
Pergamon Information Systems Vol. 20, 3, pp. 237-260, No. 1995 

0306-4379(95)00011-9 
Copyright@ 1995 Else&r Science Ltd 

Printed in Great Britain. All rights reserved 
0308-4379/96 89.60 + 0.00 

THE SNAPSHOT INDEX: AN I/O-OPTIMAL ACCESS METHOD FOR 
TIMESLICE QUERIES+ 

VASSILIS J. TSOTRAS and NICKOLAS KANGELARIS 

Department of Computer Science, Polytechnic University Brooklyn, NY 11201, USA 

(Received 25 March 1994; in final revised form 30 Novemberl994) 

Abstract - We present an access method for timeslice queries that reconstructs a past state s(t) of 
a time-evolving collection of objects, in O(log,, n + Is(t)l/b) I/O ‘8, where Is(t)1 denotes the size of the 
collection at time t, n is the total number of changes in the collection’s evolution and b is the size of 
an I/O transfer. Changes include the addition, deletion or attribute modification of objects; they are 
assumed to occur in increasing time order and always affect the most current state of the collection 
(thus our index supports transaction-time.) The space used is 0 n/b) while the update processing 
is constant per change, i.e. , independent of n. This is the first I I O-optimal access method for this 
problem using O(n/b) space and O(1) updating (in the expected amortized sense due to the use of 
hashing.) This performance is also achieved for interval intersection temporal queries. An advantage 
of our approach is that its performance can be tuned to match particular application needs (trading 
space for query time and vice versa). In addition, the Snapshot Index can naturally migrate data on 
a write-once optical medium while maintaining the same performance bounds. 
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1. INTRODUCTION 

There are many applications where the ability to use past information provides additional 
functionality [33]. For example, by retaining past states, a transaction-time database [ll] can 
more accurately model reality. In contrast, conventional databases have always one logical state; 
when a transaction commits the database evolves to a next consistent state, while the previous state 
is discarded. Supporting evolution on the temporal dimension can create an increasing amount of 
data that has to be stored; it is therefore essential to invent efficient access methods for temporal 
data. Here we present one such method, the Snapshot Index. 

Consider a real-world system whose state consists of a collection of objects. For the purposes 
of this presentation, time is assumed to be discrete and described by a succession of nonnegative 
integers. As time proceeds, the system’s state changes by adding new objects or deleting objects 
from it. We assume that changes are always applied to the current system state. Associated with 
every real-world object is a unique, time-invariant object identity (oid) and a time interval during 
which the object exists in the real-world system. The birth and deletion times of an object corre- 
spond to a lifespan for this object [4]. Rebirths of objects are allowed, hence an object may have a 
set of non overlapping lifespans. Together with object additions and deletions the evolution may 
also incorporate value changes. An object can thus have attribute(s) with a time-variant value. As 
an example, consider the temporal evolution of a company. The state of the company at a given 
time instant is the collection of employees working for it at that instant. The state changes over 
time as employees join or leave this company. A time variant attribute could be an employee’s 
salary. 

Suppose that the above temporal evolution is captured in a database. Objects are represented 
in the database by records and can be identified by some oid. For every real world change that 
occurred at time t, a transaction updates the database about this change timestamped with t. 
This timestamp is another attribute of the data and cm therefore be queried. We assume that 
transactions are applied to the database following the time order of the real-world changes. Con- 
sistent with the widely used temporal terminology [ll], the Snapshot Index supports “transaction 
time” and computes timeslices in a transaction-time database. 
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We define as the database state s(t) the collection of objects that exist at t in the real-world sys- 
tem modeled by the database. The notion of the database state is thus a logical one and should not 
be confused with the database itself which stores records for both current and past data. For the 
company example, the database state s(t) is the set of all employee names (and their salaries) work- 
ing for the company at t; however, the database also stores the records of all the employees that 
were working for the company before and after t. A fundamental temporal query is to reconstruct 
(a timeslice, or, a snapshot of) the database state s(t) for a given t; we call this query the timeslice 
query. The Snapshot Index has been designed to optimally address the timeslice query. The mean- 
ing of “Snapshot” in the “Snapshot Index” is that the index reconstructs snapshots (timeslices) 
for a transaction-time database. It should not be confused with the term “snapshot database” 
[ll] (i.e. , a conventional database that only keeps its current state). To avoid confusion and to 
agree with the temporal database glossary of [ll], in the rest of the paper we will use the term 
“timeslice” when referring to a database state at some time instant. 

Any access method used to address the timeslice query is characterized by the following costs: 
space (the space consumed by the method’s data structures in order to keep past and current data), 
update processing (the time needed to process one change occurring in the evolution and update 
the method’s data structures) and query time (the time needed to solve the query). All three costs 
are functions of the number of changes n during the real-world system’s evolution, where a change 
is the addition, deletion or value change of a real-world object. The number of changes is a basic 
parameter of temporal queries in general, as it corresponds to the minimal information needed by 
any index to perform errorless reconstruction of past data. Another parameter is the size of the 
answer to the timeslice query, denoted by Is(t) ], and corresponds to the number of objects in the 
requested state s(t). 

In a database environment the computational model is based on how many pages are transferred 
between main and secondary memory. In transaction-time databases in particular, this is very cru- 
cial as the bulk of data, due to their volume, will definitely be stored in secondary storage media. 
It is therefore natural to use an I/O complexity cost [13] that measures the number of pages that 
are either used for storing the data, or transferred during an update or a query. We will assume 
that every secondary memory access transmits one block of b records and this counts as one I/O. 
A block is a logical unit of transfer and in general it can be a page, a sector, etc. In the rest we 
will use the terms block and page interchangeably. As an example, a B-tree is an access method 
that requires O(log, n) page accesses for searching or updating. In contrast a binary tree can 
take O(log, n) page accesses, as each node of the tree can be stored in a different page. The 
reader should be careful with the notation: log, n is an O(log, n) function only if b is considered 
a constant. In the rest of this paper 6 is considered a variable, since the size of a page affects 
the I/O process. All I/O bounds will be expressed in terms of n, Is(t)/ and b (i.e. , all constants 
are independent of these parameters). For I/O complexity, log, n represents a log, b speedup over 
log, n which is a great improvement, as transferring a page takes about 2-25 msec (in contrast, 
comparing two keys in main memory takes about 5-10 nsec). 

In order to provide an understanding of the cost functions, consider two obvious ways to solve 
the timeslice query. One could store the whole current state s(t) for every time instant when some 
change took place, or, enter the updates (changes to the state) time-stamped on a “log”. In the 
first case, i.e. , the “copy” solution, the I/O for answering a query is minimal: CJ(log, n + Is(t)l/b) 
assuming that a multi-level paginated index on the time dimension is utilized. However, the 
update time (time to store every state) and the space can be problematic, i.e. O(n/b) per change 
and 0(n2/b) blocks respectively, since in the worst case the state could always be increasing by 
insertions of new keys. For the “log” solution, the space requirement is minimal, just O(n/b)blocks. 
Similarly, the update cost is minimal (O(l)), as only the last block of the log is accessed in order 
to insert the new change. But the query time of this method suffers, since in the worst case one 
has to search back the whole log, resulting in O(n/b) I/O. 

We refer to a method that solves the timeslice query as I/O-optimal if it preserves the following 
cost characteristics: O(n/b) space, O(1) update processing per change, and O(log,n + Is(t)l/b) 
I/O for query time. As it will be shown in section 3, a certain “optimality’ property holds for such 
a method: the timeslice query is reduced to the predecessor problem for which a lower bound can 



The Snapshot Index: An I/O-Optimal Access Method for Timeslice Queries 239 

be shown if space is restricted to O(n/B). An access method with query time O(log* n + Is(t)]) is 
not I/O-optimal because in the worst case it may require many more block I/O’s (the data is not 
well clustered as each record of the answer can be stored in a different block). Similarly, a method 
with C?(log, n + [s(t)]/b) query time is not I/O-optimal since its index is not fully paginated. Note 
that the optimality property involves the query time and the space requirement, i.e. , it holds 
independently of the update processing. However, in our definition of an I/O-optimal method we 
have the additional requirement that the update processing is O(1). This requirement emanates 
from the fact that since changes arrive in order, ideally they could have just kept in a “log” resulting 
in S(1) update processing per change. 

One of the contributions of this paper is that the timeslice query can be solved optimally with 
a method that uses S(1) update processing (in the expected amortized sense, due to the use of 
hashing). This is a difference with the key-range timeslice query (for example, “find the employees 
who were working for the company on January 1st 1990 and whose keys are between 9 and kz”) 
where a logarithmic update processing is always required. This difference is due to the fact that 
for the key-range timeslice query updates arrive out of key order and must thus be ordered. 

