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1) Introduction 
 
Typically, information is retrieved by literally matching terms in documents with 
those of a query. However, lexical matching methods can be inaccurate when they 
are used to match a user's query. Since there are usually many ways to express a 
given concept (synonymy), the literal terms in a user's query may not match those 
of a relevant document. In addition, most words have multiple meanings 
(polysemy), so terms in a user's query will literally match terms in irrelevant 
documents. A better approach would allow users to retrieve information on the 
basis of a conceptual topic or meaning of a document. 

Latent Semantic Indexing (LSI) [Deerwester et al] tries to overcome the 
problems of lexical matching by using statistically derived conceptual indices 
instead of individual words for retrieval. LSI assumes that there is some 
underlying or latent structure in word usage that is partially obscured by 
variability in word choice. A truncated singular value decomposition (SVD) is 
used to estimate the structure in word usage across documents. Retrieval is then 
performed using the database of singular values and vectors obtained from the 
truncated SVD. Performance data shows that these statistically derived vectors are 
more robust indicators of meaning than individual terms. 

Section 2 is a review of basic concepts needed to understand LSI. In Section 
3, a description of some of the advantages and disadvantages of LSI. 

The effectiveness of LSI has been demonstrated empirically in several text 
collections as increased average retrieval precision but a theoretical (and 
quantitative) understanding beyond empirical evidence is desirable. Section 4 
describes some of the attempts that have been done in this direction. Finally, in 
Section 5 some applications of LSI. 
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2) Basic concepts 
 

Latent Semantic Indexing is a technique that projects queries and documents into 
a space with “latent” semantic dimensions. 

In the latent semantic space, a query and a document can have high cosine 
similarity even if they do not share any terms - as long as their terms are 
semantically similar in a sense to be described later. We can look at LSI as a 
similarity metric that is an alternative to word overlap measures like tf.idf. 

The latent semantic space that we project into has fewer dimensions than the 
original space (which has as many dimensions as terms). LSI is thus a method for 
dimensionality reduction. A dimensionality reduction technique takes a set of 
objects that exist in a high-dimensional space and represents them in a low-
dimensional space, often in a two-dimensional or three-dimensional space for the 
purpose of visualization. 

Latent semantic indexing is the application of a particular mathematical 
technique, called Singular Value Decomposition or SVD, to a word-by-document 
matrix. SVD (and hence LSI) is a least-squares method. The projection into the 
latent semantic space is chosen such that the representations in the original space 
are changed as little as possible when measured by the sum of the squares of the 
differences.  

SVD takes a matrix A and represents it as Â  in a lower dimensional space 
such that the “distance” between the two matrices as measured by the 2-norm is 
minimized: 

 

2
ÂA −=∆

 
 
The 2-norm for matrices is the equivalent of Euclidean distance for vectors. SVD 
project an n-dimensional space onto a k-dimensional space where n > > k. In our 
application (word-document matrices), n is the number of word types in the 
collection. Values of k that are frequently chosen are 100 and 150. The projection 
transforms a document's vector in n-dimensional word space into a vector in the 
k-dimensional reduced space. 

There are many different mappings from high dimensional to low-dimensional 
spaces. Latent Semantic Indexing chooses the mapping that is optimal in the sense 
that it minimizes the distance ∆ . This setup has the consequence that the 
dimensions of the reduced space correspond to the axes of greatest variation.1 

                                                 
1 This is closely related to Principal Componet Analysis (PCA), another technique for 
dimensionality reduction. One difference between the two techniques is that PCA can only be 
applied to a square matrix whereas LSI can be applied to any matrix. 
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The SVD projection is computed by decomposing the document-by-term 

matrix dtA × into the product of three matrices, ntT × , nnS × , ndD × :

T
ndnnntdt DSTA )( ×××× =

where t is the number of terms, d is the number of documents,  (t,d) n min= , 
T and D have orthonormal columns, i.e. IDDTT TT == , rArank =)( ,

),,...,,( 21 ndiagS σσσ=
,

1for  0,1for  0 +≥=≤≤> rjσri jiσ
.

We can view SVD as a method for rotating the axes of the n-dimensional space 
such that the first axis runs along the direction of largest variation among the 
documents, the second dimension runs along the direction with the second largest 
variation and so forth. The matrices T and D represent terms and documents in 
this new space. The diagonal matrix S contains the singular values of A in 
descending order. The 

thi  singular value indicates the amount of variation along 
the 

thi  axis. 
By restricting the matrixes T, S and D to their first  nk <  rows one obtains 

the matrixes 
T

kdkkkt DST )(,, ××× . Their product Â   
 

T
kdkkktkt DSTA )(ˆ

×××× =  
 

is the best square approximation of A by a matrix of rank k in the sense defined in 

the equation 2
ÂA −=∆

.

