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ABSTRACT: Several results in Algorithmic Information
Theory establish upper bounds on the difference between descrip-
tional complexity and the logarithm of “apriori probability”. It
was conjectured that these two quantities coincide to within an
additive constant. Here, we disprove this conjecture and show
that the known overall upper bound on the difference is exact. The
proof uses a memory-allocation game between two players called
User and Server. User sends incremental requests of memory
space for certain structured items, Server allocates this space in
& write-once memory. For each item, some of the allocated space
is required to be in one piece, in order to give a short address.
We also present some related results.

1. Introduction and the main result

In theories of inductive inference, descriptional
complexity is a way to formalize “Occam’s Razor” —
the principle recommending the use of the simplest
hypothesis among those consistent with the data.
Another important principle known as ‘Bayes’ Rule”
assumes that a certain “apriori” probability distribu-
tion is defined over the set of possible states of the
world and uses the conditional probability for inference.
- Algorithmic Information Theory originated from the
recognition that descriptional complexity, if properly
defined [Solomonoff 84, Kolmogorov 85], can be es-
timated by counting arguments and is a good ap-
proximation to the intuitive notion of entropy for in-
dividual objects. (For the exact elaboration of the anal-
ogy to entropy, see [Gacs 74, Chaitin 75].) Descriptional
complexity can be successfully used for the definition
of randomness [Martin-Lf 66, Kolmogorov 68, Levin
73]. Algorithmic Information Theory has a candidate
for apriori probability which, when used in Bayes’ Rule,
gives satisfactory inferences over a wide range of situa-~
tions. A simple but central result states that descrip-
tional complexity is asymptotically equal to the ab-

1part of this work appeared as a Stanford Technical Report while
the author visited Stanford University in 1979. A full version is
to appear in Theoretical Computer Science.
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solute value of the logarithm of apriori probability
[Solomonoff 64, Levin 70,73,74]. The theory owes much
of its convincing power to the fact that it established
this exact relation between two induction principles
(Occam’s Razor and Bayes' Rule) which did not seem
particularly related. The main result of this paper con-~
cerns the exactness of this relation.

NoraTion
Let @ denote the set of rational numbers, N the set
of natural numbers, put Z; = {0,1}. For any set A,
let AW = UP_oA® be the set of strings of length < n
with elements from A. Put A* = Un>0A™ Let A € A*
denote the empty string and A = A* JAN the set of
finite or infinite strings with elements from A. We will
use B=NVNB=7 & for the sets of infinite strings of
natural numbers and bits respectively. For T,y € N*
z ¢ y denotes that z is a prefix of y. For (piyz) €
N* X N*, (]Jlszl) - (P2; :152) means p; C py, 2 C .
The objects = and y are compatible if there is some z with
z C z, y C z For a string z € N*, put 2% = {w €
%:z2Cw} Foraset AC N* put A% — Uzea z%.
The operations p%, A® are defined analogously. For
a binary sequence p € B, let [p] € [0, 1] denote the
real number associated with it in the binary number
system. For A C Z3, put [A] = {[w] : w € AB}.
For p € Z3, put [p] = [{p}]. For E,F C N*, put
E"={xEE':VyEE’ygx=>y=:c}andE£
F = Vz €EFJyeFyCz The relation £ < F
implies E% C F% but the converse is not true. Let
!(z) denote the length of the sequence z € N* and put
z" = zj-+zn. Let () : N* — N be some standard
one-to-one encoding with partial inverses pr; defined by
pry((z)) = z; for I(z) > 4. For I(z) = 2, we use (z) as
a two-argument pairing function (z;, z3). The relations
f =9, f = gdenote f < g+ O(1), f — g = O(1).
All logarithms and exponentials in this paper are to the
base 2. Let $A denote the number of elements of the
set A.

“Algorithmic entropy” or “self-information” seems



a luckier term than “descriptional complexity” both
on account of its connotations and because there are
too many different notions of “complexity”. But
since different quantities can claim to express the
true meaning of algorithmic entropy, we abide by the
term “descriptional complexity”. It is worth defining
descriptional complexity carefully. Several different
definitions seem intuitively almost equally justified and
are generally asymptotically equal but some bring more
sharpness into the basic formulas and simplicity into
the proofs than others. Most of our definitions and basic
facts are taken from [Levin 70,73]. We first tell how to
interpret a description.

