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Abstract

Consider a set of signalsfs : {1, . . . , N} → [0, . . . ,M ]
appearing as a stream of tuples(i, fs(i)) in arbitrary order
of i and s. We would like to devise one pass approximate
algorithms for estimating various functionals on the domi-
nant signalfmax, defined asfmax = {(i,maxs fs(i)), ∀i}.
For example, the “worst case influence” which is theF1–
norm of the dominant signal [7], generalFp–norms, and
special types of distances between dominant signals. The
only known previous work in this setting are the algorithms
of Cormode and Muthukrishnan [7] and Pavan and Tirtha-
pura [18] which can only estimate theF1–norm overfmax.
No previous work addressed more general norms or dis-
tance estimation. In this work, we use a novel sketch, based
on the properties of max–stable distributions, for these more
general problems. Themax–stablesketch is a significant
improvement over previous alternatives in terms of sim-
plicity of implementation, space requirements, and inser-
tion cost, while providing similar approximation guaran-
tees. To assert our statements, we also conduct an experi-
mental evaluation using real datasets.

1 Introduction

Consider a network traffic monitoring application. An
interesting measure is the maximum possible network uti-
lization which would occur if the transmissions from differ-
ent source IP addresses were coordinated. This measure is
also known as the max–dominance norm and it appears in
a variety of other applications as discussed in more depth
by Cormode and Muthukrishnan [7]. Essentially, themax
operation over a large set of input distributions is a natu-
ral measure for computing “worst case influence”. Previ-
ous work on norm estimation has focused mostly on indi-
vidual distributions, or on processing multiple distributions
individually, with space linear to the number of input sig-
nals. Here, we study cumulative trends in the presence of

multiple distributions, and we present fast approximate al-
gorithms for efficient computation of arbitraryFp–norms,
point and distance computations on the dominant signal of
a multiplicity of signals in the data streaming model.

Formally, our setting consists of multiple signals (or data
streams)fs : {1, . . . , N} → [0,M ], 1 ≤ s ≤ S with
different distributions, where every signal is defined over a
very large domain[N ], so that it is not feasible to store it or
process it in real time. Each signalfs can be viewed as a
set of items(i, fs(i)), i ∈ [N ], where eachi appears only
once per signalfs. Consider the dominant signal defined as
fmax = {(i, maxs fs(i)), ∀i}. Straightforwardly, one can
compute a variety of statistical measures over the dominant
signal. For example, the max–dominance norm which is de-
fined as

∑
i maxs fs(i) [7], can be viewed as theF1–norm

of the dominant signal. Similarly, the energy of the signal
is given by theF2–norm (

∑
i maxs fs(i)2)1/2. Here, we

assume that signal values are observed as a stream of tuples
(i, fs(i)) arriving in arbitrary order ini ands. We also as-
sume thats is not made known explicitly to the algorithms
that we consider (and is used in our notation only for con-
venience).

For example, in the aforementioned network monitoring
application, under our setting the domain of itemsi corre-
sponds to source IP addresses, while the different signalss
correspond to disjoint measurement intervals. The values
fs(i) correspond to the total number of bytes transmitted
by IP i within interval s. It is easy to see that computing
theF1–norm of the dominant signal yields the hypothetical
worst–case utilization of the network in case of coordinated
maximum transmission rates from all known IPs, within the
same measurement interval. Computing theF2–norm of the
dominant signal yields the energy of the cumulative distri-
bution which is potentially useful for detecting denial of ser-
vice attacks. Furthermore, computing distances is essential
for change detection applications. Finally, reconstruction
of the large values of the signals is useful for identifying the
heavy hitters.

To the best of our knowledge, the only previous work
for approximate computation of statistical measures on the
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dominant signal over a set of input signals has concentrated
only on estimating the max–dominance norm — the algo-
rithms by Cormode and Muthukrishnan [7] and Pavan and
Tirthapura [18]. A natural way for computing a larger va-
riety of functionals over the dominant signal is by directly
usingmax–stabledistributions [20]. Here, we use a novel
type of synopsis calledmax–stablesketch, which is based
on the nice max–stable properties of the Fréchet distribu-
tion.