In Section 2 we summarize previous work on the timeslice and related queries. Section 3 de- 
scribes the Snapshot Index and its properties. Section 4 contains performance characteristics of 
our Index based on simulations while section 5 describes how to migrate past data from a magnetic 
me- dia to a write-once optical disk. Finally, section 6 contains conclusions and open problems. 

2. PREVIOUS APPROACHES 

One of the earliest approaches for temporal access methods proposes the use of “reverse chain- 
ing”, i.e. , all past versions of a given key are linked in reverse order [25]. There is also a separate 
key index. This method can easily find the history of a given key, however, to answer timeslice 
queries it must search all the version chains until the time of interest. 

A variety of temporal access methods have been proposed in recent years [l, 2, 7, 8, 9, 12, 15, 
16, 18, 19, 20, 21, 22, 23, 26, 30, 31, 34, 35, 36, 371. Reviews of various methods appear in [14, 
291. Most of these approaches assume that changes occur in increasing time order; therefore, they 
are appropriate for “transaction time” evolution (transaction-time databases). In contrast, the no- 
tion of “valid time” evolution has also been proposed in the literature (valid-time databases) [33]. 
Under valid time, changes can occur in any time order; thus one could also support corrections on 
the data; consider for example changing the lifespan of a given object to a new interval. It should 
be noted that typically any proposed method (including the Snapshot Index) can be modified to 
support such corrections, but the update processing will be different for these corrections. In prac- 
tical situations, the performance will not deteriorate if the number of corrections is limited. It is 
an open and challenging problem to invent an access method that I/O-optimally supports both 
valid and transaction time dimensions (bi-temporal databases) on the same index. 

Regarding transaction time support, there have been two main approaches to the problem. In 
the first approach [2, 15, 16, 19, 21, 22, 23, 26, 341 the time and key dimensions are combined in 
some form in the index. The advantage of such indexes is that key-range timeslice queries can eas- 
ily be addressed. However, the update processing per change is bound to be at least logarithmic, 
as at best any update follows a path on a balanced tree. In the second approach [7, 8,9, 12, 20,30, 
31, 35, 36, 371 the time dimension is independent from the key dimension; the major effort here is 
on efficiently addressing (whole) timeslice queries. Ideally, the update processing of this approach 
is minimal as updates can take constant I/O. 

The Time-Split B-Tree [21, 22, 231 is one of the first efficient access methods proposed for 
key-range timeslice queries. It incorporates the key-space and the time-space into a single two- 
dimensional B-tree-like structure. Data are clustered into pages according to their time and key 
coordinates. It uses O(n/b) space, U(log, n) update per change and O(log, n + Is(t)]) query time. 
These bounds hold for data representing key insertions and value updates for already existing keys 
(and assuming a time split is always performed before a key split). Key deletions are supported by 
a special value assigned to the deleted key however the above query bound is then not guaranteed. 

The fully-persistent B+-tree [19] maintains full persistence of a B+-tree. A structure is called 
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“ephemeral” if past states are erased when updates are made; if past states are kept the struc- 
ture is termed “persistent”. A “fully persistent” data structure allows updates to all past states. 
A “partially persistent” data structure allows updates only to the most recent state ([5] shows 
how to transform a main memory resident ephemeral structure into a fully or partially persistent 
structure). The fully-persistent B+-tree can still be used for partial persistence (which is needed 
for temporal data). In the fat-node method, the history of a B+-tree which indexes an evolving 
collection of objects is maintained. There are extra nodes in the path from the root to the data 
(the version blocks) and a new leaf page is created for every update. Thus space is 0(n), not 
U(n/b). It was assumed that each version block can keep all versions of the corresponding block, 
however this may not be the case if many changes (versions) occur. Thus the query time can be 
more than logarithmic (a typical path on this index is of logarithmic size and in each version block 
encountered on this path by the search process, a logarithmic search may be involved). For better 
performance, the fat-field method was proposed, where updates can fit in the space of non-full 
pages. Since version blocks are still used, the fat-field approach has the same asymptotic query 
time performance as the fat-node approach. Pages though are more “clustered”. When a leaf page 
becomes scarce of “alive” records a page consolidation algorithm is used that will create a new page 
out of the alive records of this page and one sibling page. In a (pathological) worst case scenario, 
thrashing may occur (were insertions and deletions can cause the same page to be continually split 
and consolidated) resulting in creating a new page per update. 

Recently, a fully paginated solution to key-range timeslice queries was proposed in [2]. The 
Multiversion B-Tree uses O(n/b) space, logarithmic update per change and has O(log, n+ ]s(t)]/b) 
query time for a key-range query. The update is O(log, m) where m is the size of the current 
state of the structure when the update is performed (m will usually be much smaller than n). 
This method presents the optimal solution to the general key-range timeslice query (including key 
deletions), however the storage utilization is larger than the Time-Split B-Tree (even though the 
space used by the Multiversion B-Tree is L?(n/b), the constant in the bound is about 10). 

The Segment R-tree [15, 161 combines aspects of the Segment Tree data structure [3] with the 
R-tree [lo]. An advantage of this method is the ability to simultaneously represent multi-dimen- 
sional interval data. This characteristic could possibly allow the SR-Tree to support both valid and 
transaction time on the same index. However, a logarithmic factor is added for the space require- 
ments (due to the Segment tree property), while in worst case scenarios the update processing may 
be more than logarithmic (due to the use of the R-tree). In addition, it is assumed that both end- 
points of a record’s interval are known at insertion time. 

The Time-Index [7, 8, 91 maintains a set of linearly ordered indexing points on the time dimen- 
sion. Repeated timeslices are kept (after a constant number of change instants) together with the 
changes between them. Assuming that at each time instant at most a constant number of changes 
can happen, and, a timeslice keeps the full records (and not pointers to them) the query time 
is O(log,,n + Is(t)l/b). H owever, the update processing and the space are U(n/b) and 0(n2/b) 
respectively (if objects remain alive for a long time, their copies will appear in many timeslices 
resulting in the quadratic space consumption). Thus this method is conceptually similar to the 
“copy” solution. 

The Append-Only tree [30, 311 is a multi-level index on the “log” of the time instants when a 
change occurred. While the space is minimal (append at the end), the update and query time can 
in the worst case be O(n/b) I/O as the whole log may have to be searched in order to find and 
update a deleted record or to answer a query. 

[12] involves an interesting implementation of a database system based on transaction time. 
Changes that occur for a base relation r are stored incrementally and timestamped on the relation’s 
log; this log is itself considered a special relation, called a backlog. In addition, timeslices of rela- 
tions can be stored. A timeslice can be fixed (for example: r(tl)) or time-dependent (~(now - ti)). 
A time-dependent base relation can also be computed from a previous stored timeslice and the set 
of changes that occurred in between. These changes correspond to a differential file (instead of 
searching the whole backlog). The performance of this approach for the timeslice query depends 
on how often timeslices are kept. If the number of changes between timeslices is not fixed, the 
method behaves asymptotically as the “log” approach, else like the “copy” approach. 
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The “Checkpoint Index” of [20] indexes timeslices taken periodically (at checkpoints) from the 
state of an evolving relation, with tuples in between checkpoints stored separately. This method’s 
asymptotic behavior also depends on how often timeslices are stored and can behave like the “log” 
or the “copy” approaches. 

(35, 371 present lower bounds for the timeslice query and algorithms that lead to linear space, 
constant update processing and O(logb n + Is(t)]) query time. They combine the minimal space 
and updating of the “log” solution with the fast query time of the “copy” solution. However, this 
solution is not paginated. In this paper we improve on that result by presenting a fully paginated 
access method for the timeslice query. 

It should be noted that none of the above approaches is I/O-optimal (according to the definition 
in section 1) for the timeslice query. The Snapshot Index presented in this paper is I/O-optimal 
since it optimally clusters data by the time dimension and uses constant update processing per 
change (in the expected amortized sense, as explained in the next section.) Hence the Snapshot 
Index can practically “follow” the evolution. 

3. THE SNAPSHOT INDEX 

We begin this section by describing how the real-world changes are stored in the database. 
Then we present a controlled copying procedure that allows for better clustering of related records 
in pages. Finally, we introduce the notion of page usefulness, which for each page provides the 
time interval during which this page contains enough records that satisfy timeslice queries. The 
real-world evolution is then transformed to a meta-evolution that instead of object lifespans deals 
with page lifespans. The initial problem is thus reduced to finding all “useful” pages at a given 
time. The appropriate data structures (a doubly-linked list and an array) are also presented. 

The state of the real-world system evolves from the current time-instant to the next by issuing 
a number of changes on the most current state. The allowed changes on the real-world system’s 
state are addition and deletion of objects and attribute value modifications. We are only interested 
in evolving systems which satisfy a certain discrete notion of continuity: there exists a constant 
K that upper bounds the number of changes than can occur in the system’s state at each time 
instant. 