Dermirion 1.1 A r.e. (recursively enumerable)
set A © Z5 X N* X N* is called a monotonic ope-
ralor (interpreter) if the following holds: whenever
(p1, 21, 1), (p2s 3, %) € A and (p1,21) is compatible
with (pg, 22), then 1 is compatible with 1. An in-
terpreter defines a monotonic function by A(p, z) =
sup{y € N*: 3(p',2') C (p, z) with v, 7,y)eA}.

Put A(p) = A(p,A). The first element (A(p)); of the
string A(p) is a natural number, which will be denoted
by Al(p). The monotonicity condition for Al(p) reduces
to the following: Al(p) =n, pC g = Al(g) = n. This
seems weaker than the “self-delimiting” requirement in
[Levin 74, Chaitin 75] but leads to the same complexity.
We will write A¢(p, z) for the part of A(p,z) occurring
in ¢ steps of enumeration.

Dermirion 1.2 (see [Levin 73,74]). Forz,y € N,
Kaly | 2) = min{i(p) : y C Alp, 2) }

is the (monotonic) conditional complexity of y with
respect to & and the interpreter A.

It is known that there is an optimal interpreter U with
respect to which complexity is minimal to within an
additive constant. Thus, for any interpreter A, there is
a constant ¢4 such that for all z, y, Ky(y | 2) < Kaly |
z) + ca. Let us fix an optimal interpreter U, write
K(y | z) = Ku(y | ). The number K(z) = K(z | A) is
plainly called the complexity of z.

Typical orders of magnitude: for natural numbers
n (sequences of length 1), K(n) =< 2logn, moreover,
K(n) <logn+4 K(|logn]). This last estimate is sharp
for most numbers k < n. For z € N*, if z C U(p) and
I(p) = K (z) then p is called a minimal description of z.
Let z* denote the lexicographically smailest minimal
description of z.

For z € N* put Dy(z) = {p € N* : Iy D
z with (p,z) € A}. Let us imagine a “Turing machine”
with a read-only tape moving in, working tapes, and a
write-only tape moving out where all tapes are capable
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of holding arbitrary natural numbers in their cells.
The work of such a machine can be represented by a
monotonic operator with the special property that the
set {(p,z) : p € (Da(z))'} is enumerable. The “process
complexity” K’ based on such machines and discovered
in [Schnorr 73] independently for binary strings, may
be a little larger than K. However, all known upper
bounds apply as well to K.

The notion of a random sequence was introduced in
[Martin-L&f 86]. In [Levin 73], monotonic complexity
is used to characterize randomness. (These results are
somewhat refined in [Gacs 80] where Martin-Lof’s tests
are expressed exactly by complexities.) But random-
ness is more immediately characterizable using another
quantity, the apriori probabilsty. It is worth trying to
explain the role of its simple relation to apriori prob-
ability. Let 7 = =, m,... be an infinite sequence of
identically distributed random variables with Pr[m =
0] = Pr{n = 1] = 1/2. The number

M(z) = Prlz C U(r)]

is the probability that our optimal machine produces =
from a random input. In a more elementary notation,

M(z) =Y {27'P: p e (D))},

27KE) = max{2—); p €D(z) }. (L1)

Dermarion 1.3 The number M(z) is called the
apriors probabilsty of z.
The apriori probability is not a probability measure over
% because on some p € B, the sequence U(p) does not
have infinite length. Therefore some more definitions
are needed. A nonnegative real function v over N* is a
semimeasure if v(A) < 1 and for all z € N*,

E v(zn) < uz).

n=>0

A semimeasure v is a measure if equality holds here,
a probability measure if also {A) = 1. The Lebesgue-
measure A over Z3 is defined by A\(p) = 2, When
v is restricted to natural numbers (sequences of length
1) then the above requirement simplifies to 3, v(n) <
L Put %z) = T{uly) : = C y € N}, b(z) =
limy, o0 v(”)(a:). The function ¥ is a measure which is
maximal among all measures 4 << v. A measure can be
uniquely extended to all Borel sets of %. The statement
that a set S has apriori probabilityy 0 means M(S) = 0.
The statement that a property holds for “apriori almost
all w" is used correspondingly. For any semimeasure
v and set § C N* put v(S) = 37 __.v(z). Then for



any measure u we have u(S) = u(S%). The follow-
ing properties, expressing some restricted monotonicity
and additivity properties for semimeasures, are useful:

