
Self-stabilizing synchronization in 3 dimensions
(draft)

Matthew Cook
cook@ini.phys.ethz.ch

ETH Zurich

Peter Gács
gacs@bu.edu

Boston University

Erik Winfree
winfree@centrosome.dna.caltech.edu

California Institute of Technology

October 20, 2008

Abstract

The simplest known fault-tolerant model of computation is the three-dimensional cellular
automaton introduced by Gács and Reif (based on Toom’s two-dimensional nonergodic au-
tomaton). However, this automaton works only in discrete time (that is, if synchronization is
provided for free); the only known asynchronous reliable cellular automata are vastly more
complex. Surprisingly, a simple scheme is known to introduce asynchrony into any kind of
network: each cell keeps track of which neighbors are ahead or behind (at most one step dif-
ference is allowed), for example via a mod 3 clock. This mechanism is very efficient in the
absence of errors, or if the errors leave the local ordering in a consistent state (no cycles). But
errors could create topological inconsistency in spacetime which, unless resolved quickly, may
become fatal. We found a simple way to resolve localized topological inconsistencies of arbi-
trary size. The present paper shows that the scheme is self-stabilizing: it corrects inconsistency
of an arbitrary size fast, in the absence of further errors.

1 Introduction
In a parallel computation model, a useful distinction is made between synchronous and asyn-
chrononous modes of operation. In the synchronous case, the system evolves in discrete time: at
each of the time steps 0,1,2, . . . , each part of the system is updated according to a local transition
function. In an asynchronous model, the order in which different parts of the system are updated is
not deterministic. In the most natural example, each part is updated at a sequence of random times
that form a Poisson process (the system is a continuous-time Markov process). In many problems
of distributed computing, on the other hand, it is customary to assume that the order of updating

is chosen by an adversary. How different are the capabilities of synchronous and asynchronous
automata?

Some computations are naturally “asynchronous”, in the sense that the order of updating does
not matter. For a precise formulation of this property, see [3]. The present paper is motivated, how-
ever, by a particular asynchronous computation, which is very sensitive to the update order. This
is the 3-dimensional cellular automaton introduced in [6], that simulates reliably a 1-dimensional
cellular automaton. We will describe this automaton below and its sensitivity will be evident.

Perhaps surprisingly, a simple, general local scheme is known to simulate any kind of syn-
chronous network A (not only cellular automata) by an asynchronous network Ã with the same set
of sites (but possibly larger neighborhood and state space). We will describe this scheme below:
essentially, the property is maintained that the number of the simulated step differs by at most one
between neighbor sites. For this purpose, each site stores the mod 3 remainder of the step number
of the simulated computation (as well as the previous local state), and never progresses until it has
a neighbor whose step number is smaller (having the step number modulo 3 is sufficient to check
this). Let us call the scheme the modulo 3 trick. The waiting slows the computation, but it has been
shown in [1] that the slowdown is at most by a constant factor.

The present paper is devoted to the attempt of applying the modulo 3 synchronization trick to
the Gács-Reif-Toom automaton, with appropriate adaptations in the algorithm and the proof. A
mechanical application cannot be expected to work automatically, for two different reasons:

1. Even if the global slowdown is only by a constant factor, if local slowdowns are excessive then
they will get in the way of the error-correction mechanism, which assumes that progress is made
even locally with sufficient speed.

2. The errors will also mess up the mod 3 clocks, introducing inconsistencies (deadlocks).

Problem 1 seems the less interesting one, since according to all experience and intuition, a local
slowdown should occur only with probability exponentially small as a function of its size. Never-
theless, this problem has not been solved yet rigorously.

Problem 2 is more interesting. It does not occur in a 1-dimensional cellular automaton. In
a 2-dimensional array of clocks, loops of circular waiting always include “point-defects”: points
with non-zero “winding number”. Ideas for getting the poles with positive and negative winding
number to find and annihilate each other did not seem too promising. In the late 1980’s, Charles
Bennett has experimented with several such rules.

Bennett also noted that in a 3-dimensional array of clocks, the topological defects are not signed
points but oriented lines. Since errors are bounded, and there is a conservation of the influx and
outflux of these lines at each point, the defects consist of (possibly intersecting) loops. The present
paper is based on ideas of Cook and Winfree who developed a rule that makes these loops shrink
and disappear, at least in the absence of new errors.

They noticed a similarity between the loop elimination problem and the original problem of
getting 2-dimensional regions of error to disappear. In Toom’s solution of that problem, each cell
takes a majority of itself, its north neighbor, and its east neighbor. But here we are pushing loops
around in three dimensions; there is no clear interior or exterior of the loop, and the adjustments
needed to erase them might extend far beyond them.

2

Imagine pulling each defective edge into the interior of an individual cell. Portions of such a
cell would have different clock values, not consistent with any absolute time, so we could say such
a cell has a clock value of ”∗” instead of ”0”, ”1”, or ”2”. We can easily have a rule that if you are
a cell with a defective edge, then you become a ∗. This translates the topological problem to the
need to get rid of the ∗s.

Naively, we might want to change a clump of ∗s to have a constant clock value, so that there
can be no defects. Before changing them all, we would want the surface of the clump to be at a
constant value, so that it would be safe to replace all the ∗s with this value. We can get the surface
to be at a constant value by just letting the CA advance the clocks in the normal way (this assumes
that the advance is not held back by the presence of a “long steep slope” of clock values, leading
back to Problem 1 above), but only allowing a clock on the surface to advance if there is a neighbor
clock on the surface who is ahead of it. So all the clocks on the surface are limited by the most
advanced clock on the surface, with which they will all synchronize.

Advancing the surface to a constant value can be impossible if the ∗s are in the shape of a
ring, so that integrating “delta time” along a loop on the surface might not give zero, in which case
there is no “most advanced” clock. To avoid this sort of problem, the ∗s will need to grow so as
to become solid clumps. We will make sure that their growing and shrinking do not interfere with
each other in a way that prevents progress.

Here is an outline of the rest of the paper. Section 2 introduces our models formally. Section 3
introduces the modulo 3 trick. Section 4 introduces the Gács-Reif-Toom model and formally
states the present paper’s main theorem about its synchronization. Section 5 develops the discrete-
topological toolbox to be used in the proof. Section 6 defines the transition function for the main
theorem (presented as a combination of several “rules”). Section 7 proves the main theorem. It
uses the tools developed in Section 5 as well the “blame sequence” idea from [1].

2 Asynchrony
Here, we develop the framework of asynchronous computation. We will restrict attention to cellular
automata, though most definitions relating to update order have wider applicability.

2.1 Cellular automata
Let us define cellular automata in the form that we will use them.

Definition 2.1 (Sites). To be more specific, let us call the elementary parts of the system sites, or
cells, or processors (we will use these terms interchangeably). The set of sites is denoted by C.
Each site x has a set S of possible states (also called “local states”). An arbitrary function ξ ∈ SC

is called a space-configuration, or simply “configuration”, or “global state”. The value ξ(x) is the
state of site x in ξ. y

3

1 0 1 1 2 0 1 0 0 0 0 2 2 1 2 1 0

−1 0 1 2

S = {0, 1, 2}C = Z

ξ(−1) = 1, ξ(0) = 1, ξ(1) = 2, . . .

.

Figure 1: The (space-)configuration of a one-dimensional cellular automaton

Definition 2.2 (Neighborhood). As is the case with typical computations models, the evolution is
determined by local transitions. A function N : C → 2C will be called a neighborhood function
assigning to each x ∈ C, a finite set N(x)⊆ C called the neighborhood of x.

x ∈ N(x),

and symmetric:
x ∈ N(y)⇒ y ∈ N(x).

The neighbor relation graph GN = (C,E) is an undirected graph over the set of sites in which two
sites are connected by an edge if they are neighbors. y

ϑ1 ϑ2

ϑ3

Figure 2: The Toom neighborhood

Example 2.1. If C = Zd then the von Neumann neighborhood is the set of points differing from x
by at most 1, in at most one coordinate, and the Moore neighborhood is the set of points differing
from x by at most 1, in any coordinate. y

Definition 2.3 (Transition). A function f : SC → SC is called a transition function if f (ξ)(x) de-
pends only on ξ � N(x), that is

ξ1 � N(x) = ξ2 � N(x)⇒ f (ξ1)(x) = f (ξ2)(x).

4

The transition function locally determines a possible “next” configuration from the “current” one.
Our system is then determined by the 4-tuple, can be written as

Aut(C,S,N(·), f (·))

and will be called an automaton (not necessarily a finite one).
We restrict our models to the case where each neighborhood N(x) has the same cardinality and

can be listed in some fixed order as

N(x) = (ϑ1(x), . . . ,ϑr(x)).

