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We use algebraic methods to get lower bounds for complexity 

of different functions based on constant depth unbounded fan-in 

circuits with the given set of basic operations. In particular, we 

prove that depth k circuits with gates NOT, OR and MOD, where 

p is a prime require Ezp(O(n’)) gates to calculate MOD, functions 

for any r # pm. This statement contains as special cases Yao’s 

PARITY result [ Ya 85 ] and Razborov’s new MAJORITY result 

@a 86; (MOD, gate is an oracle which outputs zero, if the number 

of ones is divisible by m). 

Introduction 

Constant depth polynomial size circuits with unbounded fan- 

in were studied first for their connection with constructing oracles 

separating PSPACE from the polynomial hierarchy. Furst, Saxe 

and Sipser [FSS 811 and independently Ajtai [Aj 831 proved that 

AC” circuits (constant depth polynomial size) could not calculate 

the parity function. 

The result was improved by Yao (Ya 851 who showed an 

exponential bound on the size of such circuits. This result allows 

the construction of the separating oracle. An almost optimal bound 
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on the size was given by Hastad [Ha 86). Cai [Ca 861 proved that 

small circuits not only fail to compute parity but give eventually 

50% of error. This implies a separation by a random oracle. An 

independent proof of this is due to Babai. 

Proving lower bounds for constant depth circuits is important 

not only for applications to oracles but because it may give us an 

idea of what kind of techniques we can use in proving lower bounds 

for more powerful models of computation. 

A natural way to extend the notion of AC’ circuits with 

AND and OR gates is to increase the number of basic operations 

(e.g. we allow PARITY gates in the circuit). This leads to the 

notion of A@ reducibility. It was conjectured in [FSS 811 that 

MAJORITY was not A@ reducible to PARITY. 

Barrington [Ba 861 defined the class ACC (the closure under 

AC’ reductions of the class of MOD, functions) and showed that 

the word problem for any fixed group is either inside ACC (if the 

group is solvable) or complete under such reductions for the class 

NC’. He conjectured ACC # NC’. 

On the other hand many of the symmetric functions are 

AC”-reducible to each other as it was shown by Fagin et al. [FIG’S 

83). 

Finally, Razborov [Ra 861 proved the conjecture of [FSS 811 

by showing an exponential lower bound for calculating majority 

function using a constant depth circuit with AND and PARITY 

gates. The first part of his proof is similar to our proof and he has 

Lemma 1 for F = Zp. 
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In full generality Lemma 1 was proved by David Barrington 

[Ra 21, who was working independently on proving lower bounds for 

circuits with MOD, gates. 

The main idea of the present algebraic approach is to map 

the boolean functions, on which the given boolean circuit operates, 

to some algebra A. In the previous works (except for Ra.zborov’s 

results) people were doing different surgeries on the boolean circuit 

going from gate to gate. On the contrary, in our proofs the circuit 

always stays the same, but going from gate to gate we make 

changes in the algebra A. While in the first part of our proof we 

are practically talking about Rarborov’s approximations, our alge- 

braic setting and the notion of UF- completeness give us more 

direct and powerful methods in the second part of the proof. 

Basic Notation and Definitions 

We consider the following types of operat,ions. 

5) 

AND - outputs one iff all of the inputs are ones. 

OR - outputs one iff at least one input is one. 

NOT - takes one input and computes the negation. 

Mob) - outputs one iff the number of ones i.n the in- 

put is congruent to s mod p. MOD,= NOT(MOD~,,,)). 

h$AJORITY - outputs one iff at least half of the inputs 

are ones. 

6) EXACTK - outputs one iff exactly :k inputs are ones. 

Let B be a collection of types of operations. 

Definition: A boolean circuit C” with the set B of basic 

operations is a transitively closed set together with an assignment 

of an operation from B to each nonminimal (under E relation) ele- 

ment. The only minimal elements of C” should be X,,Xe,...X,. 

The minimal elements of C” are the inputs. The maximal ele- 

ments are the outputs and nonminimal elements are the gates of 

the circuit. 

The size of a circuit is the number of gates, the depth is the 

length of the longest chain of the gates linearly ordered by inclu- 

sion. In a natural way a circuit computes a boolean function. 

Remark: We will be considering a collection of circuits C” 

(one circuit for each length of the input) so the superscript n will 

appear almost on all objects of our discussion. Do not let it to con- 

fuse you. Formally, it means that we are talking about a sequence 

of objects instead of one object. That gives us the ability to use 

small and large 0 in functions of n. Informally, you can think that 

n is a very large fixed number and totally ignore the superscripts. 