So S S = V(SG) S V(Sl)’

AUnSn) < D S (Sn)- (12)

The semimeasure M (z) is not computable but has some
weaker computability property. A real function f is
called semicomputable (from below) if there exists a recur-
sive function g : N* X N — @ monotonically increasing
in its second argument such that f(z) = lims, o0 9{z, £)
(g “generates” f). The apriori probability M is semicom-
putable because M(z) = lim¢_,oo Mi(z) where Mi(z) =
Pr{z C Uy(n)]. A function f is computable if f and —f are
semicomputable. Semicomputable [semijmeasures will
also be called r.e. (recursively enumerable). It is known
that r.e. probability measures are also computable. All .e.
semimeasures can be effectively enumerated in a sequence
Y. (¢ € N). Indeed, let T : N? + Q be a universal
partial recursive function. It is known that there exists
a recursive function g(e) with the following properties.
1. For each fixed ¢, the function T'(g(e), z, t) generates
a r.e. semimeasure .. 2. If T'(e, z,t) generates a r.e.
semimeasure then T(g(e), z,t) = T(e, z,t). It is known
that M(z) majorizes all r.e. semimeasures to within a
multiplicative constant:

M(e)da) < ME@)O(1). (L3)
For the generation of computable semimeasures, we need
a pair of sequences: approximations from below and
above. If the pair T'(pr,(e), z, t), T'(pry(e), z, t) generates
a computable semimeasure we denote this semimeasure
by 7.. The computable semimeasures—just as the re-
cursive functions—can not be enumerated. Therefore
7 does not always exist. Put H(z) = —log M(z). It
follows from (1.1) that H(z) < K{(z).

Facr 1.1

a) For any computable semimeasure 7.,

K(z) < —logn.(z) + K(e). (1.4)

b) w is random with respect to a computable measure
7e iff there exists a constant ¢, such that for all n,
—log 7e(w™) < H(w") + c.

Hence for sequences w random with respect to some
computable measure (certainly a wide class) it is known
that K(w™) — H(w™) is bounded by some additive con-
stant depending on w. Levin raised the conjecture in
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[Levin 73] that H(z) =~ K(z). In the main result of this
paper, we refute this conjecture.

A set E C N* is called prefizfree if its elements are
incompatible. (Example: the set N™ of sequences of
length 7.) It is known (see [Levin 74]) that for any r.e.
prefixfree set E' a constant cg exisis such that we have
|H(z) — K (z)| < cg for all z € E. It is enough to prove
this for £ = N, i.e. that

H(n) = K(n) (1.5)
for natural numbers n; the rest follows by encoding. As
a consequence, one can prove

H(z) < K(z) X H{z) + K (=) (1.8)
since only K(I(z)) additional bits are needed to define
the prefixfree set N 2. The estimate

Hz) <K@@) <H@)+K(H@@])  (1.7)
—which is somewhat better for binary sequences—is
proved analogously. These results show that only the
tree-structure of N* can cause a significant difference
between H(z) and K(z). (Of course, the problem is
equivalent for Z3.) We will prove

Treorem 1.1 For any function g : N — N semicom-
putable from above for which

K(z) — H(z) < 9((=)) (18)

we have K(n) < g(n).

Notice that for functions g(n) semicomputable from
above, K =< g is equivalent to 3 279" < ca.

The strings z giving the lower bound may contain
very large numbers. Therefore for binary strings, the
lIower bound obtainable from the proof of Theorem 1.1 is
only the inverse of some version of Ackermann’s func-
tion.

Theorem 1.1 shows that in the worst case, the
difference between K and H can be large. On the other
hand, Theorem 2.3 shows that for apriori almost every
w, K (w™) —H(w") has an upper bound which is smaller
than any unbounded recursive function.

The proof of Theorem 1.1 uses a two-person infinite
game described in Section 3.

2. Information in largeness

The power of a notation for numbers can be
measured by the size of the largest number describable
by strings of given length. Let

a(n) = 2151_131{(1) =min{l(p) : n C U(p) }.



be the length of the shortest description of a number
larger than n. Then limpooa(n) oo since
Hn: K(n) < k} < 2% The function a(n) grows
slower than any recursive function, since there is no
nonconstant recursive lower bound on K(n) (‘Berry’s
paradox”). Its inverse is a version of the “busy beaver”
function (see [Rado 62]).

