system has a proof for all formulas of the form l(a,b) where
a < b.

Consistency and completeness

A formal system (or its theory) is called consistent if for no sentence
can both it and its negation be a theorem. Inconsistent formal
systems are uninteresting, but sometimes we do not know whether a
formal system is consistent.
A sentence S is called undecidable in a theory T (or, equivalently,
independent of this theory) if neither S nor its negation is a theorem
in T . A consistent formal system (or its theory) is complete if it has
no undecidable sentences.
.

.

Example e toy formal system T1 above is incomplete since it
has no proof of either l(5, 3) or l ′(5, 3). It becomes complete, say, by
adding as new axioms all formulas of the form l ′(a,b) with a ⩾ b.

Completeness is not always desirable.
.

.

Example e language of group theory consists of expressions
formed from: variable symbols, binary operation symbol ∗ called
multiplication, equation symbol =, parentheses, and logical symbols
∧,∨,¬, ∃,∀. e formal system: some axioms like

∀a∀b∀c (a ∗ (b ∗ c) = a ∗ (b ∗ c)), ∃e∀a (a ∗ e = a),

and so on, all needed properties of groups. Further, general axioms
related to logic and equality, and general deduction rules of logic.
Such a theory is not meant to be complete: should describe the group
of permutations as well as the group of invertible matrices, and also
the integers when ∗ is interpreted as addition. In this theory the
sentence ∀a∀b(a ∗ b = b ∗ a) is undecidable: true for addition of
natural numbers, false for multiplication of permutations.

An incomplete theory is more general than any theory containing it:
its theorems have wider validity.

Complete theories have a desirable algorithmic property.
.

.

eorem If a formal system T is complete then there is an
algorithm that for each sentence S finds in T a proof either for S or
for its negation.

us, if there are no logically undecidable sentences then the set of
theorems is algorithmically decidable.
Proof. e algorithm starts enumerating all possible finite strings P
and checks whether P is a proof for S or a proof for the negation of S .
Sooner or later, one such proof turns up, since it exists. □

.

.

Example e language of real numbers consists of expressions
formed from the following: variable symbols, an abstract binary
operations ∗,+, the relation ⩽. Further we have the equation symbol
=, parentheses, and logical symbols ∧,∨,¬, ∃,∀. e formal system
is given by some axioms

∀a∀b∀c (a∗(b∗c) = a∗(b∗c)), ∀a∀b (a+b = b+a), ∀a (a∗a ⩾ 0),

and so on, spelling out all important properties of real numbers. To
this are added a few general axioms related to logic and equality, and
some general deduction rules of logic. Tarski proved that this theory
is complete. is implies that there is a decision algorithm to decide
every such sentence about real numbers.

Arithmetization and Gödel’s eorem

We may feel that there is only one set of natural numbers, so we may
want a system for it that is as complete as possible. Suppose that we
want to develop such a formal system. Strings, tables, and so on can
be encoded into natural numbers, so this formal system must express
all statements about such things as well. Turing machine transitions
and configurations are just tables and strings: using natural numbers
we can therefore speak about a Turing machine, and about whether
it halts. ese actions of encoding everything into numbers is called
arithmetization.
Let L be some fixed computably enumerable, non-computable set of
integers. An arithmetical theory T is rich if there is a computable
function that to each number n, assigns a sentence φn such that n ∈ L
iff φn ∈ T.
A reasonable formal system of natural numbers should be rich: since
n ∈ L is checkable by computation, there should be also a proof for
this!

Here is one of the most famous theorems of mathematics, which has
not ceased to exert its fascination on people with philosophical
interests:
.

.

eorem (Gödel’s first incompleteness theorem) Every rich
formal system is incomplete.

Proof. If the formal system were complete then, according to the
above theorem, it would give a procedure to decide all sentences φn .
is could be used to decide n ∈ L, which is impossible. □

How can the theory of real numbers be complete and the theory of
natural numbers not? Are not all natural numbers real?
ey are. But in the formal system of real numbers there is no
expression that is satisfied only by natural numbers: the concept of
an arbitrary natural number is not expressible in that system.

More arithmetization, consistency

For any formal system F, it is possible encode the proof verification
process into arithmetical formulas. If F is “sufficiently strong”, then
there is a formula ΓF expressing the fact that F is consistent.
With an appropriate definition of sufficiently strong, then the
following theorem holds (we will not prove it):
.

