CS 512, Spring 2018, Handout 02 Finite Automata and Büchi Automata

Assaf Kfoury

23 January 2018

set of states $Q=\{q_0,q_1,q_2\}$ alphabet $\Sigma=\{A,B\}$ subset of *initial* states $Q_0=\{q_0\}$ subset of *accept* states $F=\{q_2\}$

set of states $Q=\{q_0,q_1,q_2\}$ alphabet $\Sigma=\{A,B\}$ subset of *initial* states $Q_0=\{q_0\}$ subset of *accept* states $F=\{q_2\}$

▶ as nondeterministic finite automaton (NFA), call it \mathscr{A}_1 , \mathscr{A}_1 accepts the language:

$$\mathscr{L}(\mathscr{A}_1) = \left\{ x_1 \cdots x_n B y \mid n \geqslant 0, x_i \in \{A, B\}, y \in \{A, B\} \right\}$$

▶ as nondeterministic finite automaton (NFA), call it \mathscr{A}_1 , \mathscr{A}_1 accepts the language:

$$\mathscr{L}(\mathscr{A}_1) = \left\{ x_1 \cdots x_n B y \mid n \geqslant 0, x_i \in \{A, B\}, y \in \{A, B\} \right\}$$

 \blacktriangleright as nondeterministic Büchi automaton (NBA), call it $\mathscr{A}_{1,B},$ $\mathscr{A}_{1,B}$ accepts the $\omega\text{-language}$:

$$\mathscr{L}(\mathscr{A}_{1.B}) = \varnothing$$

set of states $Q = \{r_0, r_1, r_2\}$ alphabet $\Sigma = \{A, B\}$ subset of *initial* states $Q_0 = \{r_0\}$ subset of *accept* states $F = \{r_2\}$

set of states $Q = \{r_0, r_1, r_2\}$ alphabet $\Sigma = \{A, B\}$ subset of *initial* states $Q_0 = \{r_0\}$ subset of *accept* states $F = \{r_2\}$

as nondeterministic finite automaton (NFA), call it \$\mathscr{A}_2\$,
\$\mathscr{A}_2\$ accepts the language:

$$\mathscr{L}(\mathscr{A}_2) = \left\{ yBx_1 \cdots x_n \mid n \geqslant 0, x_i \in \{A, B\}, y \in \{A, B\} \right\}$$

also defined by the *regular expression* $(A + B)B(A + B)^*$.

set of states $Q=\{r_0,r_1,r_2\}$ alphabet $\Sigma=\{A,B\}$ subset of *initial* states $Q_0=\{r_0\}$ subset of *accept* states $F=\{r_2\}$

▶ as nondeterministic finite automaton (NFA), call it A₂, A₂ accepts the language:

$$\mathscr{L}(\mathscr{A}_2) = \left\{ yBx_1 \cdots x_n \mid n \geqslant 0, x_i \in \{A, B\}, y \in \{A, B\} \right\}$$

also defined by the *regular expression* $(A+B)B(A+B)^*$.

▶ as nondeterministic Büchi automaton (NBA), call it $\mathscr{A}_{2,B}$, $\mathscr{A}_{2,B}$ accepts the ω -language:

$$\mathcal{L}(\mathcal{A}_{2,B}) = \left\{ yBx_0 x_1 \cdots x_i \cdots \mid i \in \mathbb{N}, x_i \in \{A,B\}, y \in \{A,B\} \right\}$$

also defined by the ω -regular expression $(A+B)B(A+B)^{\omega}$.

synchronous product: example 1+example 2 (continued)

the synchronous product of \mathscr{A}_1 and \mathscr{A}_2 (and also $\mathscr{A}_{1,B}$ and $\mathscr{A}_{2,B}$) looks as follows:

synchronous product: **example 1**+**example 2** (continued)

the synchronous product of \mathscr{A}_1 and \mathscr{A}_2 (and also $\mathscr{A}_{1,B}$ and $\mathscr{A}_{2,B}$) looks as follows:

▶ Fact: $\mathscr{L}(\mathscr{A}_1) \cap \mathscr{L}(\mathscr{A}_2) = \varnothing$ if and only if $\mathscr{L}(\mathscr{A}_1 \otimes \mathscr{A}_2) = \varnothing$.

powerset construction: example 1 (continued)

the powserset construction applied to NFA \mathscr{A}_1 produces the deterministic finite automaton (DFA) below, call it \mathscr{A}_3 :

set of states
$$Q = \left\{\{q_0\}, \{q_0, q_1\}, \{q_0, q_2\}, \{q_0, q_1, q_2\}\right\}$$
 alphabet $\Sigma = \{A, B\}$ subset of *initial* states $Q_0 = \left\{\{q_0\}\right\}$ subset of *accept* states $F = \left\{\{q_0, q_2\}, \{q_0, q_1, q_2\}\right\}$

powerset construction: example 1 (continued)

the powserset construction applied to NFA \mathscr{A}_1 produces the deterministic finite automaton (DFA) below, call it \mathscr{A}_3 :


```
set of states Q=\left\{\{q_0\},\{q_0,q_1\},\{q_0,q_2\},\{q_0,q_1,q_2\}\right\} alphabet \Sigma=\{A,B\} subset of initial states Q_0=\left\{\{q_0\}\right\} subset of accept states F=\left\{\{q_0,q_2\},\{q_0,q_1,q_2\}\right\}
```

- \blacktriangleright we can view above as a deterministic Büchi automaton (DBA), call it $\mathscr{A}_{3,B}$
- ▶ however, while $\mathscr{A}_1 \equiv \mathscr{A}_3$, we have $\mathscr{A}_{1,B} \not\equiv \mathscr{A}_{3,B}$

(THIS PAGE INTENTIONALLY LEFT BLANK)