Choosing the number of dimensions (k) for  Â   is an interesting problem. 
While a reduction in k can remove much of the noise, keeping too few dimensions 
or factors may loose important information. As discussed in [Deerwester et al] 
using a test database of medical abstracts, LSI performance can improve 
considerably after 10 or 20 dimensions, peaks between 70 and 100 dimensions, 
and then begins to diminish slowly. This pattern of performance (initial large 
increase and slow decrease to word-based performance) is observed with other 
datasets as well. Eventually performance must approach the level of performance 
attained by standard vector methods, since with k = n factors Â  will exactly 
reconstruct the original term by document matrix A. That LSI works well with a 
relatively small (compared to the number of unique terms) number of dimensions 
or factors k shows that these dimensions are, in fact, capturing a major portion of 
the meaningful structure. [Berry et al.] 
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One can also prove that SVD is unique, that is, there is only one possible 
decomposition of a given matrix. That SVD finds the optimal projection to a low-
dimensional space is the key property for exploiting word co-occurrence patterns. 
It is important for the LSI method that the derived Â matrix does not reconstruct 
the original term document matrix A exactly. The truncated SVD, in one sense, 
captures most of the important underlying structure in the association of terms and 
documents, yet at the same time removes the noise or variability in word usage 
that plagues word-based retrieval methods. Intuitively, since the number of 
dimensions, k, is much smaller than the number of unique terms, t, minor 
differences in terminology will be ignored. Terms which occur in similar 
documents, for example, will be near each other in the k-dimensional factor space 
even if they never co-occur in the same document. This means that some 
documents, which do not share any words with a user’s query, may nonetheless 
be near it in k-space. This derived representation, which captures term-term 
associations, is used for retrieval. 
 
 

2.1) Queries  
 
For purposes of information retrieval, a user's query must be represented as a 
vector in k-dimensional space and compared to documents. A query (like a 
document) is a set of words. For example, the user query can be represented by 
  

kkkt
T STqq ×

−
×= 1ˆ

 
where q is simply the vector of words in the users query, multiplied by the 
appropriate term weights. The sum of these k-dimensional terms vectors is 

reflected by the term kt
TTq ×  in the above equation, and the right multiplication by 

kkS ×
−1

 differentially weights the separate dimensions. Thus, the query vector is 
located at the weighted sum of its constituent term vectors. The query vector can 
then be compared to all existing document vectors, and the documents ranked by 
their similarity (nearness) to the query. One common measure of similarity is the 
cosine between the query vector and document vector. Typically, the z closest 
documents or all documents exceeding some cosine threshold are returned to the 
user. 
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2.2) Updating 
 
One remaining problem for a practical application is how to fold queries and new 
documents into the reduced space. The SVD computation only gives us reduced 
representations for the document vectors in matrix A. We do not want to do a 
completely new SVD every time a new query is launched or new documents and 
terms are added to the collection. There are two alternatives for incorporating new 
documents and terms currently: recomputing the SVD of a new term-document 
matrix or folding-in the new terms and documents. 
Lets define some terms that are used when discussing updating. 

 
• Updating refers to the general process of adding new terms and/or 

documents to an existing LSI-generated database. Updating can mean 
either folding-in or SVD-updating. 

• S VD-updating is the new method of updating developed in [O’ Brien]. 
• Folding-in terms or documents is a much simpler alternative that uses an 

existing SVD to represent new information. 
• Recomputing the SVD is not an updating method, but a way of creating an 

LSI-generated database with new terms and/or documents from scratch 
which can be compared to either updating method. 

 
Recomputing the SVD of a larger term-document matrix requires more 
computation time and, for large problems, may be impossible due to memory 
constraints. In contrast, folding-in is based on the existing latent semantic 
structure, the current Â , and hence new terms and documents have no effect on 
the representation of the pre-existing terms and documents. Folding-in requires 
less time and memory but can have deteriorating effects on the representation of 
the new terms and documents. 

In addition, in order to handle large corpora efficiently we may want to do 
SVD for only a sample of the documents (for example a third or a fourth). The 
remaining documents would then be folded in. 