A (deterministic, synchronous) cellular automaton is thus given as

A = CA(C,S,r,ϑ,g)

where g is the local transition function determining the global transition function f by

f (ξ)(x) = g(ξ(ϑ1(x)), . . . , ξ(ϑr(x))).

In our cellular automata, the set C of sites will allways have the structure of a commutative group
(for example, the d-dimensional lattice Zd), and the neighborhood function will also be homoge-
neous:

ϑi(x) = x+ϑi(0),

where 0 is the unit of the group, say (0,0) for C = Z2. y

Example 2.2. A one-dimensional cellular automaton. Let C = Z, the set of integers, N(x) =
{x− 1, x, x + 1}. In a configuration, each site x has a value ξ(x) ∈ S. There is a local transition
function g : S3 → S. The result of transition at site x is

f (ξ)(x) = g(ξ(x−1), ξ(x), ξ(x+1)).

y

Example 2.3 (The Toom Rule). Let C = Z2, S = {0,1},

(ϑ1(0),ϑ2(0),ϑ3(0)) = ((0,0),(0,1),(1,0)),
g(x,y,z) = Maj(x,y,z).

Thus, every time a cell updates its state, its new state is the majority of itself, its northern and its
eastern neighbor (see Figure 2). y

Definition 2.4 (Space-time configuration). The evolution of our system is described by a function

η(x, t)

called the space-time configuration. Here, x runs over the set C of sites, and t runs over the set of
possible times. (When the value of the time argument is implicitly clear from the context, then we
may delete the time argument from the notation.) The domain of the time variable can be the set
Z+ of positive integers, or the set R+ of positive real numbers. In the first case, we will talk about
a discrete-time model, in the second case, about a continuous-time model.

In the discrete model, a space-time configuration can also be viewed as a sequence η : Z+ → SC

of space-configurations. y

5

1 0 1 1 2 0 1 0 0 0 0 2 2 1 2 1 0

−1 0 1 2

0 0 0 1 0 0 2 1 0 2 0 1 2 0 1 1 1
1 0 1 1 2 1 1 0 0 0 0 2 2 1 2 2 0
1 1 1 0 2 0 1 0 1 0 2 0 2 1 2 1 01

2

time
η(1, 2) = 2, η(2, 2) = 1, . . .

0

Figure 3: Space-time configuration of a one-dimensional cellular automaton

Definition 2.5 (Synchronous trajectory). We will say that a space-time configuration η is a syn-
chronous trajectory of the automaton Aut if for all x, t we have η(·, t + 1) = f (η(·, t)). In other
words,

η(x, t) = f (η(·, t−1))(x),

that is in η, each site is “updated” every time by the function f (though the update might not change
the state).

More generally, for cellular automata it is a trajectory over the space-time area E ⊆ C×Z+ if
for all (x, t) ∈ E such that N(x)×{t−1} ⊆ E we have

η(x, t +1) = g(η(ϑ1(x), t), . . . , η(ϑr(x), t)). (2.1)

y

−1 0 1 2

1 0 1 1 2 0 1 0 0 0 0 2 2 1 2 1 0 t
t+1

η(x, t + 1) = g(0, 2, 2)

Figure 4: Trajectory of a one-dimensional cellular automaton with transition function g(·, ·, ·).

Thus, given a deterministic, synchronous cellular automaton, an evolution is completely deter-
mined by its initial configuration η(·,0).

6

1 0 1 1 0 0 1 0 0 0 0 1 0 1 1 1 0

−1 0 1 2

0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0
1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 11

2

time

0

13 = −4

Figure 5: Trajectory of Wolfram’s rule 110 on Z/(17Z). The rule says: “If your right neighbor is
1 and the neighborhood state is not 111 then your next state is 1, otherwise 0”.

2.2 Asynchronous updating
We are interested in situations when time is continuous, and at any one time, only some of the sites
are updated (typically, only one). In Example 2.2, we would have

η(x, t) = g(η(x−1, t−ε),η(x, t−ε),η(x+1, t−ε)), (2.2)

if there is an ε= ε(x, t) such that the neighborhood N(x) does not change during [t−ε, t). (In our
examples, there will always be such an ε.)

For mere convenience, we introduce the following property.

Definition 2.6 (Time marking). A transition function f has the time marking property if it always
changes the state of the cell it is applied to, that is we have

f (η(·, t))(x) 6= η(x, t).

y

Definition 2.7 (Update times). Let us call the function τ : C×Z+ → R+ a system of update times

(τ(x,n) : x ∈ C, n = 0,1,2, . . .),

τ(x,0) = 0, τ(x,n) < τ(x,n+1), and

lim
n
τ(x,n) = ∞ (2.3)

for each x. We say to a space-time configuration η(x, t) belongs the system of update times τ(x,n)
if each cell x can change its state only at times t = τ(x,n), so η(x, t), as a function of time, is
constant on the half-closed intervals [τ(x,n), τ(x,n+1)). y

7

time
43 5 6 7

τ(3, 1)

τ(3, 2)

τ(3, 3)

...

Figure 6: Updating in continuous time

Definition 2.8 (Update events). Let us call any space-time point (x, t) with t = τ(x,n) for some n
an update event. The set of update events is denoted by

U = {(x, τ(x,n)) : x ∈ C, n = 1,2, . . .}.

An update time is a time that is the update time of any cell. Let r be the size of the neighborhoods,
i 6 r. We define the space-time neighbor function

Θ
U
i : U →U

as follows.

τ(x, t) = max
τ(x,k)<t

τ(x,k),

Θ
U
i (z) = (ϑi(x), τ(ϑi(x), t)).

Thus, ΘU
i (z) is the event at which neighbor cell ϑi(x) obtained the state influencing z. The set of

events

N̂(z) = {Θ
U
i (z) : i = 1, . . . ,r}

is called the set of space-time neighbors of the point z. y

Remarks 2.4. Note the following.

– Note that the space-time neighbor relation is not reflexive.

8

– The function N̂(z) can be defined just in terms of the function N(x), without using the sequence
ϑ(x).

y

Definition 2.9 (Update graph). The space-time neighbor relation is directed backward in time, and
turns the set U of update events into a directed graph

G = (U ,{(z,z′) : z ∈U ,z′ ∈ N̂(u)}) (2.4)

called the update graph. It is well-funded if it contains no infinite directed path. y

43 5 6 7 . . .

Figure 7: Update graph

Well-fundedness does not hold, for example, when C = Z, and τ(x,n) = n + 1/(1 + |x|). But,
it holds with probability 1 in the models we will study, in which the set U is random.

Definition 2.10 (Asynchronous trajectory). We will say that η(x, t) is an asynchronous trajectory
for a well-funded set of update events U if instead of equation (2.1) we require, in the spirit of our
intentions (2.2), the condition

η(z) = g(η(ΘU
1 (z)), . . . , η(ΘU

r (z))), (2.5)

(where we have identified η(x, t) with η((x, t))).
We will say that η(x, t) is an asynchronous trajectory if it is an asynchronous trajectory for

some well-funded set of update events U . y

9

The following is immediate, and is the reason for introducing the time marking property.

Proposition 2.5. If an automaton has the time marking property and η is an asynchronous trajec-
tory for the sets of update times U1 and U2 then U1 = U2.

From now on, for asynchronous purposes we will always use automata that have the time
marking property.

If the graph G is well-funded then in an asynchronous trajectory η, the initial configuration
η(·,0) determines η uniquely. The sets of update times we will consider will always be well-
funded. They will also have the following convenient property:

Condition 2.1. If (x1, t1),(x2, t2) ∈U then t1 6= t2. y

This is only for convenience: at the expense of some extra case distinctions, it could be avoided
throughout. Anyway, it holds with probability 1 in the random update model introduced below.

2.3 Random updating
Definition 2.11. For m = 2,3 . . . , let Zm be the set of remainders modulo m. From now on, assume
that the site space C is the commutative group of form C1×·· ·×Cd where each Ci is either Z or
Zm for some m. In other words, our space is either a finite-dimensional lattice or the product of a
finite-dimensional torus and a finite-dimensional lattice. y

In a probabilistic cellular automaton (synchronous or asynchronous), the space-time config-
uration η(x, t) is a stochastic process. We will restrict ourselves to the simplest, asynchronous
(continuous-time) case.

Definition 2.12. We will say that the random process is a trajectory of the continuous-time prob-
abilistic cellular automaton (sometimes called interacting particle system)

A = CPCA(C,S,r,ϑ,g) (2.6)

if the (random) update set U has the following properties.