The max–stable sketch can estimate theFα–norm of the
input signals for anyα ∈ R+, within ε error and probability
1 − δ usingO(1/ε2 ln 1/δ log N/δ log M) space. In addi-
tion, the sketch can be used to recover large values of the
dominant signalexactly, with high probability. Finally, it
can also be used for estimating a special distance between
two dominant signals. Notice finally, that other solutions
for computingFα–norms (e.g., AMS sketches [1]) cannot
be applied on the max–incremental setting that we consider
here. Another advantage of the max–stable sketch is sim-
plicity of implementation, especially in comparison with
other alternatives for computing max–dominance norms
which require a large number of floating point division and
multiplication operations, which might be infeasible on cer-
tain hardware, as we will argue in Section 5. Finally, our
algorithm has the useful property that it can be applied both
in the distributed and the merged stream setting (as defined
in [12]) without any modifications.

2 Related Work

A large body of work has appeared recently on designing
approximate, probabilistic algorithms for summarizing sig-
nals on the data streaming model [17, 8, 6, 13, 16, 10, 11].
These algorithms focus on individual distributions, or on
processing multiple distributions individually. In this work,
we present algorithms for approximate computation of
statistics on the cumulative distribution over a multiplicity
of signals.

The idea of using stable distributions has been used suc-
cessfully in the literature in the past. Cohen [5] used min–
stable distributions for estimating subset–sums. Indyk [15],
advocated the use of sum–stable distributions for estimating
theFp–norm of a given signal, for0 < p ≤ 2. Cormode and
Muthukrishnan [7] exploited the sum–stable distribution
for designing approximate algorithms for max–dominance
norm estimation over multiple signals. Their algorithm re-
quiresO((1/ε2 log M+1/ε3 log n log log n) log 1/δ) space
andO(1/ε4 log fs(i) log n log 1/δ) processing time per el-
ement, wheren is the total number of tuples seen in the
combined stream. In comparison, we use algorithms based
on max–stable distributions that provide better theoretical
bounds, both in terms of space and processing time per item.
Also, the Cormode and Muthukrishnan algorithm is max–

dominance norm specific, while the max–stable sketch of-
fers a wider range of features. Finally, their sketch is mostly
theoretical in nature, and a viable implementation of this al-
gorithm is problematic in practice, as will be seen in Section
5.

Pavan and Tirthapura [18] recently proposed an effi-
cient algorithm for estimating theF0–norm of a signal
(commonly known as the distinct–count). Their algorithm
uses some special properties of the Universal Hash func-
tions of Carter and Wegman [4], to provide a sketch that
can handle very efficiently insertions of a range of items
[a, b] in O(log (b− a)) time, wherea, b ∈ N. Since
the max–dominance norm computation can be reduced to
a distinct counting problem using ranges of values, the
range–efficient sketch by Pavan and Tirthapura is a natu-
ral candidate for max–dominance estimation, providing a
solution that usesO(1/ε2(log N + log M) log 1/δ) space,
O(1/ε2 log log N log fs(i) log 1/δ) worst case processing
time per element andO(log (fs(i)/ε) log 1/δ) amortized
time. Nevertheless, once again this solution can be used
only for estimating the max–dominance norm of a set of
signals. In addition, it has a variety of other practical draw-
backs which will be discussed in detail in Section 5.

Another work closely related to ours is by Gibbons and
Tirthapura [12], in which(ε, δ)–approximation algorithms
are described for estimating the bitwise or of the union of
indicator streams consisting of0, 1 elements. These algo-
rithms are then used for approximating theF0-norm of the
union of streams of integer valued domains. Finally, ex-
tensions are discussed for handling the scenario studied in
[15, 9], in which data items appear as (label, value) pairs
like in our setting. The same algorithm can be applied for
computing

∑
i max {ai, bi}, ai, bi ∈ [0,M). However, as

pointed out in [7], this algorithm requiresΩ(M) time to
process each item (whereM can be very large) and there-
fore this approach is not practical. In addition, here we con-
sider both integer and real valued domains, while the work
in [12] is limited to integer valued domains only.

3 The Max–Stable Sketch

We present here the basic theory behind the max–stable
sketch. A full analysis and detailed proofs of all theorems
appear as a technical report [21].

3.1 Initial Construction

Consider a non–negative signalf : {1, . . . , N} →
[0,M ]. Theα–max-stable sketch off is defined as:

Ej(f) := max
1≤i≤N

f(i)Zj(i), 1 ≤ j ≤ K, (1)

where the random variablesZj(i) are max–stable indepen-
dent standardα–Fŕechet.