Folding-in documents is essentially the process described in the previous 
section for query representation. Each new document is represented as a weighted 
sum of its component term vectors. Once a new document vector has been 
computed it is appended to the set of existing document vectors. Similarly, new 
terms can be represented as a weighted sum of the vectors for documents in which 
they appear.  

The equation for folding documents into the space can again be derived from 
the basic SVD equation: 
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TTSDA =  
 

TTT TSDTAT =  
 

TT SDAT =  
 

So we just multiply the query or document vector with the transpose of the term 
matrix T (after it has been truncated to the desired dimensionality). 

 
 

3) Advantages and disadvantages 
 

3.1) Advantages 
 
 

1. True (latent) dimensions 
The assumption in LSI  (and similarly for other forms of dimensionality 

reduction like principal component analysis) is that the new dimensions are a 
better representation of documents and queries. The metaphor underlying the term 
“latent” is that these new dimensions are the true representation. This true 
representation was then obscured by a generation process that expressed a 
particular dimension with one set of words in some documents and a different set 
of words in another document. LSI analysis recovers the original semantic 
structure of the space and its original dimensions.  
 
 [Deerwester et al] describe the three major advantages of using the LSI 
representation with the following labels: synonymy, polysemy, and term 
dependence.  
 
 

2. Synonymy 
Synonymy refers to the fact that the same underlying concept can be described 

using different terms. Traditional retrieval strategies have trouble discovering 
documents on the same topic that use a different vocabulary. In LSI, the concept 
in question as well as all documents that are related to it are all likely to be 
represented by a similar weighted combination of indexing variables. 
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3. Polysemy 
Polysemy describes words that have more than one meaning, which is 

common property of language. Large numbers of polysemous words in the query 
can reduce the precision of a search significantly. By using a reduced 
representation in LSI, one hopes to remove some "noise" from the data, which 
could be described as rare and less important usages of certain terms. (Note 
however that this would work only when the real meaning is close to the average 
meaning. Since the LSI term vector is just a weighted average of the different 
meanings of the term, when the real meaning differs from the average meaning, 
LSI may actually reduce the quality of the search). 
 
 

4. Term Dependence 
The traditional vector space model assumes term independence and terms 

serve as the orthogonal basis vectors of the vector space. Since there are strong 
associations between terms in language, this assumption is never satisfied. While 
term independence represents the most reasonable first-order approximation, it 
should be possible to obtain improved performance by using term associations in 
the retrieval process. Adding common phrases as search items is a simple 
application of this approach. On the other hand, the LSI factors are orthogonal by 
definition, and terms are positioned in the reduced space in a way that reflects the 
correlations in their use across documents. It is very difficult to take advantage of 
term associations without dramatically increasing the computational requirements 
of the retrieval problem. While the LSI solution is difficult to compute for large 
collections, it need only be constructed once for the entire collection and 
performance at retrieval time is not affected.  

 
 

3.1) Disadvantages 
 
1. Storage  
One could also argue that the SVD representation is more compact. Many 

documents have more than 150 unique terms. So the sparse vector representation 
will take up more storage space than the compact SVD representation if we 
reduce to 150 dimensions. In reality, the opposite is actually true [Hull]. For 
example, the document by term matrix for the Cranfield collection used in Hull’s 
experiments had 90,441 non-zero entries (after stemming and stop word removal). 
Retaining only 100 of the possible 1399 LSI vectors requires storing 139,900 
values for the documents alone. The term vectors require the storage of roughly 
400,000 additional values. In addition, the LSI values are real numbers while the 
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original term frequencies are integers, adding to the storage costs. Using LSI 
vectors, we can no longer take advantage of the fact that each term occurs in a 
limited number of documents, which accounts for the sparse nature of the term by 
document matrix. With recent advances in electronic storage media, the storage 
requirements of LSI are not a critical problem, but the loss of sparseness has 
other, more serious implications.  