These functions play an illuminating role in Algo-~
rithmic Information Theory. The following result is
proved in [Barzdin’ 88]. Let the infinite 0-1 sequence a
be the characteristic function of a r.e. set. Let a(n) =
(az") be the standard encoding of a 2"-length prefix of
a. Then K(a(n) | n) < n and for a suitable r.e. set
given by b(n) we have K(b(n) | n) =~ n. What sort
of information is stored in b(n)? It is algorithmically
equivalent to a description of large numbers. Indeed: let
{z(1),z(2), ...} be a recursive enumeration of the set B
with characteristic function b{n), By = {z(1),.. ,:z:(f)}
and p(n) = min{t : bgn) = b(n)} where b is the
characteristic function of By Then, given n, knowing
b(n) is the same as knowing any number larger than
p(n). On the other hand,

alp(n) | n) =,

i.e.  p(n), another “busy beaver” function, has
“approximately” the same order of growth as the in-
verse of a(n). (We get the definition of a(n | z) by
conditionalizing the definition of a(n).)

The length of b(n) is 27, while it contains only =
bits of information. Therefore it is not the shortest
description of the large numbers it encodes. What do
succinct definitions of large numbers look like? Consider
the binary expansion Q of the number 3\ M(n).
It is shown in [Chaitin 75] that K(Q") = n therefore
it follows from Fact 1.1 b that Q is random. It turns
out that minimal definitions of large numbers are algo-
rithmically equivalent to prefixes of 2. Let o(n) be the
time needed to approximate [(}] within 2" Given n,
- knowing 2, is the same as knowing a number larger
than o(n), and

a(o(n) | n) < n < a(o(n)).

1y, can thus be considered a compressed form of b(n)
(which is 2" long). Of course, the redundancy in b(n)
is not useless. The number b(n) contains, in an easily
accessible form, all significant information about the
the results of computations performable in time a (7).
It is not surprising therefore that the computational
complexity of any significant compression of b(n) is
nonrecursively large (see [Barzdin’ 68]). For a popular
exposition of this topic, see [Bennett 79, Gardner 79).
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We will consider a natural “busy beaver” function
associated with the apriori probability, which does not
involve time-complexity at all. For any semimeasure

v, put
s{n;v) = — log(Z v(z')),

i=>n

s(n) = s(n; M). Then 24" = Pr[n C U(x)] is the
probability of obtaining a number larger than n using
a random input to U. We have 240 = [Q] Put
C(n) = Ug>nD(k). We have

(n) =3 {27P:pe (Cm)'},
27" =max{2 ; pec C (n)}.

27 =\(C!

A comparison with (1.1) shows that the relation of a(n)
to s(n) is analogous to the relation of K'(zr) to H(z). In
analogy to (1.7), it is shown in [Solovay 78] that

s(n) < a(n) =< s(n) + K(|s(n)))-

We will show that the error term K/(|s(n)]) is necessary
in (2.1).

Toeorem 2.1 Letg: N +— N be a monotonic function
semicomputable from above such that

a(n) < s(n) + g(Ls(n))).
Then K(n) < g(n).

(2.1)

2.2)

Nore Since we required monotonicity, logn -
K(|log n]) < g(n) is also proved as log n+K(|log n])
is =~ to the least monotonic upper bound on K(r).

The proof of Theorem 2.1 uses a simple two-person
game similar to the ones described in Section 3.

After looking at the probability of large numbers it
is natural to ask how fast a sequence can increase if it
is generated by a probabilistic Turing machine. The
next two results of L..A.Levin have not been published
before.

TueoremM 2.2 For apriori almost all w there is a con-

stant C such that a(w,) < 2a(n) + K(a(n)) + C.

Once we are able to bound the growth of random
sequences we also have an estimate of the closeness of
M; to M since the minimal times ¢ giving M; = M are
also “random”. Combining this remark with (1.4), we
get an estimate of K — H.

Taeorem 2.3 For apriori almost all w, there is a con-
stant C such that

K(w" — H{w") < 2a(n) + K(a{n)) + C.



3. Memory-allocation games

We describe a storage-allocation game between two
players called User and Server.