2



A random variableZ is said to be max–stable if, for any
a, b > 0, there existc > 0 andd ∈ R, such that

max{aZ ′, bZ ′′} d= cZ + d, (2)

whereZ ′ andZ ′′ are independent copies ofZ and
d= means

equal in distribution.
A random variableZ is said to be standardα–Fŕechet if

P{Zj(i) ≤ x} = Φα(x) :=
{

e−x−α

, x > 0
0 , x ≤ 0,

(3)

for arbitraryα > 0. One can check by using independence
that equation (2) holds for any standardα–FŕechetZ. Let
Z, Z(1), . . . Z(n) be iid standardα–Fŕechet, and letf(i) ≥
0. Then, for anyx > 0:

P{ max
1≤i≤N

f(i)Z(i) ≤ x} =
∏

1≤i≤N

P{Z(i) ≤ x/f(i)} =

exp{−
N∑

i=1

f(i)αx−α}, (4)

and thus

ξ := max
1≤i≤N

f(i)Z(i) d= (
∑

i

f(i)α)1/αZ = ‖f‖`αZ.

That is, the weighted maximaξ is anα−Fréchet variable
with scale coefficient equal to‖f‖`α (i.e., theFα–norm of
f ).

Hence, the max–stability of theZj(i)’s implies that:

Ej(f) d= ‖f‖`αZ1(1), 1 ≤ j ≤ K.

One can also easily express the median of anα–Fŕechet
variable Z, with scale coefficientσ. Indeed, P{Z ≤
med(Z)} = 1/2, and by solvingexp{−σαmed(Z)−a} =
1/2, one obtains:

med(Z) =
σ

(ln 2)1/a
.

Now, define the quantity:

Lα(f) := (ln 2)1/αmed{Ej(f), 1 ≤ j ≤ K}.
By keepingK independent realizations of the weighted

maxima we can show the following:

Theorem 1. Let ε ∈ (0, 1) andδ > 0. Then:

P{|Lα(f)
‖f‖`α

− 1| ≤ ε} ≥ 1− δ, (5)

provided thatK ≥ C
ε2 log( 1

δ ), for someC > 0.

Proof. Observe that

Lα(f)
‖f‖`α

d= (ln 2)1/αmed{ξj , 1 ≤ j ≤ K}, (6)

whereξj are independent standardα−Fréchet variables and

where
d= means equality in distribution. Therefore, the re-

sult follows from Lemma 2 of [15], since the derivative of
Φ−1

α (y) = (ln(1/y))−1/α aty = 1/2 is bounded.

Hence,Lα(f) can be used as anε–approximation of the
Fα–norm of the signal, for arbitraryα > 0. Notice that
the sum–stable sketches provideFα–norm approximations
only when0 < α ≤ 2.

The power of the max–stable sketch lies in the fact that
theα–Fŕechet variables can be easily simulated in practice.
If Uj , j ∈ N are independent uniformly distributed vari-
ables in(0, 1), thenZj := Φ−1

α (Uj) = (ln(1/Uj))−1/α are
independent standardα−Fréchet. Indeed, for allx > 0:

P{(ln(1/U))−1/α ≤ x} =

P{ln(1/U) ≥ x−α} = P{U ≤ e−x−α} = e−x−α

.

One can also get the optimal asymptotic form of the con-
stantC in Theorem 1.

Theorem 2. Given ε > 0 and δ > 0, let K(ε, δ) be the
smallest integer for which (5) holds. Then, asε, δ → 0, we
have

K(ε, δ) ∼ 2
α2(ln 2)2

ln(1/δ)
ε2

. (7)

Herean ∼ bn, n → ∞, denotes asymptotic equivalence:
an/bn → 1, n →∞.

Relation (7) gives,for large K ’s, the exactasymptotic
size of the max–stable sketch which guarantees a prescribed
(ε, δ)−precision. In practice, this approximation is ’very
good’ even ifK ≈ 30. Intricate finite–sample analysis is
required to obtain the exact value forC in Theorem 1.