A real-world object is represented in the database by a record (tuple). Each such record, has 
a time-invariant key, a time-variant (temporal) attribute and a semi-closed interval [startfime, 
end-time) that represents a time interval when the (key, attribute) pair was valid. This is the 
widely used tuple-versioning temporal model [ll, 24, 27, 321. Consider first only additions and 
deletions of real-world objects. When a real-world object with identity oid and attribute value vaJ 
is added (born) in the real-world system at time instant t 1, a record with key the same oid and 
attribute value vaJ is created in the database with its interval being initialized to [tl , now]. The 
special variable now represents the current real-world system time. At a later time t2, if the real- 
world object oid is deleted, the database will locate the record (aid, V, [tl, now]) and will update 
the interval to [ti,tz). The actual deletion of the real-world system object is represented in the 
database by an interval update. For the rest of this discussion “deletion” of a database record will 
actually mean the update of a database record about a corresponding real-world deletion. 

For the database, an attribute value modification of a real-world object oid is similarly repre- 
sented with the “deletion” of the record with key oid and the old value, followed by the instanta- 
neous rebirth (at the same time instant) of a new record with key oid and the new value. Conse- 
quently, the lifespan interval of a real-world object may be stored as a set of database records with 
the same oid and contiguous intervals that overlap only at their start and end points. Therefore 
for simplicity of presentation, the only changes that we will consider are additions and deletions of 
real-world objects. Hence, we can call the interval of a database record the lifespan of this record. 
For all time instants in its lifespan, this record is called alive in the database. 

The timeslice query is defined as following: given time instant t, reconstruct state s(t) as it 
was at t. To reconstruct s(t), the database must locate all records whose lifespans “include” time 
t; a semi-closed time interval [z,y) includes all time instants t that satisfy z 5 t < y. Let Is(t)] 
be the total number of these records (i.e., the cardinality of the answer); we will present an index 
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that solves the timeslice query with O(log, n + Is(t)l/b) I/O%. The Snapshot Index keeps “logical” 
timeslices of the database states, i.e., the timeslices are not explicitly stored but reconstructed; 
therefore, the space used will still be O(n/b). 

For every real-world change, the database input is of the form: t, oid, op, and represents the 
fact that at time t, operation op (addition or deletion) was applied on real-world object aid. Based 
on this input the database will create a new record or update an existing one. As new records 
are created, they are stored sequentially in a block. At any given time, there is only one block 
that stores arriving records and it is called the acceptor block. When an acceptor block is full of 
records, a new acceptor block is assigned to store new arriving records. Besides storing records 
about objects, each block stores one, special, constant length record SR, that keeps information 
about the logical position of that block in the Snapshot Index (Figure 1). Since the ratio of the 
block size to the record size is usually very large, for simplicity of the presentation, instead of 
saying that each block has space for b-1 object records and one SR record, in the rest we use b to 
denote the total number of object records per block (i.e., we do not “count” the single SR record). 

Input: Block A Block A Block B 

(4 (b) 
Fig. 1: An example of the basic block structure. Each block contains a header (SR record) and has space for 4 data 

records. (a) At time t = 7, the only block used is block A which is also the current acceptor block. (b) At 
time t = 19, there are two blocks used, A and B with B being the new acceptor block 

For deletions, the database needs to locate the (object) record to be updated. By keeping the 
time dimension separate from the key dimension, our approach leads to constant update process- 
ing, i.e., independent of the (always increasing) evolution size n. A dynamic perfect hashing scheme 
is utilized for this purpose [6]. It has O(1) expected amortized insertion and deletion cost, O(1) 
worst case lookup and linear space. Thus when an update involves inserting or deleting from 
the hashing function, it will count as O(1) in the expected amortized sense. The amortization 
means that some insertions/deletions may require more than O(1) update processing to update 
the hashing function (since it is dynamic) but for any sequence of n updates no more than a total 
of 0(n) time will be required. The expectation is not based on any distribution assumption for 
the keys used rather it is based on randomized choices of the hashing algorithm (a much stronger 
condition). For simplicity, in the rest of this paper, constant updating means constant in the 
expected amortized sense since the hashing is involved. 

A real-world addition of an object causes the insertion of the object’s oid in the hashing scheme 
together with a pointer to the block that will store the database record representing this new 
object. For a deletion, the database record that currently represents the deleted object oid is 
first accessed through the hashing scheme and updated; its oid is then removed from the hashing 
scheme. Hence, hashing provides a representation of the current state of the real-world system 
(previous states are not kept). 

To guarantee worst case update performance, one could provide access to objects by their 
oid using a balanced dynamic index (B+-tree) on the oids of the alive objects (again next to 
each oid would be a pointer to the page that the corresponding record is stored). This solution 

leads to O(logb Is(t I/O p er update on state s(t). While it is still independent of n (rather it 
depends on the size of the current database state where the update is performed) we feel that 



The Snapshot Index: An I/O-Optimal Access Method for Timeslice Queries 243 

in most practical cases a good hashing function should be preferred as it would provide a much 
faster update (especially if the number of “alive” objects is large.) Finding a good hashing function 
should not be difficult in a practical implementation considering that the key space does not change 
dramatically. 

Our approach is similar to the “log” approach, however by using the hashing scheme, we can 
always go in previous blocks and update the lifespan intervals of records that correspond to deleted 
objects. Note that as real-world changes occur and blocks are filled, the “alive” records at any 
given time t are dispersed in many blocks; in the worst case we may have each “alive” record in a 
different block. We now introduce the notion of block “usefulness” as a measure of data clustering. 

Definition 1 A block is defined to be useful for the following time instants: 

(a) (I-useful mode) for all time instants t, such that t is greater or equal to the time of the 
insertion of the first record in the block and less or equal to the time instant that this block 
became full (i.e. , the time that the last record was inserted in this block). 

(b) (II-useful mode) for all time instants t, such that t is greater than the time of the insertion 
of the last record in the block and for which the block contains at least a. b “alive” records 
from the state s(t). The usefdness parameter a (0 < a 5 1) is a constant that can be chosen 
accordingly, to tune the behavior of our access method. 

When a block is not in any of the above modes it is called non-useful. The following properties 
for block usefulness hold: 

(1) At any time instant there is exactly one block that is in I-useful mode (by construction since 
at any time there is only one acceptor block). 

(2) The time instants during which a block can be in II-useful mode are contiguous (if a block 
is II-useful for an instant tl and not II-useful for an instant tz > tl, it is not II-useful for all 
t 2 t2 as no new records are added in that block). 

(3) A block has exactly one I-useful interval (since it starts as an acceptor block) and at most 
one II-useful interval. If a block does not have at least a - b “alive” records when it is filled, it 
will never attain them in the future and therefore this block will not have a II-useful mode. If 
a block has both I- and II-useful modes, their corresponding intervals are disjoint and consec- 
utive, with the I- interval followed by the II- interval. 

The I-useful mode represents the time interval that a given block was an acceptor; during that 
period, a block may not have a.b “alive” records, but still contains useful information. The II-useful 
mode is attained by a block only if it continues to have at least a . b “alive” records for a period 
after being the acceptor block. Figure 2 shows examples of usefulness intervals for different blocks. 
The I-useful period of blocks B and C are intervals [15, 251 and [30, 421 respectively. At time 
t = 51, the real-world deletion of record g ended the usefulness period of block B. The II-useful 
interval of block B is (25, 51). 

The purpose of introducing the usefulness parameter a is to identify those blocks that were in 
II-useful mode for the time of the query, i.e. , those blocks that have at least aa b records that 
satisfy the query predicate. As it will be shown later our method will only access such blocks plus 
at most one more block that was in I-useful mode at the time of the query and may thus contain 
less than aa b records from the answer. 

Just adding and updating the records in a log of blocks equipped with a hashing scheme is not 
enough since the records are allocated to blocks according to their real-world system birth time. 
In addition, declaring a block useful is not enough if the records are kept only in the block where 
they were initially stored. We therefore introduce a controlled copying procedure which basically 
splits the lifespans of long-lived objects into continuous subintervals that are assigned to different 
blocks. We will prove that the space used by the copying procedure is linear to the number of 
real-world changes so that the total space used by the Snapshot Index remains O(n/b). 
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Input: 

1. u. + 
2, b. + 
4, ,f, + 
8, c, + 
10, b, - 
15, d, + 
16, g, + 
17, d, - 
20, e, + 
21, e, - 
25, h, + 
30, i, + 
33, k, + 
41, i, + 
42, m, + 
45, p. + 
47, .L - 
48, k, - 
51, g, - 

Block A Block 3 Block C 

I 

<d, [15, 17)> 1 I <j, 130, now]> I 

<g, [16,51)> I 1 <k, [33.48)> 1 

<e, [20,21)> I I <i, 141, now]> I 
dr, 125, now]> I Iun, [42, now]>1 

(a) 

1 8 15 25 30 42 45 51 

I II 
A l * 

I II 
B- . 

