
CS 512, Spring 2018, Handout 03

Omega-Regular Expressions,
Linear-Time Properties,

Safety, Liveness, Invariance

Assaf Kfoury

25 January 2018

Assaf Kfoury, CS 512, Spring 2018, Handout 03 page 1 of 14

from regular expressions to ω-regular expressions
I regular expressions E over alphabet Σ can be specified by a BNF definition:

E ::= ∅ | ε | A | E1 +E2 | E1 ·E2 | E∗ where A ∈ Σ

E+ is taken as an abbreviation of the regular expression E ·E∗.
I regular expressions E define regular languages L

(
E
)
, by induction:

L
(
∅
)
=∅, L

(
ε
)
= {ε}, L

(
A
)
= {A},

L
(
E1 +E2

)
= L

(
E1
)
∪L

(
E2
)
,

L
(
E1 ·E2

)
= L

(
E1
)
·L
(
E2
)
,

L
(
E∗
)
=
(
L
(
E
))∗

I every ω-regular expression G over alphabet Σ takes the form:

G = E1 · (F1)
ω + · · · + En · (Fn)

ω

where Ei and Fi are regular expressions with ε 6∈L
(
Fi
)
.

I ω-regular expressions G define ω-regular languages L
(
G
)
:

L
(
G
)
= L

(
E1
)
·L
(
F1
)ω ∪ ·· · ∪ L

(
En
)
·L
(
Fn
)ω

Assaf Kfoury, CS 512, Spring 2018, Handout 03 page 2 of 14

from regular expressions to ω-regular expressions
I regular expressions E over alphabet Σ can be specified by a BNF definition:

E ::= ∅ | ε | A | E1 +E2 | E1 ·E2 | E∗ where A ∈ Σ

E+ is taken as an abbreviation of the regular expression E ·E∗.
I regular expressions E define regular languages L

(
E
)
, by induction:

L
(
∅
)
=∅, L

(
ε
)
= {ε}, L

(
A
)
= {A},

L
(
E1 +E2

)
= L

(
E1
)
∪L

(
E2
)
,

L
(
E1 ·E2

)
= L

(
E1
)
·L
(
E2
)
,

L
(
E∗
)
=
(
L
(
E
))∗

I every ω-regular expression G over alphabet Σ takes the form:

G = E1 · (F1)
ω + · · · + En · (Fn)

ω

where Ei and Fi are regular expressions with ε 6∈L
(
Fi
)
.

I ω-regular expressions G define ω-regular languages L
(
G
)
:

L
(
G
)
= L

(
E1
)
·L
(
F1
)ω ∪ ·· · ∪ L

(
En
)
·L
(
Fn
)ω

Assaf Kfoury, CS 512, Spring 2018, Handout 03 page 3 of 14

closure properties of ω-regular expressions
I for all regular languages L1 and L2 over the alphabet Σ, we have:

(L1∪L2) is a regular language (closure under set union)

(L1∩L2) is a regular language (closure under set intersection)

(Σ∗−L1) is a regular language (closure under set complementation)

I for all ω-regular languages L1 and L2 over the alphabet Σ, we have:

(L1∪L2) is a ω-regular language (closure under set union)

(L1∩L2) is a ω-regular language (closure under set intersection)

(Σ∗−L1) is a ω-regular language (closure under set complementation)

More details on regular and ω-regular languages are in the handout

Finite Automata and Büchi Automata, click here to retrieve .

Assaf Kfoury, CS 512, Spring 2018, Handout 03 page 4 of 14

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents/Automata_and_Omega_Automata/finite_automata+buchi_automata.pdf

linear-time properties
• a trace over a set AP (of atomic propositions) is an ω-word/sequence in (2AP)ω

• a linear-time property P specifies a set of admissible traces, i.e.,
the traces that a transition system must exhibit or is allowed to exhibit

• Traces(TS) is the set of traces that a transition system TS actually exhibits

• transition system TS satisfies property P, denoted TS |= P , iff Traces(TS)⊆ P

“TS satisfies LT property P if all of TS’s observable behaviors are admissible”

More details on the preceding defintions are in the handout
Properties of Transition Systems, click here to retrieve .

Assaf Kfoury, CS 512, Spring 2018, Handout 03 page 5 of 14

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents/Model_Checking/linear-time+regular_properties.pdf

invariant properties
• linear-time property P over AP is an invariant if P has the form:

P =
{

A0 A1 A2 · · · ∈ (2AP)ω

∣∣∣ forall j > 0 it holds that Aj |= Φ

}
where Φ is a propositional-logic formula over AP.

Φ is called an invariant condition of P.

• Fact: If TS = (S,Act,→, I,AP,L) is a transition system
and P is a linear-time property over AP with invariant condition Φ, then

TS |= P iff for every path π in TS, it holds that trace(π) ∈ P

iff for every state s in a path of TS, it holds that L(s) |= Φ

“Φ is satisfied by every initial state and

by every state reachable from an initial state along an execution of TS”

Assaf Kfoury, CS 512, Spring 2018, Handout 03 page 6 of 14

invariant properties
• linear-time property P over AP is an invariant if P has the form:

P =
{

A0 A1 A2 · · · ∈ (2AP)ω

∣∣∣ forall j > 0 it holds that Aj |= Φ

}
where Φ is a propositional-logic formula over AP.