Proof. Let ξ1, . . . , ξK , . . . be independent standard
α−Fréchet r.v.’s. By using the Brownian bridge
asymptotics for the empirical distribution function
F̂n(x) := n−1

∑n
i=1 I{ξi ≤ x}, we obtain, asK →∞,

√
K

(
med{ξj , 1 ≤ j ≤ K} −mα

)
d→ N (0, σ2

α), (8)

where
d→ N (0, σ2

α) denotes convergence to the Normal dis-
tribution with zero mean and varianceσ2

α. For more details,
see Ch. 3.9.4.2, p. 385 in [23]. Heremα = (ln 2)−1/α de-
notes the median of a standardα−Fréchet variable. The
varianceσ2

α has the form:

σ2
α =

Φα(mα)(1− Φα(mα))
(Φ′α(mα))2

=
1

4(Φ′α(mα))2

=
1

α2(ln 2)2+2/α
, (9)
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Algorithm 1 : Fast Max-Stable Insertion
Input: : A set ofK variables, Number of groupsG,

Item i, Valuefs(i) for arbitrary signals, Hash
functionh.

Initialize PRGR(i) usingi as the seed.1

g = h(i) mod G2

for gK/G ≤ c ≤ (g + 1)K/G do3

U = draw the next uniform number fromR4

Z = ln(1/U)−1/α

Kc = max(Kc, fs(i) · Z)5

whereΦα(x) and Φ′α(x) are the distribution and density
functions, respectively, of a standardα−Fréchet variable
(see (3)).

In view of (6) and (8), we have that

P{|Lα(f)
‖f‖`α

− 1| ≤ ε} ∼ 2Φ(mαε
√

K/σα)− 1,

as K → ∞, whereΦ(x) =
∫ x

−∞ e−u2/2du/
√

2π is the
standard Normal distribution function. By using that,ln(1−
Φ(x)) ∼ −x2/2, asx →∞, we get

ln(δ) = ln(2(1− Φ(mαε
√

K/σα))) ∼ −m2
αε2K/(2σ2

α),

asK → ∞. By using (9),mα = (ln 2)−1/α and solving
for K = K(ε, δ), we obtain (7).

3.2 The Fast Max–Stable Sketch

It is clear that the cost of updating the max–stable sketch
is dominated by the need to generate theK α–Fŕechet vari-
ables corresponding to each itemi. Essentially, every inser-
tion needs to update all variablesK comprising the sketch.
This operation can become very expensive for large sketch
sizes, especially in streaming applications where fast inser-
tions are critical. Nevertheless, the cost of insertions can
be reduced significantly by partitioning the problem into
smaller subsets. In particular, instead of updating all theK
counters for every insertioni, we partition the input domain
into a number of groupsG, and assign a disjoint subset of
K/G variables to every group. The partitioning of the input
domain can be performed using any universal hash func-
tion. Essentially, every group forms an independent max–
stable sketch on a smaller domain using onlyK/G vari-
ables. The algorithm for constructing the fastα–max-stable
sketch over a set of signals is shown in Algorithm 1.

Clearly, this algorithm reduces the cost of each inser-
tion by a factorG. Now, in order to estimate theFα–norm
of the signal, we estimate theFα–norm of each group in-
dividually as in the original max–stable sketch, letL1 =

Lα(f1), . . . , LG = Lα(fG) be these estimates, and sum the
results as follows:

Lα(f) := (Lα
1 + . . . + Lα

G)1/α. (10)

Since every item belongs to only one group, it is easy to see
that Equation (10) is an estimate of‖f‖`α

.
We can show the following:

Theorem 3. Let ε ∈ (0, 1), δ > 0,K/G ≥ C/ε2 log (1/δ).
Also letL1, . . . , LG be the individual estimates per group,
with |Li/‖fi‖`α − 1| ≤ ε, with probability1− δ. Then:

P{(1− ε)α ≤
∑

g∈[G] L
α
i∑

i∈[G] ‖fi‖α
`α

≤ (1 + ε)α} ≥ 1−Gδ.

Hence, the fastα–max-stable sketch withG groups provides
(1± ε)α–approximate answers with probability1−Gδ.

Proof. To prove the upper bound, we know thatLi ≤ (1 +
ε)‖fi‖`α . Hence,Lα

i ≤ (1 + ε)α‖fi‖α
`α

, and by taking the
sum

∑
i∈[G] L

α
i ≤ (1 + ε)α

∑
i∈[G] ‖fi‖α

`α
. Similarly for

the lower bound. The probability of failure can be computed
directly by applying the union bound.

In practice, we observed that the fast max–stable sketch
has excellent insertion performance, while providing accu-
rate estimates that do not diverge significantly from those
of the original sketch. This is also due to the fact that
limε→0 (1± ε)α/(1 ± ε) = α = const. Notice also the
very important property that forα = 1, the error bound of
the fast max–stable sketch is equal to the error bounds of
the individual group max–stable sketches. Hence, for the
max–dominance norm estimation problem of [7] and [18]
our sketch works very well in practice. Some experimental
results will be presented in Section 6.