(a) The different sequences (τ(x,n) : n = 0,1,2, . . .) for x ∈ C are independent of each other.

(b) The sequence of increments τ(x,n+1)−τ(x,n) is independent.

(c) Each variable τ(x,n+1)−τ(x,n) has the same exponential distribution with rate 1:

P[τ(n+1, x)−τ(n, x) > t] = e−t.

y

Remark 2.6. Properties (b) and (c) together say that for each x, the sequence (τ(x,n) : n > 0)
is a Poisson process with rate 1. A process η satisfying these conditions along with the update
equation (2.5) is a continuous-time Markov process. The precise statement and the proof of this
fact can be found in any standard treatment of interacting particle systems, like [8]. y

10

It is easy to see that a trajectory of a continuous-time cellular automaton satisfies the require-
ment (2.3) and Condition 2.1 with probability 1. It is also well-funded. Let us formulate a com-
plementary, related statement.

Definition 2.13. Consider a sequence of space-time points w0,w1, . . . ,wn going backwards in time
with wi = (ui, ti) in which ui+1 is a neighbor of ui. This sequence will be called a forward blame
sequence if ti is the first update time of ui after ti+1. It will be called a backward blame sequence
if ti+1 is the last update time of ui+1 before ti. The difference t0− tn is the time span of the blame
sequence, and n is its length. A blame sequence is a forward or backward blame sequence. y

Proposition 2.7. Let A be a continuous-time probabilistic cellular automaton given in (2.6). There
are constants γ,δ > 0 such that the following holds. For all n > 0, for all space-time points (x, t),
the probability that a blame sequence of length 6 n and time span > γn starts at (x, t) is less than
e−δn.

3 Simulating a synchronous computation by an asynchronous
one

3.1 Local clock differences
Our main concern will be introduced later: there are situations, where the timing of many par-
allel updates becomes important. We will review later our main example, the fault-tolerant 3-
dimensional cellular automaton of [6].

Definition 3.1 (Asynchronous simulation). Consider two automata, A = Aut(C,S,ϑ(·),g(·)) and
Ã = Aut(C, S̃,ϑ(·), g̃(·)), where Ã has the time-marking property.

These define the neighborhood function N(x). An asynchronous simulation of A by Ã is a
tuple (A, Ã,φ,Ψ) where φ,Ψ are mappings with the following properties.

(a) Let ξ be an arbitrary space configuration of A. Then φ(ξ) is a space configuration of Ã.

(b) Let η be an arbitrary asynchronous trajectory of Ã with η(·,0) = φ(ξ). Then Ψ(η) is a syn-
chronous trajectory ζ of A with ζ(·,0) = ξ.

y

11

η

ζ

φ

Ψ

Figure 8: A simulation (φ,Ψ) of ζ by η. Encoding the input by φ, decoding the process by Ψ.

In what follows we restrict ourselves to a very special kind of asynchronous simulation.

Notation 3.2. Denote the remainder of x with smallest absolute value modulo m by

x amod m = (x+ bm/2c) mod m−bm/2c.

y

Definition 3.3 (Clocked extension). For a set of local states S, we will say that the set S̃ is its
clocked extension if there is a finite set SClock with Z3∪{∗} ⊂ SClock such that

S̃ = S2×SClock.

If s = (u,v,w) ∈ S̃ then we will write

u = s.Cur, v = s.Prev, w = s.Clock.

For an arbitrary space-time configuration η with states from S̃ whenever x,y ∈ C and
η(x, t).Clock,η(y, t).Clock ∈ Z3 we define, for space-time configuration η and space configuration
ξ:

∆(u,v) = (v.Clock−u.Clock) amod 3,

∆
ξ(x,y) = ∆(ξ(x), ξ(y)),

∆
η(x,y, t) = ∆(η(x, t),η(y, t)).

When a fixed time is implicitly clear from the context, then we may delete the time argument in
the notation for η. y

12

The local asynchronous simulation will have a clocked extension as its state space. If g̃ is its
local transition function, this will have to satisfy some conditions which we present here in terms
of rules. Suppose that the transition rule changes the state s = η(z) with z = (x, t) to some state s,
further s.Clock ∈ Z3.

The first rule says that the clock does not decrease, and it does not increase either if there is a
neighbor that would be “left behind”.

Rule 3.1 (Wait). We have

(a) (s.Clock− s.Clock) amod 3 6=−1, that is the clock will not “decrease”.

(b) If z has a neighbor z′ ∈ N̂(z) with state s′ = η(z′) and with s′.Clock ∈ Z3, ∆(s, s′) < 0 then
s = s.

y

Such rules will be called, informally, to obey the marching soldiers scheme.

Step

Figure 9: Marching soldiers, not leaving any neighbor behind

The following rule performs the actual simulation. For its definition, for a space-time point z
let

si = η(ΘU
i (z)),

qi =

{
si.Cur if ∆(s, si) = 0,
si.Prev if ∆(s, si) = 1,

Transη(z) = g(q1, . . . ,qr).

Rule 3.2 (Emulate). If the states s′ in all neighbors have s′.Clock ∈ Z3 and ∆(s, s′) > 0, then set

s.Cur := Transη(z),
s.Prev := s.Cur,
s.Clock := s.Clock+1 mod 3.

y

13

It is easy to see that both rules can be expressed as just a property of the transition function g̃.

Definition 3.4 (Clocked simulation). Consider two automata, A = Aut(C,S,ϑ(·),g(·)) and Ã =
Aut(C, S̃,ϑ(·), g̃(·)) where Ã has the time marking property. We will say that the pair (A, Ã) is a
clocked simulation of A by Ã if the following conditions hold.

1. S̃ is a clocked extension of S.

2. If ξ′ = φ(ξ) then we have ξ′.Cur = ξ, ξ′.Clock = 0.

3. The transition function g̃ obeys the Wait and Emulate rules.

y

Now it is not difficult to prove the following proposition:

Proposition 3.1 (Clocked asynchronous simulation). For a clocked simulation a pair of mappings
φ,Ψ can be defined turning it into an asynchronous simulation (A, Ã,φ,Ψ).

Later we have to deal with space-time configurations that are not perfect asynchronous trajec-
tories. To characterize their imperfections we will be more formal in describing the sense in which
clocks must be consistent.

Definition 3.5 (Consistency). Let η be a space-time configuration. Let a connected, undirected
graph G = (D,E) be defined on a (finite or infinite) set D of space-time points. Consider a path
P = (v0, . . . ,vn), in G. If vn = v0 then we call the path closed; a closed path is also called a loop. In
the notation

P = loop(v0, . . . ,vn−1)

the repeated element is omitted: P = (v0, . . . ,vn−1,v0). For a given space-time configuration η let
us define

lagη(P) =
n−1

∑
i=0

∆(η(vi),η(vi+1)). (3.1)

The space-time configuration η is consistent on the graph G if the “integral” lagη(P) of every closed
path P in D is 0.

The same concepts will also be defined for sets and configurations just in space, not in space-
time. y

0 1

2

1

2
-1

1

1

1

1
lag = 1 + 1− 1 + 1 + 1 = 3

Figure 10: The lag of a loop

14

The following fact is straightforward to verify.

Proposition 3.2. Let G = (D,E) be a graph of space-time points as above. Then η is consistent on
G if and only if there is a function Step(·) : D → Z such that for all v ∈ B we have

η(v).Clock = Step(v) mod 3.

When exists, the function Step(v) is determined uniquely to within an additive constant.

Definition 3.6 (Space-time neighbor graph). Let D be a set of space-time points and η a space-time
configuration. We define a graph G = (D,E) on it by introducing the following two kinds of edges.

1. Between (x, t),(y, t) ∈ D if x,y are neighbors. These will be called horizontal edges.

2. Between (x, t),(x,u) if the set {x}× [t,u]⊆ D and η(x, t′) changes value at most once between
t and u. These will be called vertical edges.

We say that η is consistent on D if it is consistent on G.
If D has the form D = B×{t} then we will say that η is consistent on the set of sites B at time

t. y

In practice, to construct the function Step(v) we will need to show that for every edge (u,v) in
the graph G we have

∆(η(u),η(v)) = Step(v)−Step(u). (3.2)

The following is an extension of Proposition 3.1 when the space-time configuration is restricted
to a subset of space-time.

Proposition 3.3. Let (A, Ã) be a clocked simulation. Let ζ(x, p) be a synchronous trajectory of
automaton A over C. Let B ⊂ C be a set of sites and [t0, t1) a time interval. Let η be a trajectory
of automaton Ã over B× [t0, t1) that is consistent over B at time t0. Then it is also consistent on
B× [t0, t1).