Game 1

User sends requests at each step t € N for storage of
different sorts of items. These sorts form a hierarchical
structure: we identify them with N*. Item 3 could mean
“cars”, item 30 “Fords”, 311 “subcompact AMC cars”,
etc. Let the real number a(z,t) > 0 be the total quan-
tity requested until time ¢ from item z. Let a(z,0) = 0.
At step i, a(z,t) has rational values different from 0
only for finitely many z € N, and q(z, t) is obviously
a semimeasure (see Section 2) for all . The function
a(z,t) is monotonically increasing in . Server has a
store V' which is the subset of the interval [0, 1]. At each
step ¢, Server allocates a set B(z, t) (storage space) for
item z which is a finite union of intervals. If z and y are
incompatible then we must have B(z, t) N B(y, t) = 0.
Server is never allowed to reallocate (e.g. the store is a
write-once memory). Thisis expressed by requiring that
B(z,t) be nondecreasing in t. Put b(z,t) = \(B(z, £)),
oz, 1) = max{N(p]) : [p] C B(z,) }. Let a(z), B(z)
b(z) and c(z) be the limits of a(z, t), B(z, t), b(z, t) and
c(z,t) as t — co. Server wants to maintain log %(% <
9(!(z)) for some function g. We can suppose that he
satisfies @4)

a(z,

o(zt) < g(i(=))
since otherwise User would just wait until (3.1) does
not hold.

Treorem 3.1  Suppose that V = [0, 1].

log (3.1)

a) Server has a recursive strategy to achieve

a(z)

()

b) For any function g semicomputable from above
with 3 279" — oo User has a recursive strategy

(3.2)

log —~5 <X min{K(¥(z)), K(|—log a(z) )}

achieving g(/(z)) < log %X for some z.

Proof of (1.8), (1.7) and Theorem 1.1:

First we prove (1.8) and (1.7). Put a(z, t) = Mi(z). By
Theorem 3.1 a), there is a strategy B(t, z) of Server with
(3.2). Since B(t, z) depends recursively on at, z), the set
A= {(p,z) : [p] C B(t,z)} is a monotonic operator.
Using (3.2) and the optimality of U,

K(z) =< Kalz) = — logofz)
= H(z) + min{K((2)), K(H(2)))}.

Now we prove Theorem 1.1. Let g(n) be a function
semicomputable from above with 277" = oo, g¥(z} =
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g(z) 4 k. Put B(z,t) = U{[p] : = € Ui(p) }. Theorem
3.1 b) says that for each k, there is a strategy a¥(z, t)
of User achieving K(z) = —loge(z) > —log a¥(z) +
g"(i(z)) for some z. We use a more.constructive fact
which also follows from the proof: namely that for some
recursive function f(k), we also can have af = v, k)«
Hence (1.3) is applicable, and, using K(f(k)) < K (k),
we get K'(z) >= H(z)+ g(i(z)) +k— K (k) which implies
K(z) > H(z) + g(!(z)) for a k large enough. ®

The positive part a)of Theorem 3.1 can be proved
by the known techniques used for the proof of K (n) =~
H(n), after noticing that the set N” of all sequences of
a fixed length n is prefixfree. Server sets aside a store
of size O(M(n)) and handles the sets N™ separately for
each n. The set G(n) = {z : |[—loga(z)] = n} is
though not necessarily prefixfree but is “almost” so—
therefore almost the same procedure gives the bound
K(|—log a(z)]).

The proof of the negative part of Theorem 3.1 uses
the idea of reservation. For any natural numbers r < s
and a set £ C V put

LEV) =W CV:r<ip) <s[lINE#0}.

Put LI(E) = L}(E; [0, 1]). The set L(E; V) is the union
of all binary intervals in V with lengths between 2—*
and 27" having nonempty intersection with E. Put

Wi(t; V) = LB, t); V),

Bi(z,t; V) = LYB(g, t); V — V'(z, t))

where V/(z,1) is the union of B(y,t) for all y incom-
patible with z. Put wj(t; V) = NW(¢; V), b¥(z, t; V) =
NB;(z, t; V)). Notice that w(t) is controlled by User but
W3(¢; V)— which is also monotonic in —is controlled
by Server. The set B:(z,t;V) is the union of binary
intervals of certain lengths which we can consider as
reserved for z at time ¢. It is not monotonic in ¢: reser-
vations may be “cancelled”. However, reservation in
one stage, even if cancelled, may look like an irrevocable
allocation from the point of view of subsequent stages.
To implement this idea we introduce a new game which
serves as a recursion step in Game 1.