3.3 Estimating Distances

The same construction without any modification can be
used similarly for approximating distances, as well as for re-
coveringexactlyrelatively large components off with high
probability.

Consider two signalsf, g : {1, . . . , N} → [0,M ]
and let Ej(f), Ej(g), j = 1, . . . , K be their α–max-
stable sketches, for arbitraryα > 0. Observe that the
max–stable sketches are non–linear and therefore even if
f(i) ≤ g(i), 1 ≤ i ≤ N , the sketchEj(g − f) does not
equalEj(g) − Ej(f). Nevertheless, one can introduce a
distance between the signalsf andg, other than the norm
‖f − g‖`α which can be computed by using the sketches
Ej(f) andEj(g).

Consider the functional

‖fα − gα‖`1 :=
∑

i

|f(i)α − g(i)α|.
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One can verify that‖fα − gα‖`1 is a metric onRN
+ . Due

to the non–linearity of the max–stable sketches, this met-
ric, rather than the norm‖f − g‖`α , is more natural in our
setting [22]. Suppose for example that we have indicator
signals, i.e.f(i) = 1A(i) and g(i) = 1B(i), for some
A,B ⊂ {1, . . . , N}. The problem of efficiently estimat-
ing the size of the intersection|A ∩ B| is known to be hard
[19]. Nevertheless, since‖fα − gα‖`1 = |A ∩ B| (inde-
pendently ofα > 0), if we can estimate this distance well,
we can estimate the size of the intersection. Another appli-
cation arises in change detection or classification problems.
Given a set of signalsfs(i), 1 ≤ s ≤ S, we want to de-
termine how they group or cluster together. If the only fea-
sibly available information about the signals is their max–
sketches, then we can compute theS × S distance matrix
D = (Dα(fs, fl))1≤s,l≤S . Many clustering and visual-
ization algorithms can be then applied to the matrixD to
determine possible associations and similarity patterns be-
tween the signals. For example, the class ofmultidimen-
sional scalingalgorithms, generate pointsxs, 1 ≤ s ≤ S
in an r–dimensional space, with pair–wise distances given
by D. The goal is to find low–dimensional representations
which nonetheless reveal patterns and structure among the
points [2]. These point configurations can be further visual-
ized (automatically or interactively), see e.g. [3].

Now, denote with ’∨’ the max operation. Observe that:

‖fα − gα‖`1 =

=
∑

i

(f(i)α ∨ g(i)α − f(i)α) +

+
∑

i

(f(i)α ∨ g(i)α − g(i)α)

= 2‖f ∨ g‖α
`α
− ‖f‖α

`α
− ‖g‖α

`α
.

By the max–linearity of max–stable sketches we getEj(f∨
g) = Ej(f)∨Ej(g). Therefore, the terms in the last expres-
sion can be estimated in terms the estimatorLα(f) above.
Namely, we define:

Dα(f, g) := 2Lα(f ∨ g)α − Lα(f)α − Lα(g)α.

Theorem 4. Let ε, η ∈ (0, 1), δ > 0. If ‖fα − gα‖`1 ≥
η‖f ∨ g‖α

`α
then:

P
{
| Dα(f, g)
‖fα − gα‖`1

− 1| ≤ O(ε/η)
}
≥ 1− 3δ,

provided thatK ≥ C/ε2 log(1/δ), for constantC > 0.

A proof sketch is given in [21].
For the example of the two indicator signals1A, 1B

above, suppose that‖fα−gα‖`1 = |A∩B| ≥ η‖f∨g‖α
`α

=
|A ∪ B|, i.e. |A ∩ B| is not too small relative to|A ∪ B|.
Theorem 4 implies that we have a good estimator of the size
of the intersection of two sets.

3.4 Estimating the Largest Components

Now, to recover point estimates for signalf we do the
following. Given ani0 ∈ {1, . . . , N}, set

gj(i0) :=
Ej(f)
Zj(i0)

, j = 1, . . . , K,

Thenf̂(i0) := min1≤j≤K gj(i0), and we can show the fol-
lowing:

Theorem 5. Let ε ∈ (0, 1), δ > 0 andi0 ∈ {1, . . . , N}.
If f(i0) > ε‖f‖`α

andK ≥ 1/εα ln(1/δ), then

P{f̂(i0) = f(i0)} ≥ 1− δ.