 
 
2. Efficiency 
One of the most important speed-ups in vector space search comes from using 

an inverted index. As a consequence, only documents that have some terms in 
common with the query must be examined during the search. With LSI, however, 
the query must be compared to every document in the collection. There are, 
however, several factors that can reduce or eliminate this drawback. If the query 
has more terms than its representation in the LSI vector space, then inner product 
similarity scores will take more time to compute in term space. For example, if 
relevance feedback is conducted using the full text of the relevant documents, the 
number of terms in the query is likely to grow to be many times the number of 
LSI vectors, leading to a corresponding increase in search time. In addition, using 
a data structure such as the k-d tree in conjunction with LSI would greatly speed 
the search for nearest neighbors, provided only a partial ordering of the 
documents is required. Most of the additional costs come in the pre-processing 
stage when the SVD and the k-d tree are computed, and actual search time should 
not be significantly degraded. Other query expansion techniques suffer even more 
heavily from the difficulties described above, and LSI performs relatively well for 
long documents due to the small number of context vectors used to describe each 
document. However, implementation of LSI does require an additional investment 
of storage and computing time. [Hull] 
 
 

3. LSI and normally-distributed data 
Another objection to SVD is that, along with all other least-squares methods, 

it is really designed for normally-distributed data, but such a distribution is 
inappropriate for count data, and count data is what a term-by-document matrix 
consists of. The link between least squares and normal distribution can be easily 
seen by looking at the definition of the normal distribution: 
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where µ  is the mean and σ the covariance. The smaller the squared deviation 

from the mean ( )2µ−x , the higher the probability ),;( σµxn . So the least squares 
solution is the maximum likelihood solution. But this is only true if the underlying 
data distribution is normal. Other distributions like Poisson or negative binomial 
are more appropriate for term counts. One problematic feature of SVD is that, 
since the reconstruction Â  of the term-by-document matrix A is based on a 
normal distribution, it can have negative entries, clearly an inappropriate 
approximation for counts. A dimensionality reduction based on Poisson would not 
predict such impossible negative counts. In defense of LSI (and the vector space 
model in general which can also be argued to assume a normal distrthution), one 
can say that the matrix entries are not counts, but weights. Although this is not an 
issue that has been investigated systematically, the normal distribution could be 
appropriate for the weighted vectors even if it is not for count vectors. [Manning 
and Schultze] 
 

Ultimately, to decide weather the advantages outweigh the disadvantages, we 
need to look at the retrieval performance. While [Deerwester et al] have obtained 
some promising results, they do not show conclusively that retrieval using LSI is 
superior to the basic vector space model. [Hull] addresses this issue in the context 
of the routing problem and provides evidence that LSI slightly improves 
performance for the routing task.  

In other words, the winner has still to be proclaimed. 
 
 

4) Toward a theoretical foundation 
 
Although (little) empirical improved performance has been observed, there is very 
little in the literature in the way of a mathematical theory that predicts this 
improved performance. In this session I briefly describe one paper that is an 
attempt at using mathematical techniques to rigorously explain the empirically 
observed improved performance of LSI, [Papadimitriou et al.] 

Papadimitriou starts citating an interesting mathematical fact due to Eckart 
and Young, often cited as an explanation of the improved performance of LSI, 
that states, informally, that LSI retains as much as possible the relative position 
(and distances) of the document vectors while projecting it to a lower-dimensional 
space. This may only provide an explanation of why LSI does not deteriorate too 
much in performance over conventional vector-space methods; it fails to justify 
the observed improvement in precision and recall. 
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The theorem says that Â is a “good approximation” of A in the sense that: 
 
Theorem (Eckart and Young) Among all t x d matrices C of rank at most k, Â  is 
the one that minimizes  

( )2

, ,,
2
� −=−

ji jiji CACA
 

 
This is what we saw in Section 1. It remains to be seen in what way it improves 
these retrieval capabilities. 

Since LSI seems to exploit and reveal the statistical properties of a corpus, 
[Papadimitriou et al.] starts with a rigorous probabilistic model of the corpus (i.e. 
a mathematical model of how corpora are generated). They then model topics as 
probability distributions on terms. A document is a probability distribution that is 
a combination of a small number of topics, a corpus is a collection of documents 
obtained by repeatedly drawing sample documents. Once they have a corpus 
model, they would like to determine under what conditions LSI results in 
enhanced retrieval. They would like to prove a theorem stating essentially that if 
the corpus is a reasonably focused collection of meaningfully correlated 
documents, then LSI performs well. The problem is to define these terms so that 
(1) there is a reasonably close correspondence with what they mean intuitively 
and in practice, and (2) the theorem can be proved.  

[Papadimitriou et al.] prove results that, although not quite as general as the 
statement above, definitely point to this direction. In particular, they show that: 
 
In the special case in which  
 

(a) there is no style modifier;  
(b) each document is on a single topic;  
(c) the terms are partitioned among the topics so that each topic 

distribution has high probability on its own terms, and low probability 
on all others;  

 
then LSI, projecting to a subspace of dimension equal to the number of topics, will 
discover these topics exactly, with high probability assuming that the length of 
each document in the corpus is large enough. 
 

