CS 512, Spring 2018, Handout 02

Finite Automata and Büchi Automata

Assaf Kfoury

23 January 2018

both kinds are defined in the same way: example 1

both kinds are defined in the same way: example 1

set of states $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
alphabet $\Sigma=\{A, B\}$
subset of initial states $Q_{0}=\left\{q_{0}\right\}$
subset of accept states $F=\left\{q_{2}\right\}$

both kinds are defined in the same way: example 1

$$
\begin{aligned}
& \text { set of states } Q=\left\{q_{0}, q_{1}, q_{2}\right\} \\
& \text { alphabet } \Sigma=\{A, B\} \\
& \text { subset of initial states } Q_{0}=\left\{q_{0}\right\} \\
& \text { subset of accept states } F=\left\{q_{2}\right\}
\end{aligned}
$$

- as nondeterministic finite automaton (NFA), call it \mathscr{A}_{1}, \mathscr{A}_{1} accepts the language:

$$
\mathscr{L}\left(\mathscr{A}_{1}\right)=\left\{x_{1} \cdots x_{n} B y \mid n \geqslant 0, x_{i} \in\{A, B\}, y \in\{A, B\}\right\}
$$

both kinds are defined in the same way: example 1

$$
\begin{aligned}
& \text { set of states } Q=\left\{q_{0}, q_{1}, q_{2}\right\} \\
& \text { alphabet } \Sigma=\{A, B\} \\
& \text { subset of initial states } Q_{0}=\left\{q_{0}\right\} \\
& \text { subset of accept states } F=\left\{q_{2}\right\}
\end{aligned}
$$

- as nondeterministic finite automaton (NFA), call it \mathscr{A}_{1},
\mathscr{A}_{1} accepts the language:

$$
\mathscr{L}\left(\mathscr{A}_{1}\right)=\left\{x_{1} \cdots x_{n} B y \mid n \geqslant 0, x_{i} \in\{A, B\}, y \in\{A, B\}\right\}
$$

- as nondeterministic Büchi automaton (NBA), call it $\mathscr{A}_{1, B}$, $\mathscr{A}_{1, B}$ accepts the ω-language:

$$
\mathscr{L}\left(\mathscr{A}_{1, B}\right)=\varnothing
$$

both kinds are defined in the same way: example 2

$$
\begin{aligned}
& \text { set of states } Q=\left\{r_{0}, r_{1}, r_{2}\right\} \\
& \text { alphabet } \Sigma=\{A, B\} \\
& \text { subset of initial states } Q_{0}=\left\{r_{0}\right\} \\
& \text { subset of accept states } F=\left\{r_{2}\right\}
\end{aligned}
$$

both kinds are defined in the same way: example 2

$$
\begin{aligned}
& \text { set of states } Q=\left\{r_{0}, r_{1}, r_{2}\right\} \\
& \text { alphabet } \Sigma=\{A, B\} \\
& \text { subset of initial states } Q_{0}=\left\{r_{0}\right\} \\
& \text { subset of accept states } F=\left\{r_{2}\right\}
\end{aligned}
$$

- as nondeterministic finite automaton (NFA), call it \mathscr{A}_{2}, \mathscr{A}_{2} accepts the language:

$$
\mathscr{L}\left(\mathscr{A}_{2}\right)=\left\{y B x_{1} \cdots x_{n} \mid n \geqslant 0, x_{i} \in\{A, B\}, y \in\{A, B\}\right\}
$$

also defined by the regular expression $(A+B) B(A+B)^{*}$.

both kinds are defined in the same way: example 2

$$
\begin{aligned}
& \text { set of states } Q=\left\{r_{0}, r_{1}, r_{2}\right\} \\
& \text { alphabet } \Sigma=\{A, B\} \\
& \text { subset of initial states } Q_{0}=\left\{r_{0}\right\} \\
& \text { subset of accept states } F=\left\{r_{2}\right\}
\end{aligned}
$$

- as nondeterministic finite automaton (NFA), call it \mathscr{A}_{2},
\mathscr{A}_{2} accepts the language:

$$
\mathscr{L}\left(\mathscr{A}_{2}\right)=\left\{y B x_{1} \cdots x_{n} \mid n \geqslant 0, x_{i} \in\{A, B\}, y \in\{A, B\}\right\}
$$

also defined by the regular expression $(A+B) B(A+B)^{*}$.

- as nondeterministic Büchi automaton (NBA), call it $\mathscr{A}_{2, B}$, $\mathscr{A}_{2, B}$ accepts the ω-language:

$$
\mathscr{L}\left(\mathscr{A}_{2, B}\right)=\left\{y B x_{0} x_{1} \cdots x_{i} \cdots \mid i \in \mathbb{N}, x_{i} \in\{A, B\}, y \in\{A, B\}\right\}
$$

also defined by the ω-regular expression $(A+B) B(A+B)^{\omega}$.

synchronous product: example 1+example 2 (continued)

the synchronous product of \mathscr{A}_{1} and \mathscr{A}_{2} (and also $\mathscr{A}_{1, B}$ and $\mathscr{A}_{2, B}$) looks as follows:

synchronous product: example 1+example 2 (continued)

the synchronous product of \mathscr{A}_{1} and \mathscr{A}_{2} (and also $\mathscr{A}_{1, B}$ and $\mathscr{A}_{2, B}$) looks as follows:

- Fact: $\mathscr{L}\left(\mathscr{A}_{1}\right) \cap \mathscr{L}\left(\mathscr{A}_{2}\right)=\varnothing$ if and only if $\mathscr{L}\left(\mathscr{A}_{1} \otimes \mathscr{A} 2\right)=\varnothing$.

powerset construction: example 1 (continued)

the powserset construction applied to NFA \mathscr{A}_{1} produces the deterministic finite automaton (DFA) below, call it \mathscr{A}_{3} :

$$
\begin{aligned}
& \text { set of states } Q= \\
& \left\{\left\{q_{0}\right\},\left\{q_{0}, q_{1}\right\},\left\{q_{0}, q_{2}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}\right\} \\
& \text { alphabet } \Sigma=\{A, B\} \\
& \text { subset of initial states } Q_{0}= \\
& \left\{\left\{q_{0}\right\}\right\} \\
& \text { subset of accept states } F= \\
& \left\{\left\{q_{0}, q_{2}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}\right\}
\end{aligned}
$$

powerset construction: example 1 (continued)

the powserset construction applied to NFA \mathscr{A}_{1} produces the deterministic finite automaton (DFA) below, call it \mathscr{A}_{3} :

$$
\begin{aligned}
& \text { set of states } Q= \\
& \left\{\left\{q_{0}\right\},\left\{q_{0}, q_{1}\right\},\left\{q_{0}, q_{2}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}\right\} \\
& \text { alphabet } \Sigma=\{A, B\} \\
& \text { subset of initial states } Q_{0}= \\
& \left\{\left\{q_{0}\right\}\right\} \\
& \text { subset of accept states } F= \\
& \left\{\left\{q_{0}, q_{2}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}\right\}
\end{aligned}
$$

- we can view above as a deterministic Büchi automaton (DBA), call it $\mathscr{A}_{3, B}$
- however, while $\mathscr{A}_{1} \equiv \mathscr{A}_{3}$, we have $\mathscr{A}_{1, B} \not \equiv \mathscr{A}_{3, B}$

(THIS PAGE INTENTIONALLY LEFT BLANK)