The proof appears in [21]. Notice thatα is chosen at
sketch creation time according to the norm to be estimated
by the sketch. A trivial solution for recovering the largest
values off would be of course to maintain a list with the
top–K values observed. Nevertheless, the ability of max–
stable sketches to recover part of the signal is important
when a sketch needs to be used for estimatingFα–norms
as in our motivating example. Hence, it obviates the need
of using other solutions. Current alternatives do not have
this capability.

4 The Range–Efficient Sketch

In this section we briefly review the Range–Efficient
F0 sketch proposed in [18], since it is considered to be
the state-of-the-art for estimating max–dominance norms in
practice, hence forms a good basis for comparison with the
fast max–stable sketch.

Consider once again a set of signalsfs : {1, . . . , N} →
{0, . . . ,M} appearing as a stream of tuples(i, fs(i)) in ar-
bitrary order ofi ands, where the range offs is now a sub-
set ofZ∗ instead ofR∗. The max–dominance norm is the
F1–norm of the dominant signal, that is

∑
i maxs fs(i) [7].

The problem of estimating the max–dominance norm can
be reduced to that of estimating theF0–norm on a stream of
rangesR, by converting every insertion(i, fs(i)) into the
range[(i−1)·M, (i−1)·M+fs(i)), where every range[a, b]
appearing on the stream implies that all itemsa, a+1, . . . , b
appear on the stream. Essentially we map every item into
a disjoint interval of the integer domain. Then, it is easy to
verify that the max–dominance norm equals the number of
distinct elements observed inR [18]. In order to estimate
theF0–norm on streamR efficiently, a range-efficient algo-
rithm is needed for processing ranges in time sub–linear to
their length.

The range–efficientF0 sketch of [18] is a sampling based
approach that maintains a sample of disjoint ranges that
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have appeared on the stream. Every time a new range ap-
pears, if the range intersects with any other ranges in the
sample, only the union of those ranges is kept. Otherwise,
the new range is sampled with some set probability. When
the sample becomes full we re-sample the existing ranges
using a higher rate in order to discard some entries. Ini-
tially, the sampling level isl = 0, and the sampling rate is
1/2l = 100%. After the sample becomes full we increase
l by one and re-sample. TheF0–norm of the stream is esti-
mated as the sum of the lengths of the ranges contained in
the sample, scaled according to the current sampling level.

In order to to be able to insert ranges in sub–linear time,
Pavan and Tirthapura proposed to sample a given range ac-
cording to the following principle: Given range[a, b] use a
linear hash functionh(x) = dx+c mod P [4] to convert the
range into an arithmetic progression with common differ-
enced (whereP is a prime number larger than10NM ). Af-
ter hashing all elements of[a, b] usingh(x) we get the pro-
gressionh(a), h(a)+d, h(a)+2d, . . . , h(a)+(b−a−1)d.
We now sample a given interval if any element of the pro-
gression is contained in intervalL = [0, P/2l) defined by
the sampling level. The original problem is now reduced
to the problem of finding if an arithmetic progression in
moduloP arithmetic intersects with intervalL. Pavan and
Tirthapura propose a divide and conquer technique that can
solve the new problem in time logarithmic to the length of
the series.

The space complexity of estimating the
max–dominance norm using the range–efficient
sketch becomes O(1/ε2(log M + log N) log 1/δ)
and the worst case processing time per item
O(1/ε2 log log N log (b− a) log 1/δ), while the amor-
tized time isO(log b−a

ε log 1
δ ).

5 Implementation Issues

In this section we evaluate the existing approximate al-
gorithms for max–dominance estimation from a practical
perspective, and motivate the need for a simpler construc-
tion which is much easier to implement and does not require
a large number of floating point operations.

The method of Cormode and Muthukrishnan [7] usesp–
sum-stable sketches with very smallp > 0. The p–sum-
stable distributions involved in these sketches have infinite
moments of all orders greater thanp and in practice take ex-
tremely large values. This poses a number of practical chal-
lenges in storing and in fact precisely generating these ran-
dom sketches. In contrast, our method does involve heavy–
tailed random variables but they are notextremely heavy–
tailed and can be shown to have good computational prop-
erties [21]. Furthermore, Fréchet distributions can be simu-
lated much more efficiently than sum–stable distributions,
as was shown in Section 3.1. Therefore, in practice our

method is expected to be more robust than the one in [7].
Moreover, asymptotically the storage and per item process-
ing times of our method are significantly smaller as well.