Definition: A boolean function f’ (or a set of functions 

{~~,~.$,....f:}) is A@ reducible to another function g” (or a set of 

functions (p;,gd,.,.. g:}) if there exists a constant depth polynomial 

size circuit C’ with basic operations AND, OR, NOT, g (or 

AND,OR,NOT, g,,ps . . . . gh) and output f” (or /;,f; ,...., /:). 

Clearly A@ reducibility is a transitive relation between sets 

of functions. 

We give a list of AC0 reductions which are not very hard to 

check. 

1) 

2) 

3) 

4) 

5) 

The set of MOD(,,,l functions for s from zero to p -1 is 

A@-reducible to MOD, _ 

The set of EXACTS functions for k from zero to n is AC’- 

reducible to MAJORITY. 

MOD,, is AC’-reducible to the set of EXACTk functions and 

to MAJO.RITY. 

MOD, is A@ reducible to MODb when a divides b. 

MODp. is A@ reducible to MOD,,. 

The Mappings from the met of Boolean functions to F- 

algebras 

Let Xr,Xs . . . X, be boolean variables. By I)’ we denote the 

set of the trut.h assignments on these variables. For any field F we 

denote by C$ the algebra of functions from D” to F with pointwise 

addition and multiplication. We identify ‘False’ with OF and 

‘Truth’ with 1~. Then cl; contains as a subset the set of boolean 

functions in Xi’s (the subset is proper when Ff 2,). In particular 

U,? contains Xi’s (as a boolean function Xi is defined by 

T(d)= d(x) :for any drD”). 
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Proposition 1: U,! is generated as F-algebra by Xi’s 

with the relations Xi”= 4. 

Proof: Fix d,rD”. Then II xi~x(~Jl-Xj)isa 
x,(dd-1 , - 

function in U;! that takes value 1 on de and 0 elsewhere. Every 

function f in Ir;! is a linear combination of such functions and 

hence f can be written as a polynomial in &‘s. 

The polynomial for f is unique, if we require that none of the 

Xi’s appears with degree greater than 1. The uniqueness follows 

from the fact that the number of monomials of the form nXi 
ifW 

(where w is a subset of (1,2 . ..n}) is 2’, which is equal to the di- 

mension of UF. 

Let E be a subset of D”. The functions which are zero outside 

of E form an ideal I (it can be easily shown that all ideals of U;! 

can be obtained in this way.) We can think of the quotient algebra 

A = y as if we ignore the assignments in E and identify the 

functions which coincide outside of E. A polynonrid f will represent 

an element of A but such a representation is no longer unique. By 

the degree of f in A we will mean the minimum of the degrees of 

the polynomials which coincide with f in A. We denote this by 

deg,+(f). We denote by DF the set of all quotient algebras of the 

form 7 for some ideal 1. 

F-easy and Nearly F-easy Operations 

In this chapter we use Crj with its natural grading (by the de- 

gree of polynomials) to give an algebraic measure of how hard a 

boolean function is. 

DeBnition: A boolean m-ary function f”(g,,gs,...,g,,,) is F- 

easy if it can be represented in ii’s as a polynomial of a constant 

degree X. 

For any field F, NOT (g) is (1 - g) in UF. So the operation 

NOT is always F-easy. MOD, is F-easy when F = Z,, since we 

0 
can write MOD,(g,,g,...p,) as ( c gi)P -’ in Cr$ . This is also true 

i-l , 

for any field F of characteristic p since such a field contains 2, as a 

subfield. Obviously, an arbitrary size constant depth circuit with 

F-easy basic operations computes an F-easy function. 

The situation is more complicated if we want to use AND and 

OR gates in our circuits. An m-ary AND operation is ~ioi in U; 
i-l 

and it is not F-easy for any F. It happens that OR and AND can 

be represented by low degree polynomials in some algebras of fI$ 

whose dimension is just slightly less than 2O. This fact motivates 

the following definition. 

Definition: A boolean m-ary function ~n(zl,zs,...,z,) is 

nearly F-easy if for any choice of m n-ary boolean functions 

g1,g2...gm and any I there exists an F-algebra A”&;! of dimension 

at least 2” -2” -’ such that fn(g1,g2gn) can be written in A” as 

a polynomial in g’s of degree at most XI, where X is a constant. 