I II 
C* 

DL 
(b) 

Block D 

Ford 1 

<p, [45, now]> 

~ 

time 

Fig. 2: Examples of usefulness periods for the input shown. Blocks have become acceptors in the order A, B, C, etc. 
The value of a is l/2. (a) The blocks at time t = 51. (b) The corresponding usefulness periods per block 

Copying Procedure: When a block X ends its whole useful period at time t (either at the end 
of the II-useful period or, if this block does not have a II-useful period, at the end of the I-useful 
period), the number of its records that are “alive” at t (i.e. not yet “deleted”) are copied to the 
current acceptor block. For each “alive” record of X its end-time is first updated to t; then a new 
record is created with the same aid in the acceptor block and with lifespan interval initialized to 
[t, nazo]. The hashing scheme is also updated about the new physical location (block) of the copied 
record, but this still takes constant time per copied record. The copying process has thus internally 
created two subsequent lifespan subintervals for a real-world object which did not change at t. 

Figure 3 shows the evolution with the copying procedure present; when record g is “deleted”, 
block B does not have enough “alive” records (with a = l/2) so the lifespan of the “alive” record 
(h, [25,nozo]) is “split” into: (h, [25,51)) and (h, [Sl, naw]) which is stored in block D. Similarly, 
at time t = 53, block A becomes non-useful and a copy of record u is added in D. 

Lemma 1 The total space used by the copying procedure is O(n/b) and the updating cost per 
change is constant. 

Proof. A block degrades from II-usefulness to non-usefulness when a deletion occurs in the real- 
world system that decreases the number of “alive” records from a. b to (a. b - 1). In case that a 
block degrades from I-useful directly to non-useful the number of “alive” records is even less than 
a - b. Consider the first block in the system: it has b real-world records which, independently of 
how they will be “deleted”, can at most create a * b copies; each record is therefore responsible for 
at most a copies. Thus the a. b copies can in turn create at most a2 - b copies and so on. In general, 
if E is the total number of real-world births (E is obviously O(n) as every birth is a change), the 
number of first time copies would be less than aa E. These copies can in turn create second time 
copies which are at most a2 s E and consequently, the total number of records ever created in the 
database is given by the summation: (E + aE + a2E + . * .) which is upper bounded by E/( 1 - a). 
Hence, the total number of blocks used is O(E/b(l - a)) which is O(n/b). 

If a change is an addition of a real-world object, there is no additional updating cost due to the 
copying procedure. For a real-world deletion, the worst case happens if the corresponding “deleted” 
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Input: 

*.*. 

30, j, + 
33, k, + 
41, i, + 
42, m, + 

45, p, + 

47, f, - 
48, k, - 

51, g, - 
53, c, - 

Block A 

SR record 1 

Block B Block C Block D 

I SR record 

<p, 145, nowI> 

t- 
dt, [5 1, now]> 

Fig. 3: An example of the copying procedure, with a = l/2. At time t = 51, the real-world deletion of object 9 
forces block E to end its usefulness period. Similarly, at time t = 53, block A becomes non-useful due to the 
deletion of c. The copying procedure has thus “split” the lifespans of records h from B and u from A and 
created new copies in acceptor block D 

record causes a block to change from II-useful into non-useful, while the acceptor block is almost 
full. Then a . b - 1 records are copied from the non-useful block to the acceptor block, causing 
the creation of a new acceptor block which can definitely accommodate the excessive copies. In 
addition, the hashing scheme has to be updated for the new position of each copied record but this 
takes constant time (in the exp. amort. sense) per copied record. 0 

Using the copying procedure and the usefulness concept we have reduced the initial problem of 
reconstructing the state s(t) into the problem of finding the blocks that were in useful mode at t. 
If a query answer is large, it will be dispersed in a number of II-useful blocks (blocks that at least 
have a. b records which satisfy the query’s predicate) plus one I-useful block (which may have less 
than a . b records from the answer). If the query is small it will be contained in a single I-useful 
block that has to be accessed. Observe however that in any case at most one block will be accessed 
with less than a . b records from the answer. The following lemma provides bounds for the total 
number of (I and II) useful blocks: 

Lemma 2 For any time t, the number of useful blocks IsB(t)l and the answer size Is(t)1 satisfy: 

aWi4t)l - 1) I Is( I blsdt)l. 
Proof. We first consider the left inequality. F’rom property 1 the number of useful blocks consists 
of exactly one I-useful block and maybe a number of II-useful blocks. If IsB(t)l = 1 then the left 
inequality holds. If there exist II-useful blocks, let (S~r(t)l denote their number. Observe that at 
any time instant there is exactly one “alive” record with identity oid which represents the real- 
world object oid that exists at t. This “alive” record is either the original record with identity 
oid, or one of its copies as produced from the copying procedure (since when a copy of a record is 
made internally, the previous record is “deleted”). By definition every II-useful block has at least 
a. b of the records that constitute the answer s(t). The answer s(t) is also distributed in the 
single I-useful block; let x be the number of records that are “alive” at t from this block. Then 

obls&)l + x I Is(t)1 since some of the [sIr( blocks may have more than a * b “alive” records. 
In order to show the right inequality it is sufficient to prove that the answer Is(t)1 is contained 

in the useful blocks Is~(t)l. By contradiction, let a record T with “lifespan” interval that includes t 
be stored in a block X which is non-useful at t. Block X is thus useful for a time period that ends 
before or starts after t. In the first case, let X be useful until a time instant tl < t, which implies 
that all records of X can be “alive” at most until tl since from the copying procedure all “alive” 
records of X would have to be “deleted”. Consequently, T cannot be “alive” at t. Similarly, for 
the second case, all records of X can be “alive” after t. 0 

We proceed by describing the basic data structures of the Snapshot Index and how it can effi- 
ciently find all the Is~(t)l useful blocks. From property 3 we can visualize the whole usefulness 
IS IO-34 
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period of a block (I and, if applicable, II) as a contiguous “block-lifespan” interval. Therefore, a 
block is specified by a unique block identity (bid) and a semi-closed interval [s&me, e-time); s-time 
is the birth time of the first record inserted in this block and e-time is either the time of the last 
insertion in this block (if it has only I-useful mode) or the time of the record “deletion” which 
made a II-useful block to have less than a . b “alive” records. By considering s-time and e-time 
the “birth” and “deletion” times of a block we create a meta-evolution where meta-changes are 
“births” or “deletions” of blocks. Finding all useful blocks at a given time is then equivalent to 
finding all “alive” blocks at that time. For this problem we will use ideas from [37].We need to 
show that translating the real-world evolution problem to a block meta-evolution still uses linear 
space and constant updating. 

The meta-evolution changes are triggered by real-world changes. A real-world change may 
cause at most two meta-changes. This happens when the deletion of a real-world object causes 
the “deletion” of a record which may trigger the “deletion” of a block (a “deletion” meta-change) 
which in turn may trigger the creation of a new acceptor block (a “birth” meta-change). The addi- 
tion of a real-world object may cause only one “birth” meta-change. Since at any time instant 
there will be at most K real-world object changes, the number of meta-changes per time instant 
is also bounded by a constant. 

A meta-evolution change is represented by a triplet (time, block-id, meta -change) where time 
is the time instant of the meta-change. In order to realize the meta-change and the block on which 
it is applied from the database input, note that when a record id is added in the hashing scheme, a 
pointer to the block that contains this record is also stored. Hence, for a record “deletion” the hash- 
ing scheme will also provide the block which contains that record and on which a meta-deletion 
may occur. 

There are three kinds of time instants in the meta-evolution specified by the kind of meta- 
change that occurred at that time. 

A time instant with no meta-changes in the meta-evolution is a no-change instant. It can 
correspond to an instant where nothing happened in the real-world. In addition, many real-world 
changes do not cause meta-changes (like those corresponding to records that are just added on 
an acceptor block or those corresponding to record “deletions” that do not change the usefulness 
state of a block). 

A time instant during which at least one “birth” meta-change occurred is called a meta-birth 
instant. Note that an instant t corresponding to a record “deletion” which causes the “deletion” of 
a block and the subsequent and instantaneous creation of a new acceptor because of overflow (due 
to copying), is a meta-birth instant. A time instant where only “deletion” meta-changes occurred 
is called a meta-deletion instant (i.e. , when the “alive” records from “deleted” blocks do not cause 
the creation of a new acceptor block). Meta-change instants are in general a small subset of the 
real-world change instants. 