It is worth also noting here that for largerα we expect the
max–stable sketch to yield even better results, since theα–
Fréchet distribution becomes even less heavy–tailed. Errors
are introduced mainly due to heavy tails appearing in divi-
sion by small numbers. These errors are more pronounced
for smallα since the extreme heavy–tails lead to numbers
beyond the machine precision with non–negligible proba-
bility.

The sketch proposed by Pavan and Tirthapura [18] has
various drawbacks from a technical perspective. Even
though the algorithm they propose for efficiently comput-
ing the intersection of a given range with an interval has
sub–linear asymptotic cost with respect to the length of the
range, in practice the constant time computations that need
to be performed in order to compute boundary conditions
in moduloP arithmetic require integer multiplications and
divisions with extremely large values (significantly larger
thanP , whereP is larger than10NM in the first place).
Hence, for a practical implementation of this algorithm one
has to revert to using a large number of floating point di-
visions and multiplications, as well as recursive procedures
for computing products in moduloP arithmetic. In some
specialized hardware with limited precision and no FPU
available (e.g., FPGA enabled NICs), these issues will ren-
der the algorithm very expensive to compute (and very hard
to implement), and in some cases more expensive than a
simple linear cost algorithm (depending on the size of the
input). Furthermore, even using state-of-the-art hardware
the algorithm can still overflow the FPU in some special
cases.

Furthermore, the fact alone that every insertion(i, fs(i))
is converted into a range with potential lower bound equal
to MN necessitates the use of at least 64-bit integer arith-
metic for largeNs (e.g.,232 − 1 for IPv4 addresses). In
specialized hardware as well as most modern 32-bit proces-
sors this requirement slows down computations ever further.
(Notice here that for very large input domains one might be
tempted to map the active domain to the range[1, N ′]. This
is not feasible sinceN ′ is one of the quantities we are im-
plicitly trying to estimate to begin with.) Notice also, that
even though the algorithm requires manipulation of float-
ing point numbers, by nature it can work only for integer
valued input. In contrast, the max–stable sketch can handle
real valued domains as well. Finally, observe that in order
to use the range–efficient sketch for max–dominance norm
estimation, the maximum valueM has to be available in ad-
vance in order to properly produce the desired ranges. This
is not always the case in practice. For example, in network
monitoring applications it cannot be accurately decided in
advance what the maximum traffic generated will be.
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Finally, another problem of the sampling based approach
is the fact that the sampling levell cannot be increased in-
definitely. Whenl > log2 p the maximum level is reached
and the algorithm fails. Essentially, at that point the sketch
has to be reconstructed. This condition will occur fre-
quently if a large number of the input ranges are disjoint,
and hence the reservoir keeps becoming full very often.
Such scenarios are not rare in practice. In contrast, our al-
gorithm does not suffer from such extreme failures.

6 Experimental Evaluation

In order to validate the proposed techniques we per-
formed a qualitative analysis of the max–stable and range–
efficient sketches with real datasets. We implemented both
algorithms using C++. For the range–efficient sketch we
opted at using 64-bit integer arithmetic and tried to mini-
mize the number of floating point operations that need to be
performed. Nevertheless, since we perform our experimen-
tal evaluation on a Pentium(R) 4 CPU which is equipped
with an advanced FPU, the floating point computations did
not affect the insertion performance of the sketch. Our im-
plementation of the sketch is now freely available LGPL
code as part of the Sketch Library [14].

For our datasets we used one day worth of network traf-
fic generated by the AT&T Shannon Labs. The dataset con-
tains close to 101K distinct IP addresses, and close to 16.3M
traces of per second, per IP aggregated traffic. In our setting,
we would like to know what is the “worst case influence”
of a coordinated transmission at the any–time highest ob-
served rate of all IPs on the network backbone of the Labs,
for varying intervals of observation ranging from a few min-
utes to hours. Hence, the domain of items here is the set of
distinct IP addresses, while one signal consists of the set of
traces within a specific observation interval. Furthermore,
the observed values are the total number of bytes transmit-
ted by an IP within the observation interval.

6.1 Max–Dominance Norm Estimation

For this set of experiments we estimate the max–
dominance norm and compare against the exact answer to
evaluate the estimation accuracy of the sketches. We com-
pare the range–efficient sketch with the fast1–max–stable
sketch.