.

eorem (Gödel’s second incompleteness theorem) If the system
F is sufficiently strong and consistent then ΓF is undecidable in it.

us, the consistency of a sufficently strong system F of natural
numbers cannot be proved by tools that do not go “beyond” it: we
have to rely on our “intuition”. is theorem showed the failure of
the so-called Hilbert program.

Cryptography

Cryptography in history.

Caesar cypher.
Cryptanalysis in WWII. e Enigma, the Magic, Turing.
Commercial and privacy needs in the present.
Systematic cryptology based on complexity theory started in mid
1970s.

Varieties of cryptography:
Secret algorithm, or secret key Examples: DES (Data Encryption

Standard). e mask in Jules Verne’s Sándor Mátyás.
One-time pad Shannon showed that this is the only way to achieve

information-theoretic (the strongest) security.
Private-key versus public-key cryptosystems Notation: M is the

message, C is the cyphertext.

Private key

Sender and receiver share the secret key k :

E(k ,M) = C , D(k ,C) = M .

A participant must have a different key for each partner: n
participants need n2/2 keys.

Public key

Let e be the public encryption key, d the private decryption key.

E(e ,M) = C , D(d ,C) = M .

For n participants, only 2n keys are needed. e public keys can be
published in a directory.
is assumes D(d , E(e ,M)) = M . Suppose that the functions are also
inverse in the other direction:

E(e ,D(d ,M)) = M .

en the system can also be used for signatures. (“I do.”)

estions:
What are the mathematical requirements? ere are many, we will

see the definition of one-way functions and trap-door functions.
What are the proposed implementations? We will see RSA.
Are the proposed implementations proved to satisfy those requirements?

No.
What useful weaker statements are proved? Some of the schemes

have the property that breaking them would give mathematical
algorithms that have been long sought.

One-way functions

Easy to compute, hard to invert. Function f is one-way if:
Computable in polynomial time
Inverting it is hard: For every probabilistic polynomial-time
algorithm M , every c and sufficiently large n, randomw of length
n:

P
{
f (M(f (w))) = f (w)

}
⩽ n−c .

It is not known whether one-way functions exist. (If they do then
P , NP.) Some functions seem to be one-way.
.

.
Example Input: large primes p ,q. Output: pq.

Nice cryptographic applications.
A provably secure private-key encryption scheme.
Pseudorandom generators
Password system, where each password is encrypted via a
one-way function and stored in this form.

Trap-door functions

Like a one-way function, but knowing a “trapdoor” key allows to
invert it.

Length-preserving polynomial-time encoding function
E : (Σ∗)2 → Σ∗.
Polynomial-time inverting function D : (Σ∗)2 → Σ∗.
Auxiliary probabilistic polynomial time algorithm G, produces
(key, trapdoor) pair (e ,d).

Requirements:
Inverting without the trapdoor key is hard: For every
probabilistic polynomial-time computable function f , every
constant c and sufficiently large n, random output (e ,d) of G on
1n , and randomw of length n, with v = f (E(e ,w)), we have

P
{
E(e ,v) = E(e ,w)

}
⩽ n−c .

Inverting with the trapdoor key is easy: For every n, everyw of
length n, every output (e ,d) of G that occurs with nonzero
probability, with v = D(d , E(e ,w)),

E(e ,v) = E(e ,w).

Some number theory
Modular arithmetic

e notation
a ≡ b (mod m).

is is called congruence. Its meaning is the same as

a modm = b modm.

If the modulus is the same, you can add, subtract or multiply two
congruences. We will be interested in arithmetical operations with
respect to a fixed modulus.
.

.

eorem Given integers a, e ,m, it takes only polynomial time to
compute

ae modm.

Division modulom

.

.

eorem For every natural numberm > 1 and every u relatively
prime tom, there is a v with

uv ≡ 1 (mod m).

is v can be found in polynomial time.

Proof. Use the Extended Euclidean Algorithm to solve
ux +my = 1. □

e set of remainders modulom is called Zm . It is a ring (+, ∗, usual
rules apply to these operations).. e set of remainders modulom
relatively prime tom is called Z∗m . is is a group with respect to
multiplication (every element has an inverse).
Ifm is a prime then, of course, Z∗m = {1, . . . ,m − 1}. In this case, we
can “divide” in Zm by any nonzero element, so Zm is a field.

Fermat’s theorem

For a ∈ Z∗p , look at the sequence a, a2 , . . . ,. Eventually, it begins to
repeat. First, it becomes 1. e smallest number n such that an ≡ 1 is
called the order of n. It is easy to show (exercise) that if ak ≡ 1m then
the order of a divides k .
.