We use two main data structures: a doubly-linked list L and an array AT. First, we describe 
the structure and use of list L. The array AT will be described later. At any time t, list L will 
contain the “alive” blocks of the meta-evolution. The list is implemented as a separate object 
that has a top element, represented by a special block S, and a pointer Ipr to its last element. 
Initially, the list is empty and Ipr points to S. When a block is “born” it is added at the end of 
the list and lpr points to this new block. When a block is “deleted”, it is removed from the list 
and is added as the next child of the block preceding it in the list. List L is thus characterized by 
append-at-the-end and deleteAnywhere operations. Based on the blocks’ “lifespan” behavior and 
through list L a forest structure is created where a node in this forest represents a block. At any 
time instant the forest is rooted from the blocks that are elements of list L at that time. We call 
this forest the access forest as it will facilitate the location of all “alive” blocks for a given query. 

Figure 4 presents an example of the access forest. In this figure we have assumed that the evo- 
lution of Figure 3 has continued until time t = 80; the block-lifespan intervals are shown. Initially, 
block B was “deleted” and became the first child of block A (t = 51). Before B’s “deletion” list 
L contained elements: S, A, B, C and D. When A was “deleted” (t = 53) it became the first child 
of special block S. At t = 60, some real-world addition created a new acceptor block E, that 
remained as an acceptor until time t = 65, when a new acceptor was created, block G (i.e. , block 
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E never attained a II-usefulness period). At that time, E was “deleted” and became a child of 
block D. Similarly, block G was “deleted” at time 70 when a new acceptor H was created. Finally, 
some real-world deletion at time t = 80, caused block D to become non-useful and thus it goes 
under block C; its alive records have been copied to acceptor block H. 

1 15 30 45 51 60 65 70 80 

s . * 
A * . 

B l . 

c . * 
D* . 

E- 

G- 

H- 

List L 

Fig. 4: A schematic view of the access forest for a given meta-evolution, as it is at time t = 80. A block is represented 
by a tuple @lo& - id, block - lifespan). Block S denotes the top of list L, while pointer lpr points always 
to the end of L 

The implementation of the access forest and the list, is accomplished through the constant 
length SR record of each block. More specifically, this record has the following fields: the block id 
field bid, the block-lifespan s-time and e-time fields, the parent field, the prev field, the next field 
and the PCS and PCE fields. As a block has a logical position in the access forest, it may have a 
parent and a number of children blocks. The parent field is used for the parent of the block. The 
PCS (PcE) field is a pointer to the first (last) child block of this block in the access forest. The 
prev and next fields are for the implementation of list L. 

When a block with bid X is “born” at time tl, its SR record is filled. The s-time field will 
store time tl while the e-time field will store a special character now to indicate that the block is 
still “alive”. Block X is also added at the end of list L. The X.prev field will store a pointer to 
the previous last element of the list (using pointer Zpr). The X.next field is initially empty since 
X has no next element in the list. The X.prev.next field of the list element preceding X is made 
pointing to block X. If X is the first block in the list, its prev pointer will point to special block 
S. Initially, when a block is created it does not have any parent or children thus the parent, PCS 
and PCE fields are empty. 

When block X is “deleted” at t2 2 tl, its e-time field is updated with tz. From X.prev the 
currently previous block in list L is found, say block F. Block X is then deleted from list L (by 
making the F.next pointer point to the block pointed by X.next and the X.next.prev pointing to 
F). Logically, when a block is “deleted” it acquires a parent; i.e. , it is deleted from the “alive” 
blocks that are kept in list L and becomes the next child of its parent block. The parent of block 
X is block F. Accordingly, the parent field of X will store bid F when X is “deleted”, while the 
PCE field of parent block F will point to the “deleted” block X. If X is the first child it will also be 
pointed by field PCS. When traversing the access forest our method will encounter children blocks 
from right to left, hence a child block must have means to access its left sibling under the same 
parent block; this will also facilitate the migration of blocks to an optical disk. When block X is 
“deleted” it becomes the next sibling of the block pointed from F’s PCE field. This left sibling of 
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X can be stored inside its prev field which is not used after X’s “deletion”. The next field remains 
unused after X’s “deletion”. A block’s children list is thus characterized by append&-the-end 
operations. 

Note that a block may get children as long as it is “alive” ; after it is “deleted” it obtains a parent 
and no new children are attached under it. A block retains all of its subtree after “deletion”. Special 
element 5 is never deleted from the list, therefore 5’ behaves like a “sink” for blocks “deleted” from 
the top of the list. Since the list L and the access forest are implemented inside the blocks using 
the constant length SR records the space used for the implementation of the meta-evolution is 
O(n/b). The update processing needed to create the access forest is constant per meta-change (as 
for every block “birth” or “deletion” a constant number of updates are performed by our method). 

While list L enables the construction of the access forest, array AT provides access to the tem- 
poral dimension. An entry in array AT is of the form: (time, bid). New entries are always added 
at the end of array AT in increasing time order; no entries are ever deleted from it. For each 
meta-birth instant t, entry (t, bid) is appended on array AT, where bid is the block id of the last 
block added at t in list L; even if meta-birth t contains many block “deletions” and block “births” 
the bid corresponds to the last created acceptor block due to this meta-change. A no-change or a 
meta-deletion instant is not recorded in array AT. 

We need array AT to assist in the following: for every time t find the acceptor block at time 
t. Obviously if t is meta-birth instant, searching AT will result in entry (t,bid) where bid corre- 
sponds to the latest acceptor block created at t. If t is a no-change or a meta-deletion instant, 
searching array AT for t will provide some entry (t’, bid) where t’ is the largest meta-birth that is 
less than t. The interesting case is if t is a meta-deletion: observe that the only events that may 
have happened between t’ and t are other meta-deletions. However, by definition, each meta-de- 
letion does not add a new acceptor block (since this would imply that it is a meta-birth); hence 
the acceptor block changes only at meta-births and bid was the acceptor block at t. 

Figure 5 presents the access forest and array AT at (t = 52)’ and after the “deletion” of block 
A (t = 53)’ using the corresponding part of the meta-evolution depicted in Figure 4. Observe that 
array AT is not augmented by the no-change instant (t = 52) or the meta-deletion instant (t = 53). 

Since the entries of the array are added in increasing time order, it is easy to maintain a multi- 
level, paginated index for AT. Pages are added only on the right path of this index. The number of 
entries in the array is clearly bounded by O(n/b); consequently, the multilevel index and the array 
use O(n/b) space. The total time needed to create the index is O(n/b) which can be amortized 
on the total number of array entries yielding a constant updating per meta-change. With the 
multilevel index, access by time to any entry of the array is done in O(log, n) I/O’s. 

A query is answered in two logical steps. For simplicity, assume that the time of interest t is 
a meta-birth instant and let block Y be the latest acceptor block created at t. In the first step, 
the given time t is located after O(log, n) I/O ‘s in array AT using the multilevel index, and thus 
block Y is found. During the second step all useful blocks are found. 

In order to find the useful blocks at a given time t, our method makes use of the following 
properties of the access forest: 

(1) In each tree of the access forest, the start-time fields of the blocks in the tree are organized 
in a preorder fashion. 

(2) The [start-t ime, end-time) interval of a block, includes all the corresponding intervals of the 
blocks in its subtree. 

(3) The intervals [di, e;) and [d;+r , ei+l ) of two consecutive children under the same parent block 
may have one of the following orderings: di < ei < di+l < ei+l or di < di+l < ei < ei+l. 

Consider the path p of the access forest that starts at block Y and goes from child to parent 
until the root of the tree that contains Y is reached. This root may be Y itself if Y is still “alive” 
when the query is asked; it may be another block that is still in list L or it may be special block 
S. Path p divides the access forest blocks in three logical sets: set-l with the blocks that are on 
path p, set-2 with the blocks that are on the left of the path, and, set-3 with the blocks that are 
under the path and on its right. From property 1, set-3 contains blocks “born” after t that clearly 
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bid s-time c-Ibsen par ent prev next P (s P, 
I I I I I I I I I 

Array AT 

(a) 

W 

Array AT 

w 

Fig. 5: (a) A typical SR record. (b) The implementation of the access forest, at time t = 52, and (c) at time t = 53, 
using the first part of the meta-evolution of Figure 4. A block is now represented by its corresponding SR 
record. The ‘0’ sign denotes an empty field. The next field of record A remains unused after A’s “deletion” 

should not be checked for usefulness as they became in useful mode after t. All the blocks in set-l 
(starting with Y itself) were in useful mode at time t; this is due to property 2. 