If, in addition, we have t0 = 0, B = C, and η(x, t).Cur = ζ(x,0) for all x ∈ C, then the step
function Step can be made unique by requiring Step(x,0) = 0, and then the relation

η(x, t) = ζ(x,Step(x, t)) (3.3)

defines implicitly ζ in a unique way for x ∈ C, t < t1.

3.2 The slowdown
Since the update rule of the asynchronous simulation includes now update attempts in which noth-
ing happens, the question arises: what is the price in slowdown? In other words, how slowly can
the function Step(x, t) grow in Proposition 3.3? For the random updating model introduced in 2.3
above, it has been shown in [1] that the slowdown is at most by a constant factor. Here is a precise
formulation of the result.

15

Proposition 3.4. For every cellular automaton A there are constants c,d > 0 with the follow-
ing property. Let ζ(x, t) be a computation of a synchronous automaton A over C with transition
function g(s1, . . . , sk). Let Ã be the corresponding continuous-time cellular automaton whose tran-
sition function obeys the Emulate rule, and let the random process η be a trajectory of A with
η(x,0) = ζ(x,0) for all x ∈ C. Then, with the unique function Stepη(x, t) that exists due to Propo-
sition 3.3, for each x, t we have

P[Stepη(x, t) < ct] < e−dt.

The proof goes by constructing a blame sequence and using Proposition 2.7.

4 Fault-tolerance

4.1 The problem
The object of the present paper is to combine asychrony with fault-tolerance. The construction of
(theoretically) reliable computers from unreliable components has an interesting history, starting
with von Neumann’s work [10]. The question is particularly natural and challenging for the model
of cellular automata, since the homogeneity does not allow error-correction capabilities frozen into
the structure. In this setting, even the modest goal of keeping a single bit of information required
a nontrivial solution: it is achieved in 2 dimensions by Toom’s rule (see Example 2.3). The proof
that this model has the desired error-correcting property is quite complex (even though the main
ideas are intuitive and simple). For the discrete-time (synchronous) case, the proof can be found
in [9]; for continuous time, in [7]. (For simplified versions of the same proof, see [1, 4].) The
same task, as well as the task of performing arbitrary computation, can also be accomplished on
one-dimensional cellular automata. However, the transition rules (and the corresponding proofs),
given in [2] and [5], are very complex.

4.2 A 3-dimensional fault-tolerant synchronous automaton
The simplest known fault-tolerant computation model is the three-dimensional cellular automaton
introduced in [6].

Definition 4.1 (3-dimensional fault-tolerant simulation). Let U be an arbitrary 1-dimensional cel-
lular automaton (since it is arbitrary, it might as well be chosen computationally universal). In the
initial configuration of a 3-dimensional automaton

U′ (4.1)

constructed from U, we slice the space into planes by the value of the first coordinate. Every cell
with coordinates x,y,z will have the initial state of cell x of automaton U. The transition rule of U′

goes as follows. In each step, first perform Toom’s Rule (extended naturally to larger alphabets)
within each plane, and then the transition rule of U across the planes. y

16

w

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b

b

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

w

a

c

c

c

c

c

c

c

c

c

c

b

c

c

c

c

c

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

c

c

c

a

c

c

c

c

c

c

c

c

c

c

c

c

c
c

c

w
w

w

w
w

w

c
c

c

b

Figure 11: Three-dimensional fault-tolerant simulation of a one-dimensional cellular automaton

In what sense is this computation fault-tolerant? Consider a random process η(u, t) (u ∈ Z3,
t ∈ Z+) that follows the transition rule U′ only approximately: at each space-time point (u, t), the
transition rule is applied but then, with some probability < ε, a fault occurs, and the actual value
η(u, t) becomes something else. We assume that faults occur independently of each other. The
paper [6] proves the following theorem.

Proposition 4.1. There is a constant c with the following property. Let ζ(x, t) be a computation
(space-time configuration) of the deterministic 1-dimensional cellular automaton U, and let η(u, t)
be a space-time configuration of the 3-dimensional cellular automaton U′ with noise bound ε, such
that for all x,y,z we have η((x,y,z),0) = ζ(x,0). Then for all x,y,z ∈ Z, t ∈ Z+ we have

P[η((x,y,z), t) 6= ζ(x, t)] 6 cε.

The proof is essentially the same as the proof mentioned above, that Toom’s Rule remembers
one bit. (Some extra sophistication is needed, even in the formulation of the result, for finite
spaces.)

4.3 An asynchronous version of the 3-dimensional automaton
The 3-dimensional fault-tolerant cellular automaton is attractively simple, but has a peculiar lim-
itation: it works only in discrete time (that is, if synchronization is provided for free). Indeed,
the Toom Rule corrects errors by maintaining the property that in each computation step t, the
value η(u, t) is constant (except for the effect of faults) as u runs through any plane {x}×Z2. This

17

value will typically change in the whole plane, as we move from t to t + 1. Such a coordinated
change depends on synchrony. The 1-dimensional cellular automaton in [5] is asynchronous, but
it is vastly more complex.

The present work is the first step in our project to save the simplicity of the 3-dimensional
construction in an asynchronous setting, via the mechanism developed in Section 3. What is the
challenge?

As mentioned in the introduction, one problem is that random updating by itself may introduce
delays, by creating a long queue of cell waiting for each other.

Step

delayed

︸

︷︷

︸

Figure 12: Delay introduced by a long slope (illustrated in 1 dimension). While there is no advance,
the system is “rotting”: new and new faults occur, while the old ones are not being corrected.

If we want to use the asynchronous simulation in noise then this simulation itself must survive
noise. The new element is the mod 3 clocks. Noise can change their values, but the threat is not
the change in the values in itself: rather, that the errors can introduce inconsistency into the clock
values, in the sense of Definition 3.5. Indeed, though the Wait rule guarantees that a cycle with
nonzero lag will not appear, errors could just create it. For example, let sites u1, . . . ,u6 ∈ C = Z2

be defined by

u1 = (0,0), u2 = (1,0), u3 = (0,2), u4 = (2,1),u5 = (1,1), u6 = (1,0),

then errors could give them the clock values 0,1,2,0,1,2. When the neighborhood is the von
Neumann neighborhood then these cells form a loop. The Wait rule will not allow them to proceed
in the computations: they are deadlocked, waiting for each other forever.

0 1 2

02 1

2 1 0

20 1

Figure 13: Two opposite small loops can be far from each other, and everything else may seem
normal locally.

18

Remark 4.2. Inconsistency is impossible on a tree and, in particular, in 1 dimension, since every
pair of points is connected by only one simple path. y

The challenge is to come up with some simple additions to the rules Wait and Emulate that
“fight” inconsistencies. What does this mean?

First, it will mean the so-called self-stabilization property: even if the clocks are messed up in
a large but finite area by noise, if a noise-free period can be quaranteed after that, then our rules
will restore consistency, in reasonable time (linear in the size of the mess).

Second, we hope that the rules created for self-stabilization will actually achieve more: a
continuous-time version of the 3-dimensional fault-tolerant automaton. There are ample resons
to believe that our rules achieve this goal, and we will outline the next steps needed for the proof.
Since we are far from this latter goal yet, we will not even define completely formally the notion
of an asynchronous fault-tolerant computation here. Approximately, we want a noisy version of
Proposition 3.3:

Let ζ(x, p) be a computation of the 3-dimensional automaton U′ of (4.1). Let η(x, t)
be a space-time configuration of the asynchronous automaton Ũ′ (with the appropriate
rule that includes Wait and Emulate), such that η(x,0) = ζ(x,0) for all x ∈ C. Then
there is a (random) space-time set D(η) such for every site x and time t we have
P[x ∈ Dt(η)] > 2/3, and a step function Stepη over D satisfying (3.3) for all (x, t) ∈ D.

Let us formulate the self-stabilization theorem, the main result of the present paper. This theorem
says that with large probability, out rule will clear a finite domain B of any clock inconsistency, in
time linear in the size of B. But there is an assumption: that at the start of the correction, around
B, there is no extremely long queue of cells delaying each other.

Definition 4.2. Let Ã be a clocked simulation in 2- or 3-dimensional space, and ξ a space config-
uration of ξ. A defect of ξ is a circular path of length 4 (a square) with nonzero lag. y

Definition 4.3. For integers L <G and a site v0, let us define the cube and “ball”

Λ(L) = Z3∩ [0,L]3, Γ(G) = {u ∈ Z3 : |u|6 G}.