Lemma 1: OR is a nearly F-easy operation for any field F of 

characteristic p # 0 

Proof: Suppose f”= %gi. We will find a polynomial j” in 

pi’s of degree at most (p -I).1 such that /’ and 1” differ on at 

most 2” -’ assignments. Take A”= F where I” is the ideal gen- 

erated by f” -f”. Then f” coincides with f’ in A” and 

dim(P)< 2” -I. 

It is sufhcient to work over Z, since F contains Zr as a 

subfield. Let S be the collection of all expressions of the form 

Cj~(,$lGj%lp - 1 where Ci,j’s are arbitrary elements of 2,. Tak- 

ing the p-l power makes any function of UT, boolean. So every ex- 

pression in S is a well defined boolean function and it is written as 

a polynomial of degree at most (I.p -1). Let drD” be a truth as- 

signment. If f(d)=@ then for any i, g<(d)= 0, so for every 

s&,8(d)= 0. If f(d)=l, then for some io, n,(d)= 1. In this case 

for any choice of Ci,j’s with i# ie there is only one choice of I ele- 

ments Ci$,Ci$*..Cid such that the whole expression is zero on d. In 

any case, if dcD” then for a random element a& the probability 

that f(d)# a(d) is at most p-l. By a counting argument there will 

be an element TcS such that j(d)#/(d) on at most F of d’s 

from D” which is at most 2” -1 assignments. Q.E.D. 
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Remark: The same lemma holds for AND since we can write Proof: Yi is the function on D” that takes the value h when 

AND using OR and NOT. x is one and one when Xi is sero. It is essy to see that 

If the size of a constant dept,h circuit Co is not too big, and 

C” uses only nearly F-easy operations then the output of C” can 

be approximated by a low degree polynomial if we ignore just a 

small fraction of assignments. Lemma 2 states this precisely. 

Lemma 2: Let C” be a depth K circuit that has .an arbi- 

&= (h -l)-‘(Y; -1) and K-r= (/r-‘-1)x+ I (h” and (A -I)-’ 

exist since h is not zero on one). If u is a polynomial in Xi’s we can 

rewrite it as a polynomial in Y;‘s using the substitution 

(h -l)‘-‘(yi -1) for xi. So it is enough to show that for any mo- 

nomial of the form EYi (where w is a subset of (1, 2 . . n}) 
iw 

trary number of F-easy gates and 2’ nearly F-easy gates, where r is depA (nK)< in+ degA ( fiY{) in any A. When card(w)5 5 this 
icw i-l 

1 

~(a”). Then there is an algebra A” tn,? of dimension 2” - o (2”) 

such that all outputs of C” have degree o(G) in A”. 

is clear, since 1:‘s are linear. When cord(w)>; we write flxi as 
icw 

Proof. Take I= 2r and for each nearly F-easy gate find an 
fiY<‘nyi-’ (where Z denotes the complement of w in {l, 2 n}). 

i-l irJ 

ideal I of dimension 2” 
rr; 

-1 such that in A= -- the operation per- 
I 

Using that card (O)<+ and Y;-“s are linear we get that 

formed by this gate can be expressed in terms of the children of the 

gate by a polynomial of degree XI. Let ln be the sum of all this 

ideals. The dimension of II is at most 2’.2” --I which is o(2’) In 

A”- F, each gate computes the function that ean be expressed 
0 

degA (11x) is still less than 
icu 

$+ dcg,( fry,). Q.E.D. 
i-1 

Definition: An element arF is a c@,h root of unity if a# 1 

and a’== 1. 

Corollary: If F contains a q-th root of unity then the set 

1 

in terms of its children as a polynomial of degree Xl= 2Xo(nz) {MODe,r(Xr * * . X,), * . . MOD, -I,,(X, * . . X,)} is f$-complete. 

A- 

which is still s(n”). Since we start with Xi ‘s and the depth of 

C” is k, all outputs have a degree o(G) in A.. 

Crjf-complete element.9 and sets. 

Proof: Take hcF to be a q-th root of unity and 

Yi= (b -l)Xi+. 1. Let drD, be an assignment that contains K 

ones. Let K be congruent to S mod q. Then fiv(d)= h*= /I’. 
i-1 

Many elements of Vi have a low degree only in F-algebras of 
So fiYi can be written as ‘e’(h’.MOD,,,(X,,x,,X2 . . X.)). So in 

i-l ,-0 

dimension much smaller than 2”. Lemma 4 shows this for a certain 
any algebra th.e degree fiY< is the maximal degree of MOD.,, 

i-1 

class of elements which we call U,&complete. 
functions, and lthe statement follows from lemma 3. Q.E.D. 