[Papadimitriou et al.] also shows that, projecting the term-document matrix on 
a completely random low-dimensional subspace, then with high probability one 
has a distance-preservation property akin to that enjoyed by LSI. This suggests 
that random projection may yield an interesting improvement on LSI: we can 
perform the LSI precomputation not on the original term-document matrix, but on 
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a low-dimensional projection, at great computational savings and no great loss of 
accuracy. 

Random projection can be seen as an alternative to (and a justification of) 
sampling in LSI. Reports on LSI experiments in the literature seem to suggest that 
LSI is often done not on the entire corpus, but on a randomly selected sub corpus 
(both terms and documents may be sampled, although it appears that most often 
documents are). There is very little non-empirical evidence of the accuracy of 
such sampling. [Papadimitriou et al.] suggests a different and more elaborate (and 
computationally intensive) approach (projection on a random low-dimensional 
subspace) which can be rigorously proved to be accurate. 

Another paper [Ding] establishes a statistical framework for LSI and justifies 
dimensionality reduction by the statistical significance of latent semantic vectors 
as measures by the likelihood of the model. The model proposed provides a 
mechanism to clarify and quantify the argument that LSI reduces the noise while 
preserving the true dimensions and it does so by checking the statistical 
significance of the semantic dimensions: if a few semantic dimensions can 
effectively characterize the data statistically, as indicated by the likelihood of the 
model, we can believe that they also effectively represent the semantic 
meaning/relationships as defined by the cosine similarity. The likelihood is the 
key to the verification of optimal semantic subspace that LSI advocates. [Ding] 
gives theoretical results to support the existence of such semantic subspace. 

 
 

5) Applications of LSI 
 
This session surveys several promising application of LSI. 
 

5.1) Information retrieval 
 

The application of Singular Value Decomposition to information retrieval was 
originally proposed by a group of researchers at Bellcore [Deerwester et al] and 
called Latent Semantic Indexing in this context. 

At this point it should be clear how to use LSI for IR. Regarding the 
performances, [Berry et al.] reports that for several information science test 
collections, the average precision using LSI ranged from comparable to 30% 
better than that obtained using standard keyword vector methods. The LSI method 
performs best relative to standard vector methods when the queries and relevant 
documents do not share many words, and at high levels of recall. 
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5.2) Relevance Feedback 
 
Most of the tests of Relevance Feedback using LSI have involved a method in 
which the initial query is replaced with the vector sum of the documents the users 
has selected as relevant. The use of negative information has not yet been 
exploited in LSI; for example, by moving the query away from documents which 
the user has indicated are irrelevant. Replacing the users’ query with the first 
relevant document improves performance by an average of 33% and replacing it 
with the average of the first three relevant documents improves performance by 
an average of 67%. Relevance feedback provides sizable and consistent retrieval 
advantages. One way of thinking about the success of these methods is that many 
words (those from relevant documents) augment the initial query that is usually 
quite impoverished. LSI does some of this kind of query expansion or 
enhancement even without relevance information, but can be augmented with 
relevance information. [Berry et al.] 
 
 

5.3) Information Filtering  
 

Applying LSI to information filtering applications is straightforward. An initial 
sample of documents is analyzed using standard LSI/SVD tools. A users' interest 
is represented as one (or more) vectors in this reduced-dimension LSI space. Each 
new document is matched against the vector and if it is similar enough to the 
interest vector it is recommended to the user. Learning methods like relevance 
feedback can be used to improve the representation of interest vectors over time. 
Performances studies are encouraging. 

 

5.4) TREC 
 
Recently, LSI has been used for both information filtering and information 
retrieval in TREC. The queries are very long and detailed descriptions, averaging 
more than 50 words in length. The fact that the TREC queries are quite rich 
means that smaller advantages would be expected for LSI or any other methods 
that attempts to enhance users queries. The big challenge in this collection was to 
extend the LSI tools to handle collections of this size. The results were quite 
encouraging. At the time of the TREC conferences it was not reasonable to 
compute Â for the complete collection. Instead, a sample of about 70,000 
documents and 90,000 terms was used. Such term by document matrices (A) are 
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quite sparse, containing only .001 - .002% non-zero entries. Computing A200, i.e. 
the 200-largest singular values and corresponding singular vectors, required about 
18 hours of CPU time on a SUN SPARCstation 10 workstation. Documents not in 
the original LSI analysis were folded-in as previously described in Section 2.2. 