In order to complete the search for useful blocks, our method must also find which of the blocks 
from set-2 were useful at time t. The search starts from block Y. Then the left sibling of Y (if 
any) is checked to see if it is useful mode for time t. After this, for any block encountered in useful 
mode the search continues (1) to its subtree starting from its rightmost child, and, (2) to its left 
sibling. This is repeated at each level. For the blocks that are in path p the subtree search starts 
from the block that is in the path p. When a block is encountered that was not useful at time t 
the method does not check its left sibling or its subtree as no useful blocks can be found towards 
these directions. The search stops when no new useful block is found. Therefore, to find all the 
Is~(t)l useful blocks our method checks at most 219~(t)l blocks in the access forest. As an example 
consider finding the useful blocks at time t = 70 from figure 4. The correct answer is: C, D, H, 
while the algorithm checks blocks: H, C, D, G, S and A. Similarly, for time t = 60, the correct 
answer is: C, D, E, and the algorithm checks blocks: E, D, C, S and A. We can now prove the 
following Theorem: 
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Theorem 1 The Snapshot Index solves the timeslice query in O(log, n + Is(t)l/b) I/O’s, O(n/b) 
space and constant update processing. 

Proof. Clearly from Lemma 1 and the above discussion the space bound is established. The 
update processing contains two parts. First, from Lemma 1 the updating due to the copying 
procedure is constant per change instant (in the expected amortized sense). Second, the updating 
for creating the access forest and the array AT is also constant per meta-change and the number of 
meta-changes is clearly O(n). For every useful block provided by the Snapshot Index, its records 
are checked in main memory for being “alive” at t; but due to Lemma 2, at least a% of the records 
of each useful block (except probably block Y) belongs to the answer s(t). 0 

It is easy to see that the constants in the O() notation are small: the constant in the space 
requirement is l/(1 -a) while the constant in front of js(t)l/b in the query time is 2/a. A particular 
optimization is possible for the query time, that reduces the constant to (asymptotically) l/a. First 
observe that from a given useful block accessed by the searching procedure its left sibling block 
may also be accessed without this sibling being another useful block. This scenario may cost a 
lost I/O if the given useful block is not in the list L (if it is in the list the left sibling is also 
“alive” and useful). Such I/O can be avoided if a block keeps internally the end-time of its left 
sibling [28]. Since by construction, the left sibling block has an earlier start_time, it suffices to 
check its end-time to decide if it useful or not. The end-time of the left sibling is available when 
a block is “deleted” in the access forest, since (also by construction) its left sibling has already 
being “deleted”. In addition, a useful block accessed by the searching procedure may also access 
its rightmost child block without this child being another useful block. Such an access may happen 
from any block in the access forest, i.e., “deleted” or “alive”. To avoid this lost I/O each block 
needs to keep the lifespan (useful period interval) of its rightmost child. Since when a block is 
“deleted” it does not accept new children, this information is available at “deletion” time. While a 
block is “alive” new children blocks can be added to it as they are “deleted”. Thus a block in list 
L needs to keep the lifespan of its currently rightmost child. This lifespan is known when a child 
is added and it is updated when a new child arrives. Using the above techniques, our algorithm 
will access ONLY the useful blocks for a query plus one more block (the top node S of the list). 
Thus the constant in the query bound behaves like l/a. 

The choice of a affects the performance of the algorithm. Since supporting of temporal data 
greatly affects the space requirement, a choice of small a would keep the space consumption small. 
Having the ability to tune its performance is another advantage of our approach since it can be 
ac- customed to different application needs. 

The Snapshot Index maintains a certain notion of optimality. We first show that the timeslice 
query is reduced to the “predecessor” problem for which a lower bound is then established. 

The predecessor problem is defined as following: Given an ordered set B of N distinct items, 
and an item k, find the larger member of set B that is less than or equal to k. For the reduction 
of the timeslice query assume that set B contains integers tl < tz < . . * < i?N and consider the 
following real-world system evolution: at time tl a single real-world object with name (oid) tl is 
created, and lives until just before time t2, i.e. , the lifespan of object tl is [tl, tz). Then, real-world 
object t2 is born at t2 and lives for the interval [tz, ts), and so on. At any time instant ti the state of 
the real-world system is a single object with name ti. Hence the N integers correspond to n = 2N 
changes in the above evolution. Consequently, finding the timeslice at time t reduces to finding the 
largest element in set B that is less or equal to t, i.e. , the predecessor of t inside B. The Snapshot 
Index will thus solve the predecessor problem in O(logb N) I/O’s. 

We will show that in the comparison based model, and in a paginated environment the prede- 
cessor problem needs at least R(log, N) I/O’s. The assumption is that each page has b items and 
there is no charge for a comparison within a page. Our argument is based on a decision tree proof. 
Let the first page be read and assume that the items read within that page are sorted (in any case 
sorting inside one page is free of I/O’s). By exploring the entire page using comparisons, we can 
only get b + 1 different answers concerning item k. These correspond to the b + 1 intervals created 
by the b items. No additional information can be retrieved. Then a new page is retrieved that is 
based on the outcome of the previous comparisons of the first page, i.e. , a different page is read 
every b + 1 outcomes. In order to determine the predecessor of k the decision tree must have IV 
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leaves (as there are N possible predecessors). As a result, the height of the tree must be log* N. 
Thus any algorithm solving the paginated version of the predecessor problem in the comparison 
model needs at least sl(logb N) I/O’s 

If there was a faster method for the timeslice query using O(N/b) space, then we would have 
invented a method that solves the above predecessor problem in less than 0(log, N) I/O’s. 

Observe that the lower bound was shown for the query time, irrespectively of the update pro- 
cessing. If the elements of set B are given in order, one after the other, O(1) time (amortized) per 
element is needed in order to create an index on the set that would solve the predecessor problem 
in O(log, N) I/O’ s ( more accurately, since no deletions are needed, we only need a fully paginated, 
multilevel index that increases on one direction). If the integers are given out of order, then 
O(log, N) time is needed per insertion (B-tree index). In the timeslice query however, as time is 
always increasing, 0( 1) time for update processing per change is enough and clearly minimal. Using 
a hashing function our method achieves the constant updating (even in the expected amortized 
sense), so it is I/O-optimal. In a practical implementation any good hashing function will provide 
the good updating performance. 

For the timeslice query, the Multiversion B-Tree [2] achieves O(log, n+ Is(t)l/b) query time and 
O(n/b) space, but logarithmic (worst case) update processing. It is actually the range-timeslice 
query which requires to order keys by their value (as they arrive in time order but out of key order) 
that implies this logarithmic update. Thus, while the Snapshot Index is the optimal solution to 
the timeslice query, the Multiversion B-Tree is the optimal solution to the range-time&e query. 
In addition, in order to accommodate enough records from a key range per page, the Multiversion 
B-tree uses a more complicated copying procedure that needs extra space. This procedure still 
results in O(n/b) space, but the constant is larger than the corresponding constant of the Snapshot 
Index. Thus for timeslice queries, the Snapshot Index (even if a B-tree is used instead of a hashing 
function) would use less space than the Multiversion B-tree. 

The Snapshot Index can also optimally address “interval intersection” queries, i.e. given an 
interval Q = [tO, tb] find all real-world objects whose lifespan intervals intersect &. An interval 
P = [tC, td] intersects Q iff (tc 5 t, 5 td) or (t, 5 t, 5 i&). If in is the number of such real-world 
objects, the following theorem can be proved: 

Theorem 2 For a given interval & the Snapshot Index solves the interval intersection query in 
o(log, 72 + iQ/b) I/O ‘s using O(n/b) space and constant update processing. 

Proof. To solve the interval intersection query we must first reconstruct the real-world state s(to) 
(tC 5 t, 5 td) and then search for all real-world objects born after t, and before or at tb (t, 5 
t, 2 tb). State s(ta) is reconstructed from the Snapshot Index after o(logb n + Is(&)l/b) I/O%. 
For simplicity assume that t, and tb are meta-evolution “birth” instants for blocks X and W, 
respectively. Furthermore, assume that each block keeps a pointer to the block created after it 
(such a pointer is easily kept at no additional space or updating cost). Let IS(tb - ta)l denote the 
real-world births after time t, and before or at i!I,; obviously i& = Is(&)1 + Is(tb - &)I. 

Note that the only records that can appear in blocks X through W are the originals or copies 
ofi . 

f 
Clearly this holds for the Is(tb - &,)I re al -world births since by construction they have to 

be p aced in blocks between X and W. Consider the placement of the records of the s(&) state at 
time t,: in the worst case they may have been placed in Is(&)l/ab blocks located before block X, 
including block X. This happens if the Is(&)l/ab blocks were at a “threshold” condition at time 
t,, each of them having exactly aa b “alive” records from state s(ta). During the evolution between 
t, and tb, real-world deletions may occur that will make these blocks degrade in a non-useful mode, 
creating copies from their “alive” records at t,. These copies will be stored in the blocks between 
X and W. However, from Lemma 1 we can show that the number of possible blocks resulted from 
the evolution of the in records can at most be i~/(l - a)b and are in the sequence that starts 
from block X until block W. Block X is found from the logarithmic search needed to reconstruct 
s(ta); the rest of the blocks are accessed in sequence using the pointer mentioned above, until the 
first block that is created after tb. Cl 

It follows that the Snapshot Index can optimally address queries of the form: “find all real- 
world objects that were born after (before) time t”. 
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With a minor modification, the different versions of a given key can be linked together so that 
queries of the form: “find all versions of a given key” can be addressed in O(log, n + V) I/O , where 
v represents the number of such versions. Each object record is augmented with one pointer. When 
an object is deleted, its aid is not deleted from the hashing function, rather it is marked as deleted. 
When a new version of this object is born, the hashing function can locate the previous version, 
thus it is possible to have a pointer form the record of the new version to the record of the previous 
version. When the first copy of an object is created due to the copying procedure, its record will 
point to the first record of the current version. Later copies of this version can thus point directly 
to the first record of their version. Thus the above query can avoid searching all copies of versions. 