We clearly have |Λ(L)| = (L +1)3. The volume of the convex hull of Γ(G) in R3 is 8
3G3, and the

number of sites in it is bounded by 8
3(G +1)3, so for sufficiently large L,G we certainly have

|Λ(L)|6 2L3, |Γ(G)|6 3G3. (4.2)

We say that a space-configuration ξ of an automaton with a modulo 3 Clock field satisfies the
condition

Slack(L,G)

at site v0 if the following holds for Λ = v0 +Λ(L), Γ = v0 +Γ(G +6L).

(a) All defects of ξ are contained in the interior of the cube Λ. Therefore (as we will see) ξ is
consistent on Γ\Λ , and an absolute clock value Step(u) can be defined for its cells, uniquely
to within an additive constant, with Clockξ(u) = Step(u) mod 3.

19

(b) For u,v ∈ Γ\Λ, |u− v|6 G +3L we have Step(u)−Step(v) 6 G.

We say that a space-time configuration η satisfies the condition Slack(L,G) at time T0 at site v0 if
η(·,T0) satisfies it. y

The Slack(L,G) condition will be applied typically with G chosen much larger than L. Its
part (b) says, in essence, that there are no “long, steep slopes”: the complement of the defects does
not have a path (u0,u1, . . . ,uG+3L) along which the Step(ui,T0) is decreasing over all but L edges.
Such a path could prevent Step(u0, t) from making L steps of progress, for an amount of time
proportional to G. In other words, the chain into which the Step values of neighbors are forced is
pulled too “tight”. So, the Slack(L,G) condition mandates some slackness in these chains over all
long paths. We believe that this condition is violated only with a probability exponentially small
in G; however, we cannot prove this yet.

Theorem 4.1. There are constants c1,c2,d > 0 with the following properties.
Let A be an arbitrary 3-dimensional synchronous cellular automaton. There is a corresponding

continous-time cellular automaton Ã obeying the rules Wait and Emulate, such that the following
holds.

Let site v0, time T0 and number L > 0 be given, with

G > L, T1 = T0 + c1L+ c2G, Λ = v0 +Λ(L), Γ = v0 +Γ(G +6L).

Let the stochastic process η be a trajectory of Ã in the set Γ× [T0,T1], satisfying the Slack(L,G)
condition at time T0 for site v0. Then with probability > 1− e−dL, there is a step function over

Γ× [T0,T1]\Λ× [T0,T1).

time

defectsslack

consistency
restored

Figure 14: The main theorem

20

In other words the consistency of the clocks, possibly disturbed inside Λ at time T0, will be
restored by time T1. The theorem does not mention the requirement (3.3). For this requirement
to hold, we would have to take A = U′, with the fault-tolerant synchronous cellular automaton U′

introduced above. And instead of the set Λ× [T0,T1], we will have to cut out a (constant times)
larger piece of space-time Λ′× [T0,T ′

1]: the errors that arose at time T0 and propagated during
[T0,T1] to a larger cube Λ′, will then be corrected by the time T ′

1 via the fault-tolerant behavior of
U′.

5 The topology of defects
Let us fix some time t, which we will omit from the notation now. Consider a fixed space configu-
ration η(·, t). We can denote then the lag of any path P, as defined in (3.1), by lag(P) = lagη(P, t).
Every closed path with nonzero lag contains a closed path with nonzero lag that is simple (does
not intersect itself).

5.1 Two-dimensional case
In the 2-dimensional case, it is known that every simple path divides the plane into an inside and
outside domain. Without loss of generality, we will only consider simple paths that go around the
inside domain in the clockwise direction. If the length of the path is 4 then it surrounds a square.
We will call the middle point of this square a “point defect” if the lag of this path is nonzero.
The lag of a point defect is the lag of the surrounding path: it can only take the values 3 and −3
(positive and negative defects).

If the length of path P is not 4 then the inside domain can be divided into two nonempty
parts by a path, and for the closed paths P1,P2 surrounding them it is true that lag(P) = lag(P1)+
lag(P2). Continuing the subdivision process we find that lag(P) is the sum of the lags of the defects
surrounded by P.

0 1 2

02 1

Figure 15: Each loop of nonzero lag contains a defect.

If we start from a consistent configuration and change it locally within some large square Λ

then the lag of any path around Λ is still 0, therefore the number of positive defects in Λ equals
the number of negative defects. One can say that “defects come in pairs”. For example, we could
have just two defects arbitrarily far from each other (within Λ). Intuitively it seems that a simple
local rule is needed to get the +3 poles and −3 poles to find (and “annihilate”) each other. Ideas
proposed for this did not seem too promising.

21

5.2 Three-dimensional case: some elementary topology
Three-dimensional clocks will be much more amenable to error-correction; the reason is that while
in two dimensions defects can be separated from each other, in three dimensions they “form loops”.
Let us make this precise.

Definition 5.1. A corner cube for Z3 is a cube of the form (x,y,z)+{0,1}3. y

Definition 5.2. Given a cell u = (x,y,z) ∈C = Z3, we denote its height in the (1,1,1) direction by

h(u) = x+ y+ z.

Given a set S , let
‖S ‖

be the size of the smallest cube enclosing it. A path of neighbor cells is called rising if the height
h(u) is increasing on it. y

It is convenient to generalize the notion of path of neighbor cells introduced in Definition 3.5,
and to embed paths into the algebraic structure of a commutative ring over the integers.

Definition 5.3. Let AC be the set of formal sums

c1e1 + · · ·+ cnen

where ci are integers called the weights and ei are directed edges between neighbors in C, modulo
the relations 0 · e = 0 = the empty sum, and (u,v)+ (v,u) = 0. We can always make the weights
positive by reversing the edges.

A path P = (u1, . . . ,un) corresponds to the element (u1,u2)+ · · ·+(un−1,un) of this ring, and
−P corresponds to the reverse path. Elements of the subring LC of AC generated by closed paths
will be called chains.

Suppose that a configuration ξ is given for which the function ∆ξ(x,y) is defined that is used
in the definition of lags. That definition of lags, given in Definition 3.5, can be extended easily to
chains via lagξ(∑i Pi) = ∑i lagξ(Pi). y

It is easy to see the following.

Proposition 5.1. An element p of AC is a chain if and only if for every point u of C, the sum of
weights on edges in p leaving u is 0. (In other words, the number—with multiplicity—of ingoing
edges is equal to the number of outgoing edges.)

Let us approximate the notion of a continuous transformation of closed paths.

Definition 5.4. A loop of four points going around one of the faces of a corner cube will be called
a plaquette. Note that every cube face has two plaquettes associated with it that are the negatives
of each other. In a configuration ξ for which ∆ξ(x,y) is defined, a defect is a plaquette with nonzero
lag. (Note that the lag of a plaquette is always one of the numbers −3,0,3.)

Let B⊂ C be a set of sites. We will say that two chains P,Q in B are equivalent in B if there is
a set of plaquettes p1, . . . , pn in B such that Q−P = ∑i pi. We will say that a connected set of sites
B is simply connected if every chain in it is equivalent to 0. y

22

Figure 16: Equivalent loops: their difference is a sum of plaquettes.

The following statement is easy to verify.

Proposition 5.2. Consider a configuration ξ for which ∆ξ(x,y) is defined. Let B be a set of sites
that is defect-free in ξ. Then for every pair P,Q of equivalent closed paths in B, we have lagξ(P) =
lagξ(Q).

Corollary 5.3. Consider a configuration ξ for which ∆ξ(x,y) is defined. Let B ⊂ C be a simply
connected set of sites that is defect-free in ξ. Then ξ is consistent in B.

Proof. Indeed, every closed path is equivalent to an empty chain, so its lag is 0.

Proposition 5.4. A cube B is simply connected.

Proof. Let C be an arbitrary chain: we will show that it is equivalent to 0. Let u1 = (x,y,z) be a
point adjacent to a nonzero edge of C for which the height h(u1) defined above is lowest. Without
loss of generality we can assume that u1 = (0,0,0), and for u0 = (0,1,0) and u2 = (1,0,0), the chain
contains weighted edges c · (u0,u1) and d · (u1,u2) with coefficients c > d > 0. Let u3 = (1,1,0).
We can then transform C into an equivalent chain by adding the plaquette d · loop(u2,u1,u0,u3).
The new chain is still in the cube B, but the transformation decreased the absolute value of the
coefficients of the edges leaving the point u1, without increasing any such coefficients for any
other lowest point. Continuing these transformations will turn the chain to 0.

This implies a role for three-dimensional defects similar to the two-dimensional defects: in
a cube, inconsistency implies defects. If we start from a consistent configuration and change it
locally within some large cube Λ then the lag of any closed path outside Λ is still 0. If inconsistency
arose then now Λ contains defects. It turns out that defects are themselves organized into a certain
dual chain.