Although it is very difficult to compare across systems in any detail because 
of large pre-processing, representation and matching differences, LSI 
performance was quite good [Dumais 94]. For filtering tasks, using information 
about known relevant documents to create a vector for each query was beneficial. 
The retrieval advantage of 31% was somewhat smaller than that observed for 
other filtering tests and is attributable to the good initial queries in TREC. For 
retrieval tasks, LSI showed 16% improvement when compared with the keyword 
vector methods. Again the detailed original queries account for the somewhat 
smaller advantages than previously observed. [Berry et al.] 
 

5.5) Cross-Language Retrieval 
 
It is important to note that the LSI analysis makes no use of English syntax or 
semantics. This means that LSI is applicable to any language. In addition, it can 
be used for cross-language retrieval - documents are in several languages and user 
queries (again in several languages) can match documents in any language. What 
is required for cross-language applications is a common space in which words 
from many languages are represented. 

 [Landauer and Littman] describes one method for creating such an LSI space. 
The original term-document matrix is formed using a collection of abstracts that 
have versions in more than one language (French and English, in their 
experiments). Each abstract is treated as the combination of its French English 
versions. The truncated SVD is computed for this term by combined-abstract 
matrix A. The resulting space consists of combined-language abstracts, English 
words and French words. English words and French words that occur in similar 
combined abstracts will be near each other in the reduced-dimension LSI space. 
After this analysis, monolingual abstracts can be folded-in: a French abstract will 
simply be located at the vector sum of its constituent words that are already in the 
LSI space. Queries in either French or English can be matched to French or 
English abstracts. There is no difficult translation involved in retrieval from the 
multilingual LSI space. Experiments showed that the completely automatic 
multilingual space was more effective than single-language spaces. The retrieval 
of French documents in response to English queries (and vice versa) was as 
effective as first translating the queries into French and searching a French-only 
database. The method has shown almost as good results for retrieving English 
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abstracts and Japanese Kanji ideographs, and for multilingual translations 
(English and Greek) of the Bible [Young]. [Berry et al.] 
 
 

5.6) Matching People Instead of Documents 
 
In a couple of applications, LSI has been used to return the best matching people 
instead of documents. In these applications, people were represented by articles 
they had written. In one application [Furnas et al], known as the Bellcore Advisor, 
a system was developed to find local experts relevant to users' queries. A query 
was matched to the nearest documents and project descriptions and the authors’ 
organization was returned as the most relevant internal group. In another 
application, LSI was used to automate the assignment of reviewers to submitted 
conference papers. Several hundred reviewers were described by means of texts 
they had written, and this formed the basis of the LSI analysis. Hundreds of 
submitted papers were represented by their abstracts, and matched to the closest 
reviewers. These LSI similarities were used to assign papers to reviewers for a 
major human-computer interaction conference. Subsequent analyses suggested 
that these completely automatic assignments (which took less than 1 hour) were 
as good as those of human experts. [Berry et al.] 
 
 

5.7) Noisy Input 
 
Because LSI does not depend on literal keyword matching, it is especially useful 
when the text input is noisy, as in OCR (Optical Character Reader), open input, or 
spelling errors. If there are scanning errors and a word (Dumais) is misspelled (as 
Duniais), many of the other words in the document will be spelled correctly. If 
these correctly spelled context words also occur in documents that contained a 
correctly spelled version of Dumais, then Dumais will probably be near Dunials 
in the k-dimensional space determined by Â . [Berry et al.] 

 
 

5.8) Others 
 
[Schutze] and [Gallant] have used SVD and related dimension reduction ideas for 
word sense disambiguation and information retrieval work. [Hull] and [Yang and 
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Chute] have used LSI/SVD as the first step in conjunction with statistical 
classification (e.g. discriminant analysis). Using the LSI-derived dimensions 
effectively reduces the number of predictor variables for classification. [Wu et al.] 
in also used LSI/SVD to reduce the training set dimension for a neural network 
protein classification system used in human genome research. [Berry et al.] 
 
 

5.10) Open Computational/Statistical Issues 
 
There are a number of computational/statistical improvements that would make 
LSI even more useful, especially for large collections: 

• Computing in efficient way the truncated SVD of extremely large sparse 
matrices  

•  Perform SVD-updating in real-time for databases that change frequently, 
and 

• Efficiently comparing queries to documents (i.e., finding near neighbors in 
high-dimension spaces) 
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