In the first experiment we run the sketches for10 minute
observation intervals and an increasing amount of traffic,
from 4 up to 24 hours. We constantly evaluate the max–
dominance norm against the current exact answer. Over-
all, we run in parallel50 copies of every sketch and take
averages at the end. We fix the sketch sizes to at most5
KBytes per run. Notice that an exact solution would need
approximately 790 KBytes. For the fast max–stable sketch

we set the group sizeG equal to10. The average relative
error along with the5-th and95-th percentiles are shown
in Figure 1(a). The insertion cost is shown in Figure 1(b).
The range–efficient sketch (re) has better accuracy but two
times higher insertion cost, compared to the fast max–stable
sketch (f-ms). In addition the max–stable sketch has consid-
erably smaller variance in most cases.

In the rest of our experiments we always report averages
over 50 runs and keep the default values to10 minute ob-
servation intervals,24 hours of data,5 KByte sketch sizes,
and10 groups per fast max–stable sketch.

Next, we evaluate the accuracy and processing cost of
the sketches as a function of sketch size. Results are shown
in Figures 2(a) and 2(b). As expected, the larger the sketch
size the better the accuracy and the higher the insertion cost.
Notice that the cost for the fast max–stable sketch increases
linearly, while the estimation accuracy reaches eventually
the accuracy of the range–efficient sketch.

In Figure 3 we show the effect of increasing number of
groups on the insertion cost of the fast max–stable sketch.
Note that the group parameter is not relevant to the range–
efficient sketch which is shown in the same plot only for
comparison purposes. Clearly, the larger the number of
groups the better the performance of the sketch, which ver-
ifies the theoretical results.

Finally, we evaluate the performance of the sketches as
a function of the length of the observation interval, ranging
from 1 up to60 minutes. The largest the interval, the largest
the traffic generated by each IP but the smaller the number
of signals that need to be processed. Results are shown in
Figure 4. We observe that the accuracy of the sketches re-
mains at the same level, while the processing cost decreases
accordingly.

6.2 GeneralFα–norm Estimation

For completeness we show here some results on estimat-
ing the energy, and higher norms, of the dominant signal
over the real network traffic dataset. Once again, we use
fastα–max–stable sketches for givenα. Figure 5(a) shows
the accuracy of the2–max–stable sketch as a function of
size in KBytes. Figure 5(b) shows the results for varyingα.
Observe that the max–stable sketch has better accuracy for
increasingα which validates our conjecture that less heavy–
tailed distributions can be approximated more accurately.

6.3 Largest Component Reconstruction

We also test the efficiency of the sketch for recovering
the highest components of the dominant signal. Once again
we use real network datasets and reconstruct the top–K
highest components of the signal, computing the average
relative error of the reported values, as well as the total
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Figure 1. F1–norm performance as a function of hours of operation.
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Figure 2. F1–norm performance as a function of sketch size.
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Figure 3. F1–norm performance as a function of the number of groupsG.
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Figure 4. F1–norm performance as a function of the length of the observation interval.
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number of exactly reconstructed components. The results
are shown in Figure 6. The max–stable sketch can recover
exactly a very large percentage of the largest components
throughout all queries that we run. For the rest of the com-
ponents it is clear that the sketch has excellent estimation
accuracy.

6.4 Distance Estimation

Finally, we test the accuracy of the max–stable sketch for
distance computations. For this experiment we use network
traffic datasets for two different days (on the 4th of July and
on the 6th of July of 2006). The results are shown in Figure
7. The quality of the estimations drop somewhat to11% of
the exact value. This is expected due to the increased error
reported by Theorem 4.

7 Conclusion

The max–stable sketch is an efficient(ε, δ)–
aproximation algorithm for computing anyFp–norm
on the dominant signal of a set of signals. The same sketch
can also be used for recovering the largest components
of the dominant signal exactly and with high probability,
as well as for approximating special types of distances
between dominant signals, which can be useful for change
detection applications and more. An added benefit of our
sketch is simplicity of implementation (as is exhibited in
Algorithm 1), especially in contrast with other alternatives
that can be used only for a small subset of the functionality
that the max–stable sketch provides. We also evaluated
our sketch experimentally using real datasets and observed
very good query and update performance in practice.
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Figure 5. Estimation accuracy for generalFα–norms.
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Figure 6. Performance for largest component reconstruction.
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Figure 7. Performance for distance estimation.
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