Definition 5.5. For the lattice C = Z3, let us define the dual lattice

C′ = (1/2,1/2,1/2)+Z3,

whose sites are the centers of the corner cubes. The neighbor relation on this lattice will again be
defined by the von Neumann neighborhood. For our purposes it is useful to imagine the cells of the
original lattice as not points but cubes, whose corners are the elements of the dual lattice. These
will be called site cubes in contrast to the corner cubes.

Let us set up a one-to-one correspondence between plaquettes of C and directed edges of C′.
Each plaquette p is on the common face of two corner cubes. We assign to p an edge E(p)

23

connecting the centers of these cubes. It is directed in such a way that, looking in its direction, the
points of p are listed clockwise. We will call E(p) the plaquette vector corresponding to plaquette
p. In the graphical representation where site cubes are assigned to cells, the plaquette vector is a
directed version of the common edge of all the site cubes of the sites of the plaquette.

We define the ring AC′ of formal sums ∑i ciEi of plaquette vectors just as we defined formal
sums of edges. Again, such a formal sum is a chain if it is the linear combination of closed paths.
We will call them dual chains.

Consider a configuration ξ for which ∆ξ(x,y) is defined. The lag of a plaquette vector is the
lag of the corresponding plaquette. If a plaquette is a defect then its plaquette vector will also be
called a defect vector. y

Figure 17: A defect vector

Now we are in a position to give a precise form to the statement that “defects form loops”. The
following lemma is easy to verify.

Lemma 5.5. Consider a configuration ξ for which ∆ξ(x,y) is defined. Let B be a corner cube,
and let E1, . . . ,E6 be the plaquette vectors directed across each face of B, towards the center. Then
∑i lag(Ei) = 0.

Figure 18: The sum of defect vectors on the faces of a cube is 0.

24

Proposition 5.6. Consider a configuration ξ for which ∆ξ(x,y) is defined. Let B ⊂ C be a cube
such that ξ is defect-free outside B. Let E1, . . . ,En be the defect vectors. Then the formal sum
∑i lag(Ei) ·Ei is a dual chain that is the union of some disjoint closed dual paths, each taken with
multiplicity 3.

We will call any of these closed dual paths a defect loop.

Proof. According to Proposition 5.1, a formal sum p is a chain if and only if for every point u of
C′, the sum of weights on edges in p leaving u is 0. Lemma 5.5 shows that our formal sum satisfies
this condition.

We have seen that a chain can always be viewed as just a number of closed paths overlaid over
each other: if an edge appears in several of the paths, it is taken with multiplicity. However, the
lag of a plaquette, if positive, can only be 3.

Figure 19: If a defect vector enters a corner cube, another one must leave it. So, if a set of defects
is bounded, it is made up of closed paths.

6 The transition rule
From this section on, we set C = Z3, with the von Neumann neighborhood.

6.1 Motivation
Our goal is to formulate rules that shrink away a defect loop. This seems similar to the original
problem of getting 2-dimensional regions of error to disappear, solved by the Toom rule: each cell
takes a majority of itself, its north neighbor, and its east neighbor. But here we are pushing a defect
loop (or more) around in three dimensions; there is no clear interior or exterior of the loop, and the
adjustments needed to erase them might extend far beyond them.

Defects themselves are easy to get rid of, by a rule that if you are a cell that is part of a defect,
then you become a ∗. It is, however, wrong to think that by just killing the bearer of the bad news,
the bad news itself goes away. Indeed, the complement of the ∗s may very well be inconsistent
itself. Corollary 5.3 implies consistency in the absence of defects only in simply connected sets.
If the ∗s are in the shape of a ring then their complement is not simply connected. Indeed, this

25

complement may be inconsistent: it may contain a closed loop with nonzero lag linked through
this ring. To avoid this sort of problem, the ∗s will grow so as to fill in any holes.

This leaves us with the problem of how to get rid of the ∗s. Without knowing any of the details
it is hard to imagine how to replace the ∗s with consistent clock values. A simple idea is to strive
for a constant clock value: this would guarantee the absence of defects. We can get the surface to
be at a constant value by just letting the Emulate rule advance the clocks in the normal way, but
only allowing a clock on the surface to advance if there is a neighbor clock on the surface who is
ahead of it. So all the clocks on the surface are limited by the most advanced clock on the surface,
with which they will all synchronize.

We will make sure that growing and shrinking do not interfere with each other in a way that
prevents progress.

Below, we define a rule with a proof that errors will be fixed if there are no further errors. We
will look at the effects of errors later, under various conditions. At first sight, further errors do not
appear to cause a setback in the process beyond roughly adding their own size to what needs to be
fixed.

6.2 Definitions for the rule
We will sometimes think of sites in terms of site cubes introduced in Definition 5.5.

Definition 6.1. Two neighbor sites share a face of their site cube, therefore they will be called
face-adjacent. Two sites that are neighbors but participate in a common plaquette share an edge of
their site cubes, so they will be called edge-adjacent. Two sites sharing a vertex but not an edge of
their site cubes are called vertex-adjacent.

Our distance measure in the cell space will be the “Manhattan distance” defined by the L1
norm:

|(x,y,z)|= |x|+ |y|+ |z|, d(u,v) = |u− v|.

For a set S and a site u we will write, as usual:

d(u,S) = max
v∈S

d(u,v).

y

Definition 6.2. A defect vector is also called a hot edge. In configuration ξ, the the set of cells
with value ∗s will be denoted by Mess(ξ). We will also write

Mess(t) = Mess(η(·, t)).

A (1,1,1) corner block for a cell (x,y,z) is the corner cube (x,y,z)+ (1,1,1)−{0,1}3. Similarly
for (−1,1,−1) corner block, and so on.

A corner square, of a point u is a square of size 1 in one of the coordinate planes, with one
corner being u. y

26

6.3 The transition rule
We write the transition rule as the union of several non-contradictory subrules. The rules Wait and
Emulate have already been defined above, in a more general setting, since they are not dependent
on the lattice Z3.

Rule 6.1 (Form). If you participate in a defect then become a ∗. y

Rule 6.2 (Swell). If you are not a ∗, but there is a ∗ in each of the corner squares containing
(0,1,1), (1,1,0) and (1,0,1), then become a ∗. y

Here are some other ways of formulating this rule. If you are not a ∗ then turn into a ∗ if one
of the following two, equivalent conditions holds:

– You cannot be separated from the ∗s in the (1,1,1) corner block by a plane parallel to one of the
coordinate planes.

– “Toom’s rule” on ∗s in some plane across (0,0,0) turns you into ∗, or the three corners (0,1,1),
etc. are all ∗s.

*

*

*

Figure 20: Swell Rule: If you cannot be separated from the Mess in the (1,1,1) corner block by a
plane parallel to one of the coordinate planes, then become a ∗.

Definition 6.3. Given a set H of points, the set Swell(H) is the set of ∗s obtained by first
putting ∗s into H and then applying the Swell rule repeatedly as long as it creates new ∗s. Thus,
Swell(Swell(H)) = Swell(H). A set H is called saturated if Swell(H) = H. y

The following statement is a straightforward consequence of the definitions.

Proposition 6.1. Form and Swell are the only rules creating ∗s. Swell is the only rule creating ∗s
in the absence of defects. For a set H, the set Swell(H) never exceeds the bounding box of H.

27

* * * **
** *

*
*

*
*

* * =⇒

* * * **
** *

*
*

*
*

* *

* ** *
**
* * * * *

* * *** *******

**

*
*

Figure 21: The Swell rules fills holes in the Mess, without letting it grow beyond an enclosing cube

Proposition 6.2. Let H be a saturated set, and let B be a cube containing H at a distance > 1 in
its interior. Then B\H is simply connected. Moreover, any two points in B\H are connected by a
path of size O(‖B‖).

Proof. We will talk of the elements of H as the ∗s. Let us first show that B\H is connected. Let w
be the point of B with maximum height h(v). Let us show that every point u1 in B\H is connected
to w by a rising path. This also shows that any two points in B \H are connected by a path of
size O(‖B‖). Let us start a rising path from u1 and continue it as long as we can. If we could not
then we would hit a point ui such that all three rising edges from ui end in a ∗. This is, however,
excluded by the saturatedness of H, since then the Swell rule would turn ui into a ∗. So, the path
continues until it hits a site in the outermost layer of the cube B. Then it can slide inside this layer
while still increasing the height until it hits w.

The proof that B\H is also simply connected, has a structure similar to the proof of Proposi-
tion 5.4.

* *
*
*

*

Figure 22: The complement of the saturated Mess is simply connected: if a loop cannot be con-
tracted in it, its stuck bottom would have been turned into a star by the Swell rule.

