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from regular expressions to ω-regular expressions
I regular expressions E over alphabet Σ can be specified by a BNF definition:

E ::= ∅ | ε | A | E1 +E2 | E1 ·E2 | E∗ where A ∈ Σ

E+ is taken as an abbreviation of the regular expression E ·E∗.
I regular expressions E define regular languages L

(
E
)
, by induction:

L
(
∅
)
=∅, L

(
ε
)
= {ε}, L

(
A
)
= {A},

L
(
E1 +E2

)
= L

(
E1
)
∪L

(
E2
)
,

L
(
E1 ·E2

)
= L

(
E1
)
·L
(
E2
)
,

L
(
E∗
)
=
(
L
(
E
))∗

I every ω-regular expression G over alphabet Σ takes the form:

G = E1 · (F1)
ω + · · · + En · (Fn)

ω

where Ei and Fi are regular expressions with ε 6∈L
(
Fi
)
.

I ω-regular expressions G define ω-regular languages L
(
G
)
:

L
(
G
)
= L

(
E1
)
·L
(
F1
)ω ∪ ·· · ∪ L

(
En
)
·L
(
Fn
)ω
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closure properties of ω-regular expressions
I for all regular languages L1 and L2 over the alphabet Σ, we have:

(L1∪L2) is a regular language (closure under set union)

(L1∩L2) is a regular language (closure under set intersection)

(Σ∗−L1) is a regular language (closure under set complementation)

I for all ω-regular languages L1 and L2 over the alphabet Σ, we have:

(L1∪L2) is a ω-regular language (closure under set union)

(L1∩L2) is a ω-regular language (closure under set intersection)

(Σ∗−L1) is a ω-regular language (closure under set complementation)

More details on regular and ω-regular languages are in the handout

Finite Automata and Büchi Automata, click here to retrieve .
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linear-time properties
• a trace over a set AP (of atomic propositions) is an ω-word/sequence in (2AP)ω

• a linear-time property P specifies a set of admissible traces, i.e.,
the traces that a transition system must exhibit or is allowed to exhibit

• Traces(TS) is the set of traces that a transition system TS actually exhibits

• transition system TS satisfies property P, denoted TS |= P , iff Traces(TS)⊆ P

“TS satisfies LT property P if all of TS’s observable behaviors are admissible”

More details on the preceding defintions are in the handout
Properties of Transition Systems, click here to retrieve .
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invariant properties
• linear-time property P over AP is an invariant if P has the form:

P =
{

A0 A1 A2 · · · ∈ (2AP)ω

∣∣∣ forall j > 0 it holds that Aj |= Φ

}
where Φ is a propositional-logic formula over AP.

Φ is called an invariant condition of P.

• Fact: If TS = (S,Act,→, I,AP,L) is a transition system
and P is a linear-time property over AP with invariant condition Φ, then

TS |= P iff for every path π in TS, it holds that trace(π) ∈ P

iff for every state s in a path of TS, it holds that L(s) |= Φ

“Φ is satisfied by every initial state and

by every state reachable from an initial state along an execution of TS”
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safety properties
• a safety property may specify that an action/behavior/display can occur only after

a prior condition is fulfilled.

Example: at an automated teller machine (ATM), money can be withdrawn only
after a correct PIN is entered.

If the ATM allows money to be withdrawn without entering a correct PIN, we will
say the ATM is not safe to use.

• a safety property P specifies that, if a path violates P, then a finite prefix of P is
already violating it.

Example: money is withdrawn without entering a correct PIN before.

• a linear-time property P over AP is a safety property if for every “bad” trace

σ ∈
(
(2AP)ω −P

)
there is a finite prefix σ ′ of σ such that:

P ∩
{

σ
′′ ∈ (2AP)ω

∣∣∣ σ
′ is a prefix of σ

′′
}

= ∅

Though written differently, an equivalent definition of safety property is in Properties of Transition Systems click here .
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why liveness?
• safety properties specify that “something bad never happens”

• doing nothing easily fulfills a safety property, and will never lead to a “bad” situation

• safety properties are complemented by liveness properties ,
indicating that some progress is taking place

• liveness properties assert that “something good will happen eventually”

definition: for every σ ∈ (2AP)ω , define

pref(σ),
{

σ
′ ∈ (2AP)∗

∣∣∣ σ
′ is a finite prefix of σ

}

• a linear-time property P over AP is a liveness property if pref(P) = (2AP)∗.

“a linear-time property P is a liveness property if

every finite word in (2AP)∗ can be extended to an infinite word in P.”
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