Another interesting query is finding the lifespan of a given object version. While the controlled 
copying procedure “partitions” the lifespan of an object into smaller intervals (one interval per 
copy of the object record), it is easy to find the whole lifespan of an object. As above, each copy 
can have a pointer to the first record of this object version; this first record is updated when the 
object is finally deleted in the real world evolution and its whole lifespan is known. 

We conclude this section by discussing how the Snapshot Index can be used to address key- 
range timeslice queries. As it was mentioned earlier, such queries are answered more efficiently by 
methods that combine the time axis with the key range. Clearly no method can solve all queries 
optimally and the trade-off between the two approaches is on the update processing. Accordingly, 
each method should be used for the appropriate application. 

The obvious way to answer a key-range query with a method that clusters data based only on 
time behavior is to produce the whole timeslice and then eliminate tuples outside the query range. 
While this solution may be acceptable when the size of the past state is small, it is unsatisfactory 
when the answer to the range query is much smaller than the timeslice size. Another solution [9, 
311, is to pre-divide the key range into consecutive regions where a key region could be a single 
key or a collection of keys (like a sub-range of the key space or simply a relation). The history of 
each “region” is kept independently, using an individual temporal access method (like the Time 
Index, the Append-Only Tree or the Snapshot Index). A separate B-tree index on the regions di- 
rects a real-world change to update the appropriate key region history. There are three drawbacks 
with this solution: (1) as the regions are pre-decided a query may still be a small fraction of a 
region, (2) all regions in the given query range have to be searched, even if they may contain no 
“alive” objects at the time of interest t, and, (3) for each such region, a search for time t in its cor- 
responding history “log” is performed. We are currently investigating a method that addresses 
some of the above drawbacks [17]. 

4. PERFORMANCE OF THE SNAPSHOT INDEX 

A number of history evolutions were created in order to simulate and measure the performance 
of the Snapshot Index. Each evolution had T contiguous time instants; at a time instant t the 
number of “real-world” objects created is a uniformly distributed random variable in [0, Kr]. The 
evolution examples are distinguished by the maximum possible lifespan of an entity, LIFEMAX. 
Deletions were implemented as following: the lifespan of a born object is a random number from 
[l, LIFEMAX) after the object’s birthtime. Different values of LIFEMAX were chosen. Note that 
in a practical case LIFEMAX can be also have infinite value (i.e. , objects that never die), however 
this does not affect our algorithm, so for the simulation we used finite LIFEMAX values. In order 
to keep the number of changes constant per time instant, when a deletion time of an object is 
decided, we check if at that time the number of deletions is less than some constant Kz (so as to 
guarantee at most K = K1 + Kz changes per instant). If that instant has already Kz deletions 
we extended the lifespan of the object by one time instant, and so on, until we find the first time 
instant that can accommodate one more deletion. The choice of uniform distributions was made for 
simplicity only; our algorithm is not affected by such an assumption. We used K1 = K + 2 = K/2 
and unless otherwise stated, K = 10 and T = 2 l6 Throughout this section, a block is assumed to . 
have enough space to accommodate 50 object records. Based on these evolutions we created our 
access method and measured its performance. 

We first measured the three basic costs of our method as a function of the usefulness parameter 
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Fig. 6: Ratio SR (:actual space/minimal space) as a function of the usefulness parameter a (LIFEMAX = 500, 
T = 21s, K = 10). Function l/(1 - a) is also depicted 

a (Figures 6-8). Various evolution histories were created for different a’s with LIFEMAX = 500. 
Figure 6, presents the space requirements of the Snapshot Index as a function of a. More specifically 
it shows the Space Ratio SR = (actual space/minimal space), where actual space corresponds to 
the number of blocks used by the access forest of our index structure, and minimal space repre- 
sents the minimal number of blocks that one algorithm could use to store the changes of the 
evolution. Such an algorithm would simply store the changes on a log. The Snapshot Index also 
contains a multilevel index on array AT which does not appear in SR. However, the space used 
by the multilevel index on AT is clearly bounded by the size of array AT which in turn is much 
smaller (in number of blocks) than the number of blocks in the access forest (in the worst case the 
number of blocks of AT is the actual space divided by the block size b; in addition, in practice 
an array entry is much smaller than an object record). In Figure 6, as a increases the ratio SR 
increases. By increasing a, blocks are “deleted” easier since a larger number of “alive” objects is 
needed for a block to remain useful. This creates extra copies of records, which increases the space 
consumption. SR is upper bounded by an l/(1 - a) function, as Lemma 1 also implies. 

The first part of the Query phase has a guaranteed O(log, n) performance due to the multilevel 
index on array AT. More interesting is the second part where the search through the access forest 
finds the s “alive” objects at a given time t. The minimal number of pages that any algorithm 
would access in order to find the a objects is obviously s/b and corresponds to the case that the 
whole answer s was clustered in pages. Let QR (Query Ratio) be the ratio of the number of blocks 
accessed (checked) by our algorithm during the second part of the query phase, to the minimal 
number of blocks s/b that should at least be accessed; this ratio is thus a measure of data clustering. 
Figure 7 shows QR as a function of parameter a. Ratio QR was computed as an average of more 
than 2000 different timeslice queries. Obviously, as a increases we expect more block “deletions” 
which in turn creates more copying that will cluster the data better and hence will result in less 
query time. The simulation was performed on the algorithm without the extra page optimization; 
that is, the ratio is bounded by 2/a (instead of l/a). In practice, the actual number of blocks 
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checked is much less than that ratio since many useful blocks may have more than just a% alive 
objects. 

The update processing per change as a function of a is depicted in Figure 8. The update pro- 
cessing was computed as the total number of block accesses for a given evolution and then it was 
divided by the total number of “real-world” changes (object births or deletions), to give the Update 
Ratio UR. The update processing also includes the blocks accessed due to the hashing scheme. 
As a increases, there will be more blocks that become non-useful and are consequently “deleted”, 
which in turn will create more object copying, i.e. more update processing per object. Ratio UR 
behaves similarly with SR, as SR represents the extra space per object; but extra space means 
also more updating. 
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Fig. 9: Ratios SR, QR and UR as functions of LIFEMAX (a = 0.5, T = 21s, K = 10) 

We also measured the three basic costs against various lifespan lengths. Figure 9 shows all 
three ratios for different LIFEMAXs. Various evolution histories were created with usefulness pa- 
rameter a = 0.5. The extra space used by the Snapshot Index per object (ratio SR) is practically 
constant, independent of the lifespan distribution. There is a slight decrease of SR as LIFEMAX 
increases since then objects in our evolution examples tend to live longer, implying less object 
deletions, less block “deletions” and accordingly less copying and space consumption. The same 
behavior holds for ratio UR as an object birth is just added on the end of the current acceptor 
page, while an object deletion may produce a block “deletion” and object copying. Ratio QR 
is also practically independent from different LIFEMAX lengths. Again there were more than 
2000 different queries per each evolution example whose response times were averaged in order to 
compute QR. 

The performance of the Snapshot Index for different choices of K is depicted in Figure 10 
(with LIFEMAX = 500,a = 0.5 and T = 215). As expected, SR is independent of K. Ratio QR 
tends to decrease slightly with K. As K increases objects are better “clustered”, as the newly 
created objects are placed together in the same block; better clustering means faster query times. 
Similarly, there is a slight increase of ratio UR; this is expected as larger K means more changes per 
time instant and consequently more updating. Figure 11 shows the three ratios as functions of the 
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Fig. 10: Ratios SR,QR and CJR as functions of K (a = 0.5,T = 215, LIFEMAX = 500) 

maximal evolution length T. The performance is independent of T (with LIFEMAX = 500, a = 0.5 
and K = 10). 

The choice of the usefulness parameter a can tune the behavior of the Snapshot Index to match 
the requirements of a particular application. Clearly, higher values of a will provide faster query 
times in the expense of extra space. On the other end, if a becomes very small, only one copy of 
each record is used (SR tends to 1) and the query time increases. The value of a can be changed 
dynamically during the evolution to move to different operating points. Existing blocks will retain 
their organization, however, new blocks will be organized with the new value of a. In this way, 
important parts of the evolution can have faster access by allocating more space. 