Let C be an arbitrary chain: we will show that it is equivalent to 0. Let u1 = (x,y,z) be a point
adjacent to a nonzero edge of C for which the height h(u1) is lowest. Without loss of generality we
can assume that u1 = (0,0,0), and for u0 = (0,1,0) and u2 = (1,0,0), the chain contains weighted
edges c · (u0,u1) and d · (u1,u2) with coefficients c > d > 0. If (1,1,0) is not a ∗ we can proceed as
in the proof of Proposition 5.4; suppose therefore that it is a ∗.

For transparency, let us write 101 for (1,0,1), and so on. The point 101 cannot be ∗, since then
the Swell rule would turn 100 into ∗. Similarly, 011 and 001 cannot be ∗. Then we can replace C

28

with an equivalent chain by adding

d · loop(100,000,001,101)+d · loop(000,010,011,001).

The rest of the proof continues like the one for Proposition 5.4.

Definition 6.4. The definition here refers to a particular set S . A surface neighbor of an element
of S is a cell in the complement of S which is face-adjacent or edge-adjacent to it. It is a strong
surface neighbor if it is face-adjacent to it. The surface of S is the set of its surface neighbors. y

Lemma 6.3. Let w be an element of the saturated set S , with no higher neighbors in S . Any two
strong surface neighbors of w are connected by a path of cells all of which are surface neighbors
of w.

Proof. Let H> be the set of the 6 surface neighbors u of w having h(u) > h(w) =: L. It is easy to
see that H> is connected.

Elements of the set H= of the 6 potential surface neighbors u of w with h(u) = L are already
connected to H>.

Let u belong to the set H< of the 6 potential surface neighbors v of w with h(v) < L. Then the
u is connected to two neighbors above it (in terms of h(·)). If both of these are in S then the Swell
rule would add u to S , which is impossible since S is saturated.

Rule 6.3 (Shrivel). Suppose that you are a ∗ with no higher neighbors that are ∗s and all your
non-∗ neighbors have the same clock value. Then change to this common clock value. y

0 1 2

2* *

* * 2

** *

0 1 2

2* *

* 2 2

** *

Figure 23: The Shrivel rule

Clearly, a ∗ turned into a non-∗ by the Shrivel rule will not be immediately turned back into a
∗.

To help the Shrivel rule, we will try to bring all cells on the surface (appropriately defined) of
the Mess to a common clock value. It helps that in the consistent environment the Step values are
not static in time: they keep growing as far as they can. Therefore we only need to adjust upwards.

29

*
*

Figure 24: If the broad environment is pulling up the clock values, this helps bringing the surface
of the Mess to a common value.

The following rule will help bring closer to each other the maximum and minimum times, on
the surface of any simply connected island of ∗s.

We use the following notation:

Notation 6.5. Let z = (x, t), and

t−x = max{τ(y,n) : y ∈ N(x), τ(y,n) < t}

(exists because of (2.3)). y

Rule 6.4 (Synchronize). Let x be the point whom we are updating at time t, with c =
η(x, t−x).Clock. Suppose that, at time t−x, all neighbors of x have Clock ∈ {∗,c,c + 1 mod 3}.
Suppose also that both x and one of its neighbors y are surface neighbors of a common ∗, with
η(y, t−x).Clock = c+1 mod 3. Then η(x, t).Clock := c+1. y

0 1 2

2* *

* 1 2

** *

0 1 2

2* *

* 2 2

** *

Figure 25: The Synchronize rule

The following proposition is an immediate consequence of the rules.

Proposition 6.4. Suppose that no errors are made.

30

(a) Suppose that at some time, the Form rule is not applicable. Then it will not be applicable at
later times either.

(b) The same is true about the Swell rule.

(c) Suppose that at some time, the complement of Mess is consistent. Then it will stay consistent
for all later times.

7 Proof of Theorem 4.1
The constants c1,c2,d will be found by the end of the proof. Let Ã be the continuous-time proba-
bilistic cellular automaton whose transition funtion satisfies all our subrules: Wait, Emulate, Form,
Swell, Shrivel, Syncronize. Assume that v0, T0, L, G, T1, Λ, Γ are defined as in the statement of
the theorem, and let the stochastic process η be a trajectory of Ã in the set Γ× [T0,T1], satisfying
the Slack(L,G) condition at time T0 for site v0.

It follows from Proposition 3.3 that a function Step(x, t) unique to within an additive constant
can be defined for (x, t) in (Γ \Λ)× [T0,T1]. The proof of the theorem will be completed if we
show that all defects and ∗s disappear from Γ× [T0,T1] before time T1. Indeed, this will mean that
η is consistent at time T1 over the set Γ, and hence Step(·,T1) can be extended uniquely from Γ\Λ

to Γ.
All milestones TForm,TSwell, . . . defined below depend on η, so they are random; we could

indicate it by writing T ηForm, but most of the time we will not.

Definition 7.1. We define some milestones.

– Let TForm = T ηForm be the first time after which there are no defects (hot edges). According to
Proposition 6.4, this condition will then hold for all later times.

– Let TSwell be the first time following TForm after which the Swell rule will no longer be ap-
plicable. According to Lemma 6.2, for all times t after TSwell, the complement of Mess(t) is
consistent. We will see in Lemma 7.1 below that Step(·, t) can be extended uniquely to this set.

– Let M = maxu∈Λ Step(u,TSwell). Let TPull be the first time t after TSwell after which Step(v, t) >
M for all cells v with d(v,Λ) = 3L. Since the area outside Λ stays consistent and since the only
rule that can change Step there is Emulate, this condition will continue to hold for all later times.

– Let TSync be the first time after TPull after which, for all cells u ∈ Mess(t) without higher neigh-
bors in Mess(t), the function Step(·, t) is constant over the surface neighbors of u.

– Let TDone be the first time after TPull at which Mess = /0.

y

Lemma 7.1. The function Step(x, t) defined above for (x, t) in (Γ\Λ)× [T0,T1], can be extended,
for t > TSwell, uniquely over all x with η(x, t).Cur ∈ Z3.

31

Proof. Since the complement of ∗s is simply connected, it is certainly true separately for each t that
Step(·, t) can be extended uniquely, to satisfy (3.2) for horizontal edges. It remains to show that it
also satisfies (3.2) for vertical edges. This is easy to check: at any one time, only one update needs
to be considered. If this update changes a clock value then this change will clearly obey (3.2). If it
removes a ∗ then (3.2) does not apply.

To bound the differences differences between consecutive members of the sequence TForm,
TSwell, TPull, TSync, TDone, we will construct a blame sequence for each one of them.

Lemma 7.2. Suppose that t0 < TSwell is not an update time. There is a forward blame sequence
w0,w1, . . . ,wn, with wi = (ui, ti), n 6 3L and tn 6 TForm.

Proof. Let S = {0,1}3 \{(0,0,0),(1,1,1)}. Let u0 be be a non-∗ at time t0 to which the Swell rule
is applicable. We present now the general creation rule of the sequence wi, starting with i = 0. We
have the following cases.

(1) ti 6 TForm, so we set n = i and stop.

(2) Let t′i be the previous update time of ui. The Swell rule became applicable to ui during (t′i, ti):
thus, there was some cell

ui+1 ∈ (ui +S)∩Mess(ti)\Mess(t′i).

Let ti+1 be the time during (t′i, ti) at which ui+1 became a ∗.

Applying this rule repeatedly, we eventually hit the case (1) and stop. We have n 6 3L since
h(ui+1) = h(ui)+1 holds for each i.

Lemma 7.3. Suppose that t0 < TPull is not an update time. There is a backward blame sequence
w0,w1, . . . ,wn, with wi = (ui, ti), further d(u0,Λ) = 3L, n ∈ [0,G +3L] and tn 6 TSwell.

Proof. Since t0 < TPull, there is a site u0 with d(u0,Λ) = 3L and Step(u0, t0) < M. We present the
generation rule of the sequence wi = (ui, ti), starting with i = 0. (It is enough to define ui+1, since
in any backward blame sequence, ti+1 is the last update time of ui+1 before ti.) The sequence will
also have the property

Step(ui, ti) = Step(u0, t0)− i. (7.1)

We have the following cases.

(1) ti 6 TSwell: let n = i and stop.

Otherwise we cannot have ui ∈ Λ. Indeed then d(u0,Λ) = 3L implies i > |ui−u0|> 3L, and

Step(u0, t0) = Step(ui, ti)+ i
> Step(ui,TSwell)+3L
> M since h(·) cannot change more than 3L in Λ.

(2) At time ti the Emulate rule was applicable to ui: let ui+1 = ui.