.

eorem (Fermat) Let p be a prime and a a number not divisible
by p. en ap−1 ≡ 1 (mod p).

Generalization: Given a numberm with prime divisors p1 , . . . ,pk ,
we denote

φ(m) =m(1 − 1/p1) · · · (1 − 1/pk).

For example, ifm = pq then φ(m) = (p − 1)(q − 1).
.

.

eorem (Euler)
...a e number of integers in {1, . . . ,m − 1} relatively prime tom is
φ(m).

...b If gcd(a,m) = 1 then aφ(m) ≡ 1 (mod m).

e RSA cryptosystem

Given a composite modulusm (say, the product of two large primes),
and an integer exponent e , it is easy to compute ae modm but, this
operation is, in general, hard to invert: to find a given ae . However,
this becomes easy if
...a gcd(a,m) = 1,
...b gcd(e ,φ(m)) = 1,
...c we know φ(m).

Just find d with ed ≡ 1 (mod φ(m)) and compute

(ae)d = aed = akφ(m)+1 = a · akφ(m) ≡ a (mod m).

Without knowing φ(m) the inversion seems hard. Ifm = pq for
primes p ,q then finding φ(m) is equivalent to factoringm.
Why is it easy for real numbers?

RSA algoritm

A polynomial algorithm G generating the keys from 1n:
...1 Find two large primes, p ,q, of length n. For this, choose large

numbers repeatedly and test them for primality.
...2 Computem = pq and φ(m). Select a number e relatively prime

to φ(m). For this, try numbers < φ(m) repeatedly and test for
relative primality. It can be shown that that this process
succeeds soon.

...3 Compute the multiplicative inverse d of e modulo φ(m).

...4 Output (m, e), (m,d) as the public and private keys.

Our encryption works on numbers, not on strings. To encrypt
strings, we have to break up the string into smaller segments and
convert the segments into numbers first. Letw be such a number, we
will view it as our message. e encryption function is

E(⟨m, e⟩,w) = w e modm.

e inverting function is

D(⟨m,d⟩,v) = vd modm.

Compare with the definition of trapdoor functions!
It is important to assume that the solution of the equation

xb ≡ c (mod m)

is not easy even for, say, 1% of the numbers c . Otherwise, a
randomized polynomial-time inversion algorithm would find x for all
numbers c .

	Introduction
	The class structure
	Some history

	Preliminaries
	Turing machines
	Basic definitions
	Computing with a Turing machine
	Examples of Turing machines

	Variants of Turing machines
	Simulating 2 tapes by one
	2-dimensional Turing machine
	The random access machine
	Cellular automata

	Universal Turing machines
	What is it?
	Constructing a universal machine
	A useful picture

	The concept of an algorithm
	Running time
	Measuring it
	Ignoring constant factors
	What is a step?
	Tricky examples
	Worst-case analysis
	Average case analysis

	Complexity classes
	What kinds of problem?
	Upper and lower bounds
	Why complexity classes?
	Why concentrate on language classes?
	Eliminating duplicates: an analysis

	Asymptotic analysis
	Examples
	Sums: the art of simplification
	Fast polynomial multiplication
	Fast multiplication of numbers

	Polynomial time
	Invariance with respect to machine model
	Does it capture ``practical''?
	Shortest path
	Algorithms on integers
	Extended Euclidean algorithm
	Longest common subsequence
	Gaussian elimination

	The class NP
	Examples
	Witness verifying relation
	Definition of NP
	Optimization problems

	Nondeterministic computations
	Recognition and enumeration
	Nondeterminism
	Rewrite rules and grammars

	More examples of NP problems
	Subset sum

	Satisfiability
	Propositional logic
	Satisfiability

	Completeness
	Reductions
	Hardness and completeness
	The NP-completeness of SAT

	Other NP-complete problems
	Independent sets
	Hamiltonian path

	Uncomputability
	Diagonalization
	Halting problem
	Computable enumerability
	A not computably enumerable language
	Reductions
	A simple undecidable problem

	Approximations
	Greedy algorithms (local search)
	Less greed is somethimes better
	Approximation classes

	Randomization
	Random variables
	Quicksort
	Primality tests
	Polynomial identity
	Randomized complexity classes
	Branching programs

	Gödel's incompleteness theorem
	Language
	Formal system
	Arithmetization and Gödel's theorem
	More arithmetization, consistency

	Cryptography
	Some number theory
	Modular arithmetic
	Fermat's theorem

	The RSA cryptosystem