5. MIGRATING DATA TO WRITEONCE OPTICAL DISKS 

As the magnetic disk space is limited and the amount of past data increases there is a need 
to migrate past states from the magnetic disk to a larger capacity medium such as a write-once 
optical disk. The write-once read-many (WORM) optical disk has the characteristic that after a 
block is written, its contents cannot change due to the error-correcting code that is written at the 
same time for the whole block. Thus data can be migrated only if it is not changed in the future. 
For simplicity we will assume that the block sizes in the two storage media are the same. We will 
present a migration procedure that results in a “hybrid” index, where past data can be transferred 
to a WORM disk while present data is on a magnetic disk. This procedure does not affect the 
performance characteristics of the Snapshot Index (except from the fact that access to an optical 
disk block is generally slower than access to a magnetic disk block). The migration can therefore 
be performed in parallel with the evolution input. 

In the past, migration of past data has been addressed in the Time-Split-B tree, the Time 

Index, and the Mixed-Media Indexes. As data becomes “old” it can be transferred to the WORM 
disk. There are two ways to achieve the separation of old and recent: (a) With the “manual” 
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Fig. 11: Ratios SR, QR and UR as functions of T (a = 0.5, LIFEMAX = 500, K = 10) 

approach, a process will vacuum all records that are “old” at the time of the process invocation; 
this vacuuming process can be invoked at any time. (b) With the “automated” approach, “deleted” 
pages are migrated to the optical disk due to a direct cause from the evolution process; thus when 
a page contains “dead” records it can be stored on the WORM disk. The total I/O and space 
consumption involved in the automated approach is likely to be smaller than in a vacuuming or 
manual method, since it is piggybacked on I/O which is necessary for index maintenance in any 
case. 

A Mixed-Media Index [15] uses the first approach (also called “asynchronous vacuumer” [34]). 
The other methods are using the second approach. The Time Index, “reserves” space on the 
WORM disk for the data of the magnetic disk. Since records are organized only according to 
birth time, if a record remains alive during the whole evolution, its page cannot be transferred 
to the WORM disk, thus the reserved space may be never used; this situation in the worst case 
can double the total space used by the method. The Time-Split B-tree migrates a page when it 
contains only past data, starting from the leaf pages. Since searching on the Time-Split B-tree is 
performed in a top-down fashion, a child page does not have to keep a pointer to its parent (as 
in a regular B-tree). This implies that when a page is transferred to the WORM it does not need 
to keep a pointer to its parent page (which is still on the magnetic disk) and thus no “reserved” 
space is needed. As a result the TSB migration occupies as much space as it would occupy at the 
magnetic disk. 

Searching in the Snapshot Index may go from a child block to its parent block (in the access 
forest), thus the parent should be accessible from the child. Consequently, a block should know 
the address of its parent when moved to a WORM disk. Our approach also “reserve3 space on 
the WORM, however, due to the copying procedure, we show that the unused reserved space can 
be limited to a controllable small fraction of the total space. 

We consider first the migration of blocks from the “access forest”. Conceptually, when a block 
is “deleted” from list L, it represents “past” information that could be stored on optical disk space 
(“past” in the sense that all the records in the block have been updated as “deleted”). Note that 
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the first block A ever “deleted” at’the top of the list becomes the first child under special block S 
and its position never changes. The spea block S can be represented in the optical disk as some 
special address. All fields in the SR record of block A have then their final value; i.e. , the parent 
of A is known, no left sibling exists and no new children will ever be added. This block and its 
whole subtree could thus be migrated to the WORM disk. After A is migrated, its WORM address 
is known and the whole subtree of A can also be migrated in preorder fashion. The same holds 
for every other block (and its subtree) which will ever become a child of special block S. A simple 
migration policy will thus send to the optical disk whole subtrees as they are attached under S in 
the access forest. 

Even though for most practical cases this policy would be enough (assuming that eventually 
all blocks will be “deleted” and finally move under S) it will not work if some block X in list L 
remains “useful,’ for a very long period of time; X will be attaining a large subtree of “deleted” 
blocks, i.e. blocks that were inserted in list L after X but “lived” less than X. Such a subtree 
cannot move under S as long as its root block X is still “alive” in list L. We propose a more general 
migrating policy that can migrate blocks from every subtree in the access forest. Our policy takes 
into advantage the random access characteristic of the optical disk. 

For the purposes of the following discussion, the SR record of every access forest block is aug- 
mented with two more fields: the optical disk address for the block itself (obid) and for the block’s 
parent (oparent). The policy can be stated as: whenever an “alive” block X gets its first child, it 
“reserves” an optical disk block for itself; this optical block address is written in the obid field of 
the SR record of X. Any block of the access forest can then be migrated to the optical disk as soon 
as it is “deleted”. We assume that if free optical blocks are requested by the migration procedure 
(for reservation or for writing) they are provided by the optical disk in increasing optical block-id 
order. This will ensure that a previously reserved optical block will not be reserved again. If ever 
block X gets deleted from list L, it will be written on the “reserved” optical disk block obid. 

Note that migration can also take place in “batched” form by delaying the migration and 
writing to the optical disk whole subtrees (in preorder fashion), but for simplicity we assume that 
when a magnetic block is “deleted” it is directly migrated to the optical disk. 

Suppose that during a query, the parent of an optical disk block has to be accessed. The method 
checks first if the parent block is in the same medium, i.e. if the parent block on the optical disk 
is written. If the parent block is empty, i.e. simply reserved, the search locates the parent block 
on the magnetic medium. The parent’s siblings on list L are located on the magnetic medium. 
Since a block’s children represent “deleted” blocks, they are searched on the optical disk. Hence 
it is possible to search through the access forest even though parts of it may already reside on the 
optical medium and parts on the magnetic one. The query time has the same I/O complexity as 
when the Snapshot Index uses only a magnetic medium. 

At any time t, the total number of optical blocks written or reserved by the Snapshot Index for 
the access forest blocks is the number of “deleted” blocks plus at most the number of the currently 
“alive” blocks of list L, i.e. , the optical disk space is O(n/b). More specifically, since an “alive” 
block reserves optical disk space only when it gets its first child, in the worst case each alive block 
may have exactly one child block, resulting in reserving l/2 times the actual space needed. This 
reservation ratio can be arbitrarily small if migration is “batched” in subtrees of size w. Then 
we reserve one optical disk block for each “alive” block whose subtree contains w blocks; in the 
worst case we would reserve l/(1 + w) times the actual space needed. Making an access forest 
block ready for migration requires a constant amount of work, thus the update processing remains 
constant per meta-evolution change. 

Searching array AT is done through its multilevel index in a top-down fashion. Thus no parent 
pointer is needed per page of this structure. Migration from the AT array and its multilevel index 
is done starting from the pages of AT. Recall that the U(n) changes of the whole evolution are 
kept in O(n/b) pages (blocks) in the access forest. Each page of the access forest is referenced 
from an entry of array AT, thus the size of array AT is 0(n/b2) pages. Whenever the entries of 
a page of array AT point fully to access forest data pages which have already been moved on the 
WORM disk, this page can also be moved on the WORM. (We assume that the corresponding 
array AT entry is updated when the access forest page is moved on the WORM. This implies that 
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each access forest page has a pointer to its corresponding entry in array AT. In addition, each 
entry of array AT keeps an additional field which marks if the corresponding page address is on 
the magnetic disk or on the WORM. Each page of array AT keeps also a counter that is updated 
when a corresponding access forest page is moved on the WORM). Similarly, for the multilevel 
index a page is moved only if it points to children pages that have already been moved. 

6. CONCLUSIONS 

Given the amount of data that has to be stored, access methods for transaction-time databases 
ought to be efficient. In this paper we have presented the Snapshot Index, an I/O-optimal access 
method for timeslice queries. The Snapshot Index is a method that can be easily implemented 
and uses O(n/b) space and O(log, n + Is(t)l/b) I/O for query time, where Is(t)1 denotes the size of 
the answer, n is the total number of changes in the evolution and B is the size of an I/O transfer. 
Furthermore, it has constant processing per change (in the expected amortized sense) and can thus 
“follow” the real-world evolution. An advantage of our approach is that its performance can be 
tuned using the usefulness parameter a to match particular application needs (trading space for 
query time and vice versa). In addition, it can naturally migrate past data to a write-once optical 
disk, while preserving the same performance bounds. More research is needed for access methods 
in bi-temporal databases; while a lot of work has already been done for indexes that support a 
single time axis, it is still an open problem if there exists a method that optimally support both 
time notions, i.e. , valid and transaction time. 
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