Game 2

The set of items is the set N? of sequences of length
2. The following additional parameters are given: an
infinite nonincreasing sequence n =1 2> ... of natural
numbers, 7,k € N with k¥ < r < r;, and a real number
7> 0 PutT' = max{l,v}, 0 = I'"12—"—2 The
rules are the same as for Game 1 and, additionally, the
fol(llowing. We have a(z,t) = 3 a(zy,t) forall € N
an

afz, t) < 2775, (3.3)



User is permitted to change a(zy,t) only in a special
fashion. He chooses a pair z4; and puts

alzy,t+ 1) = {ggzz 9+

for zy = zuy,
otherwise.

The number §(t) € [0,20] is not chosen by User: we
can suppose it is chosen by Server. Server must satisfy
a(z,t) = 27"k = o(z, ) > 2T (3.4)

for all z € N, and also the following: for z,y € N, if
a(zy,t) = 0 and a(zy, t 4+ 1) > 0 then

b (zy,t+ 1) > ~alzy, t + 1).

The game ends at some time T. Rules (3.3) and (3.4)
mean that the size of contiguous intervals requested in
this game is always 277,

(3.5)

Lemma 3.1 In Game 2, User has a strategy with the
following property. As long as Server is able to keep
the rules for any v € [25—712, w(T) /2] there is a t! with
w(t’) € [v,2v] and v

Wt V) = w(t)ly + 2743,

Proof of Lemma 3.1: Wegive the strategy of User. Put
a(zy, 0) = 0 for all z,y € N. To determine a(z, t 4 1),
User orders all items € N in decreasing order of values
of a(z, t) (for equal values of a(z, t), the smaller z comes
first). Let R(z, t) be the rank of z in this order. For his
decision, User looks up the first item z; in this order
which has no binary interval of length 2" “reserved”
for it, i.e. for which B](z,4; V) == 0. From now on, we
suppress the argument V: it serves as a parameter Put
yt = min{y : B(zw,t) = 0 }. Put F(t) = U, Bl(z,¢),
{u, t) = F(u) NF(t), di) = NF(t)) and C'(t)
U1 Bre—4zuyu, u). First, we prove that for all ¢,

w(t) = yw(?) + d(t)/2.

Obviously WP(t) D C(t) UF(t). We will prove by in-
duction on u << ¢ that

MC(u) UD(y, t)) = yw(t) + ND(u, t))/2

(3.8)

(3.7)

which clearly implies (3.6). The inequality (3.7) is true
for u = 0. Suppose that it holds for u. Suppose first
that D(u—1,t) = D(u, t). Then by the choice of zyys,

Bre | (@ubu v+ 1) N (C(w) UD(y, 1)) = 0.

Therefore by (3.5), the left side of (3.7) increases by
at least b7%  (Tuyu, u+ 1) = 76(u) while the right side
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increases exactly by vy§(u), hence (3.7) holds for u-- 1.
Suppose now that E' == D(u-1,¢) —D(u, t) 54 @. Then
ENC(u) = 0, therefore the left side of (3.7) increases
by at least A(E) which is a positive integer multiple of
2", Using y8(u) < 207 < 2771, we have

NE) = ME) — v6(u) + v8(u)
= (MD(u+ 1, £)) — ND(u, 1)) /2 + 18 (u)

hence (3.7) holds for u- 1. This proves (3.7) and hence
(3.6). The inequality (3.8) gives

Rzy 1) < 27d(t) < 27T (wP(t) — yu(t). (3.8)

Inequality (3.8) says that if the difference between space
reserved (therefore in some sense spoiled) and the space
“actually allocated” (reserved on some lower level) is
small then a(z,t) can increase only for some z of low

rank.
Put

mto, t1) = max{2"d(t) : £ € [to, 1) }.

By the first inequality in (3.8), E(to, t1) = {z : R(z, t) <
m(to, t1) } is independent of ¢ and zuy € E(ty, 1) for all
t € [t, t1). Therefore

w(t) — wto) < 2°"HB(to, tr) < (1 + mlto, 81))2°".
Suppose that v € [26—™F2,w(T)/2]. Put t

min{{ : w(t) > v}, & = min{¢ : w(t) > 2v} and
m == m(ty, t;). Then

v— 27" S wity) — wte) < (14 m)2t

The maximum m is achieved for some &' € [to, t1). We
have w(t) € [v,2v) and

d(t) =m2—"

>0 Fy—2—rly— o

2 2——k—2(4v — 2-—-—1‘—}-1 — 2&:—-?‘—1-—2)
> 27k 2u(t).