32

(3) The Emulate rule was not applicable, so at time ti, site ui had a neighbor ui+1 with

Step(ui+1, ti+1) = Step(ui, ti)−1.

The relation (7.1) follows from the construction. Suppose that we reach i = G + 3L. In this case,
noting that ui ∈ Γ\Λ,

Step(u0, t0) = Step(u0, t0) = Step(ui, ti)+G +3L
> Step(ui,TSwell)+G +3L
> Step(u0,TSwell)+3L by the Slack(L,G) condition,
> M since d(u0,Λ) = 3L.

This can only happen if t0 > TPull, therefore we finish by the time we reach n = G +3L.

Lemma 7.4. For t > TPull, for all cells u 6∈Mess(t) with d(u,Λ) 6 3L we have Step(u, t) > M−6L.

Proof. Because we have t > TSwell, for every u 6∈ Mess(t) there is a neighbor u′ 6∈ Mess(t) with
h(u′) = h(u)+1. Therefore we can move from u on a height-increasing path. Within 3L steps we
will leave Λ, within 6L steps we will reach a cell v that is at a distance 3L from Λ. Since t > TPull,
we have Step(v, t) > M.

Lemma 7.5. Suppose t0 < TSync. There is a backward blame sequence w0, . . . ,wn with wi = (ui, ti),
further n 6 18L and tn 6 TPull.

Proof. Since t0 < TSync, there is a cell u0 on the surface of Mess(t0) that has a neighbor v on the
surface with Step(v, t0) > Step(u0, t0).

1. We will generate a backward blame sequence w0, . . . ,wn, n 6 3L.

Let wi = (ui, ti); we have the following cases.

(1) ti < TPull, so let n = i and stop.

(2) Either the Emulate or the Syncronize rule is applicable to ui at time ti: let ui+1 = ui.
In the other cases, we have Step(ui, ti) = Step(ui, ti−ui). Thus, either ui is not on the surface
and Emulate is not applicable to it, or it is on the surface but Syncronize is not applicable
to it at time ti.

(3) For some neighbor ui+1 of ui we have Step(ui+1, ti) = Step(ui, ti)−1.

(4) ui is on the surface, all of its non-∗ neighbors have the same Step value at time ti as ui.
Then ui has a non-∗ neighbor ui+1 with h(ui+1) = h(ui)+1. Indeed, otherwise ui would be
turned into a ∗ by the Swell rule at time ti which is not possible, since ti > TSwell.

It remains to upperbound the termination time n. Note that Step(ui, ti) is nondecreas-
ing: Step(ui+1, ti+1) is either Step(ui, ti) or Step(ui, ti) − 1. Let us call the indices i with
Step(ui+1, ti+1) = Step(ui, ti) the level stages, and the indices i with Step(ui+1, ti+1) = Step(ui, ti)−
1 the progress stages.

33

2. The number of progress stages is at most 6L.

Proof . By the Syncronize rule, the Step value of surface cells never progresses beyond M.
Since Step(ui, ti) is nonincreasing, and since ti > TPull, the cells ui stay within distance 3L of Λ.
Lemma 7.4 implies from this that Step(ui, ti) cannot decrease below M−6L.

3. The number of level stages is at most 12L.

Proof . Every level stage increases h(ui) by 1, and every progress stage decreases it by at most
1. If the number of level stages is by 6L more than the number of progress stages then we would
move behond distance 3L of Λ, which is impossible since we are after TPull.

So we have n 6 6L+12L = 18L.

Lemma 7.6. Suppose t0 < TDone. There is a backward blame sequence w0, . . . ,wn wi = (ui, ti) with
tn 6 TSync and n 6 3L.

Proof. Let u0 be any cell in Mess(t0). Let us generate the rest of the blame sequence with ui+1 ∈
Mess(ti). We have the following cases.

(1) ti 6 TSync, so let n = i and stop.

(2) Since ti > TSync, all neighbors of ui belong to Mess(ti). Let ui+1 = u0 +(0,0,1).

We have n 6 3L, since h(ui) is increasing in every step, and ui must still be in Λ.

Let us draw the probabilistic conclusions from these lemmas, using Proposition 2.7. Our goal
is to upperbound the probability of the event [T1 6 T ηDone]. We will introduce constant deadlines
tForm, tSwell, . . . for each milestone time TForm,TSwell, . . . , and we will bound the probability for each
milestone to occur past deadline.

1. Let tForm = T0 + L. For each defect cell the probability that the Form rule will not get applied
to it for a time L is at most e−L, therefore, using (4.2) we have

P[tForm < TForm] 6 2L3e−L.

2. Let tSwell = tForm +γ(3L). Lemma 7.2 says that if tForm > TForm and tSwell < TSwell then there
is a forward blame sequence with length 6 3L and span > γ(3L). Just as above, we conclude
from here

P[TForm 6 tForm < tSwell < TSwell] 6 2L3e−δ(3L).

3. Let tPull = tSwell +γ(G +3L). Using Lemma 7.3 says that if tSwell > TSwell and tPull < TPull then
there is a backward blame sequence with length 6 (G + 3L) and span > γ(G + 3L), starting
from a cell at distance 3L from Λ. It is easy to see that for large L, the number of such cells is
at most 8 ·49L2 < 400L2, so

P[TSwell 6 tSwell < tPull < TPull] 6 400L2e−δ(G+3L).

34

4. Let tSync = tPull +γ(18)L. Using Lemma 7.5 the same way as the others, we conclude

P[TPull 6 tPull < tSync < TSync] 6 2L3e−δ(18L).

5. Let tDone = tSync +γ(3L). Using Lemma 7.6 the same way as the others, we conclude

P[TSync 6 tSync < tDone < TDone] 6 2L3e−δ(3L).

Chaining the definitions we find tDone = (27γ+ 1)L +γG. Chaining the probability estimates
we find

P[tDone < TDone] 6 2L3e−L +2L3e−δ(3L) +400L2e−δ(G+3L) +2L3e−δ(18L) +2L3e−δ(3L)

6 e−dL

for an appropriately chosen constant d > 0.

References
[1] Piotr Berman and Janos Simon, Investigations of fault-tolerant networks of computers, Proc.

of the 20-th Annual ACM Symp. on the Theory of Computing, 1988, pp. 66–77. 1, 1, 3.2,
4.1

[2] Peter Gács, Reliable computation with cellular automata, Journal of Computer System Sci-
ence 32 (1986), no. 1, 15–78. 4.1

[3] , Deterministic parallel computations whose history is independent of the order of
updating, cs.DC/0101026, 1995. 1

[4] , A new version of Toom’s proof, Tech. report, Department of Computer Science,
Boston University, TR 95-009, Boston, MA 02215, 1995. 4.1

[5] , Reliable cellular automata with self-organization, Journal of Statistical Physics 103
(2001), no. 1/2, 45–267, See also www.arXiv.org/abs/math.PR/0003117 and the proceedings
of the 1997 Symposium on the Theory of Computing. 4.1, 4.3

[6] Peter Gács and John Reif, A simple three-dimensional real-time reliable cellular array, Jour-
nal of Computer and System Sciences 36 (1988), no. 2, 125–147. 1, 3.1, 4.2, 4.2

[7] Lawrence F. Gray, Toom’s stability theorem in continuous time, Perplexing Problems in Prob-
ability (Maury Bramson and Rick Durrett, eds.), Birkhäuser, Boston, 1999, pp. 331–353. 4.1

[8] Thomas M. Liggett, Interacting particle systems, Grundlehren der mathematischen Wis-
senschaften, vol. 276, Springer Verlag, New York, 1985. 2.6

35

[9] Andrei L. Toom, Stable and attractive trajectories in multicomponent systems, Multicom-
ponent Systems (R. L. Dobrushin, ed.), Advances in Probability, vol. 6, Dekker, New York,
1980, Translation from Russian, pp. 549–575. 4.1

[10] John von Neumann, Probabilistic logics and the synthesis of reliable organisms from unreli-
able components, Automata Studies (C. Shannon and McCarthy, eds.), Princeton University
Press, Princeton, NJ., 1956. 4.1

36

	Introduction
	Asynchrony
	Cellular automata
	Asynchronous updating
	Random updating

	Simulating a synchronous computation by an asynchronous one
	Local clock differences
	The slowdown

	Fault-tolerance
	The problem
	A 3-dimensional fault-tolerant synchronous automaton
	An asynchronous version of the 3-dimensional automaton

	The topology of defects
	Two-dimensional case
	Three-dimensional case: some elementary topology

	The transition rule
	Motivation
	Definitions for the rule
	The transition rule

	Proof of Theorem 4.1