Definition: An element u”cU,! (or a set of elements Lemma 4: If an element 8” (or a set ~1 sf ) is V,l- 

complete, and in some algebra A*&; its degree is o(6) then the u;,v~...,u~c U,D) is Lr,Z-complete if for any F-algebra AcC1; and 

polynomial utU; , deg,(.)$+ deg,,(v”) (or dimension of A” is at most 2” -‘+ o(2”). 

dcg,(u)<+ max(deg~(s~)) where i=1,2...,s). Proof: Every element in A” can be written as a polynomial 

The following lemma gives an important example of an Vj- 

complete element. 

of degree at most $t- c(G). So A” is equal to the linear span of 

all monomials of the degree at most 3 o(G). The number of 

Lemma 3: Let AtF, h# 0 and h# 1. Take yi= (h -l)zi+ 1 

n 
then HYi ia @-complete. 

i-l 

~+~~, 

such monomials is can be estimated as izc (1) which 

2” -‘+ o(2”). Q.E.D. 
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The Main Results 

Now we are ready to describe a nice relation between U& 

complete elements (or sets) and nearly F-easy operations. 

Theorem 1: Suppose depth k circuit C” uses tzp(o(n ‘1) 

nearly F-easy gates and an arbitrary number of F-easy gates. Then 

the output g (or outputs g1g2 . g,) of C” will differ from any 

@-complete element f (or set Ill2 . . * /,) on 2” -’ -0(2”) assign- 

ments. 

Proof: By lemma 2 there is an algebra A”&; such that g 

(or all gi’s) have degree a(G) in A” and the dimension of A” is 

2”- o (2”). If we ignore the assignments where g differs from f (or 

for some i, li differs from fi) we will get a smaller algebra d”efip. 

In A”, 8;‘s coincide with Ii’s and hence have degree o(G). So by 

lemma 4 dimension of dn is 2” -‘+ o(2”) and we had to ignore 

2” -l-0(2”) assignments. Q.E.D. 

Corollary: The output of any depth k size ezp(o(n’)) cir- 

cuit with basic operations AND, OR and NOT differs from MOD* 

function on 2” -’ -0 (2”) assignments. 

Proof: Take F= Zs. By corollary to lemma 3 

{MOD,,NOT(MOD,)} is Uja-complete. AND and OR are nearly 

F-easy so theorem 1 applies. Q.E.D. 

That gives the Yao’s bound for parity [Ya 851 and implies 

Cai’s separation result [Ca 861. We want to find a field F such that 

MOD, is F-easy but MOD,,, functions are U,&complete. 

Lemma 5: If p and q are two distinct primes then there is a 

field of characteristic p which contains q-th root of unity. 

Proof: Fpq -, will work, for q divides eard(F~,-,). Q.E.D. 

Theorem 2: Let p be a prime number and r is not a power 

of p then computing MOD, by depth k circuit with basic operations 

AND, OR, NOT and MOD,, requires czp(O(n’)) AND and OR 

gates. 

Proof: Let q be a prime divisor of r not equal to p. By lem- 

ma 5 choose a field F of characteristic p which contains q-th root of 

unity. Then MOD, is F-easy, when the set 

{MODo,p,MODl,, MOD, -I,,} is U&complete and requires 

a large circuit. But this set. is A@ reducible to MOD,. Hence 

MOD, also requires a large circuit. Q.E.D. 

*Corollary: If p is a prime then computing MAJOR- 

ITY by depth K circuit with basic operations AND, OR, NOT 

and MOD, requires czp(O(n’)) AND and OR gates. 

Proof: Take any prime qf p Then MOD, is A@’ 

reducible to MAJORITY. So apply theorem 2. Q.E.D. 

When P = 2 this qives Razborov‘s new result.. 

Open Problems 

It is not clear if Lemma 1 or some similar statement holds for 

a field of characteristic 0. If it does then some nice analytic 

methods can be used since the space of functions from D to R or C 

has a natural L, metric which coincides with the notion of distance 

for boolean functions. 

Js the MOD6 function AC0 reducible to the MOD6 function 1 

(It is consistent with our theorems.) 

We also do not know if everything in NC’ is de-reducible to 

MAJORITY. 
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