With (3.6), this completes the proof. ®

Lemma 3.1 states that in the 2-level Game 2, User
can force Server to devote to reservation significantly
more area than the amount yw(t) required by the rules.
A recursive application of the strategy of Lemma 3.1
will give this effect repeatedly. Suppose that the set
V C [0,1] is all the store space available. Put

+
i, g) = 3379,
| >

The recursive functions below are, strictly speaking,
functionals: they depend on a function argument g.



Lemma 3.2 There is a recursive function f(4, 7, g) such
that User has a strategy S(i, r, g, V) in Game 1 with the
following properties: for alls, g : N ++ N , 1= g(1)43,

if Server satisfies (3.1) for all z with z) <241 then

for all v € [29(—7+2 1/9] there is a ¢!
[v,2v¢],

with w(t) €

wfEnD(E;, V) 2 (6, g)w(t). (3.9
Proof of Theorem 3.1. b): Letg = lim; ¢; be a function
semicomputable from above, with 3on2 M = o0, We
can suppose w.lo.g. that ZJ->0 27005 = oo, We
apply the strategy S(3,gu(1) F 3, g, [0,1]). If Server
satisfies (3.1) then with v = 1/4 we get

1 > wfGmau(¢; [0, 1]) > (3, gu) /4

which is a contradiction for i, u sufficiently large. W

Proof of Lemma 3.1: We will prove the Lemma by
induction on 1. For p € N, certain times tp will have
special significance. Let us call the course of strategy
S(i,r, g, V) between t, and tp-+1 the p-th macrostep of this
strategy. For 1 = 0, User will raise a(p, tp) from 0 to
21 in step tp = p. The inequality (3.1) guarantees
(3.9). Suppose that User has a strategy S(7, r, g, V) satis-
fying the requirements of the lemma. We have to define
SGE+1,r, g, V). Put g(n) = g("’+2)’ ¥ ==1(1, 9, I'=
max{l,7}, k=g(1), o =T—12—"=2 apq T = [e—1].
We define the function f by the double recursion

f(oy T, 9) =T,
f(i + 1, y) = h(T: 1,7, 9)7

h(ﬂ, i, g) = f— 1030.' + 9(3) +2,
hj =+ 1,4, 9) = fG, (7,14, r, 9),9)-

where

Put r; = h{max{T —j, 0},4,, g). The “sum” of moves
of User in the p-th macrostep in S(i,r, g, V) is on N2
the same as his move in step p of the winning strategy
in Game 2. Namely, the weight of some ZpYp increases
by some é(p) € [0,20]. The p-th macrostep itself is
an application of strategy S(i, T;: G, Vp) to the tree of
continuations of z,y,, where

r—1
Vo=V — | Blzuyu t; V)

u=0

is the remaining store after p macrosteps. By the
definition of h, 1, = f(3, Tp41,9) for all p with
w(tpt1) < 1. In S(i, 7, 3, V,), the game is played until
a point ¢’ is reached with W(t") € |o, 20] and

Ty, (5 Ve) = 20, gwt), (3.10)
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where W denotes the w in substrategy S(3, 75,3, Vp). By
the inductive assumption, this point ¢ exists if o &
[29)="+2, 1/9]. This holds because r, > h(0, i, r, g) =
[—log o] + g(3) -+ 2. Put 6(p) = B(#), fpi1 = t,+ .
Inequality (3.10) implies that in the original game,

b::+1($pyp; tp+ 1 V) 2 1(’:’ ?)a(xpyp: tp—{-l)-

Therefore the conditions of Lemma 3.1 b) are satisfied.
Hence, for any v € [25—712 1/2] there exists a #' with
w(t) € [v,2v] and

wth V) 2 (105, 3) + 27 ult’) = 6 + 1, g)u(#).
]
Since rg = f(i 1,7, g), this concludes the proof. W
I am grateful to R.Solovay whose careful reading
improved the quality of the paper considerably, and to
L.A.Levin for many illuminating conversations on the
topic of this paper.
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