Φ is called an invariant condition of P.

• Fact: If TS = (S,Act,→, I,AP,L) is a transition system
and P is a linear-time property over AP with invariant condition Φ, then

TS |= P iff for every path π in TS, it holds that trace(π) ∈ P

iff for every state s in a path of TS, it holds that L(s) |= Φ

“Φ is satisfied by every initial state and

by every state reachable from an initial state along an execution of TS”

Assaf Kfoury, CS 512, Spring 2018, Handout 03 page 7 of 14

safety properties
• a safety property may specify that an action/behavior/display can occur only after

a prior condition is fulfilled.

Example: at an automated teller machine (ATM), money can be withdrawn only
after a correct PIN is entered.

If the ATM allows money to be withdrawn without entering a correct PIN, we will
say the ATM is not safe to use.

• a safety property P specifies that, if a path violates P, then a finite prefix of P is
already violating it.

Example: money is withdrawn without entering a correct PIN before.

• a linear-time property P over AP is a safety property if for every “bad” trace

σ ∈
(
(2AP)ω −P

)
there is a finite prefix σ ′ of σ such that:

P ∩
{

σ
′′ ∈ (2AP)ω

∣∣∣ σ
′ is a prefix of σ

′′
}

= ∅

Though written differently, an equivalent definition of safety property is in Properties of Transition Systems click here .

Assaf Kfoury, CS 512, Spring 2018, Handout 03 page 8 of 14

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents/Model_Checking/linear-time+regular_properties.pdf

safety properties
• a safety property may specify that an action/behavior/display can occur only after

a prior condition is fulfilled.

Example: at an automated teller machine (ATM), money can be withdrawn only
after a correct PIN is entered.

If the ATM allows money to be withdrawn without entering a correct PIN, we will
say the ATM is not safe to use.

• a safety property P specifies that, if a path violates P, then a finite prefix of P is
already violating it.

Example: money is withdrawn without entering a correct PIN before.

• a linear-time property P over AP is a safety property if for every “bad” trace

σ ∈
(
(2AP)ω −P

)
there is a finite prefix σ ′ of σ such that:

P ∩
{

σ
′′ ∈ (2AP)ω

∣∣∣ σ
′ is a prefix of σ

′′
}

= ∅

Though written differently, an equivalent definition of safety property is in Properties of Transition Systems click here .

Assaf Kfoury, CS 512, Spring 2018, Handout 03 page 9 of 14

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents/Model_Checking/linear-time+regular_properties.pdf

safety properties
• a safety property may specify that an action/behavior/display can occur only after

a prior condition is fulfilled.

Example: at an automated teller machine (ATM), money can be withdrawn only
after a correct PIN is entered.

If the ATM allows money to be withdrawn without entering a correct PIN, we will
say the ATM is not safe to use.

• a safety property P specifies that, if a path violates P, then a finite prefix of P is
already violating it.

Example: money is withdrawn without entering a correct PIN before.

• a linear-time property P over AP is a safety property if for every “bad” trace

σ ∈
(
(2AP)ω −P

)
there is a finite prefix σ ′ of σ such that:

P ∩
{

σ
′′ ∈ (2AP)ω

∣∣∣ σ
′ is a prefix of σ

′′
}

= ∅

Though written differently, an equivalent definition of safety property is in Properties of Transition Systems click here .

Assaf Kfoury, CS 512, Spring 2018, Handout 03 page 10 of 14

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents/Model_Checking/linear-time+regular_properties.pdf

why liveness?
• safety properties specify that “something bad never happens”

• doing nothing easily fulfills a safety property, and will never lead to a “bad” situation

• safety properties are complemented by liveness properties ,
indicating that some progress is taking place

• liveness properties assert that “something good will happen eventually”

definition: for every σ ∈ (2AP)ω , define

pref(σ),
{

σ
′ ∈ (2AP)∗

∣∣∣ σ
′ is a finite prefix of σ

}

• a linear-time property P over AP is a liveness property if pref(P) = (2AP)∗.

“a linear-time property P is a liveness property if

every finite word in (2AP)∗ can be extended to an infinite word in P.”

Assaf Kfoury, CS 512, Spring 2018, Handout 03 page 11 of 14

why liveness?
• safety properties specify that “something bad never happens”

• doing nothing easily fulfills a safety property, and will never lead to a “bad” situation

• safety properties are complemented by liveness properties ,
indicating that some progress is taking place

• liveness properties assert that “something good will happen eventually”

definition: for every σ ∈ (2AP)ω , define

pref(σ),
{

σ
′ ∈ (2AP)∗

∣∣∣ σ
′ is a finite prefix of σ

}

• a linear-time property P over AP is a liveness property if pref(P) = (2AP)∗.

“a linear-time property P is a liveness property if

every finite word in (2AP)∗ can be extended to an infinite word in P.”

Assaf Kfoury, CS 512, Spring 2018, Handout 03 page 12 of 14

why liveness?
• safety properties specify that “something bad never happens”

• doing nothing easily fulfills a safety property, and will never lead to a “bad” situation

• safety properties are complemented by liveness properties ,
indicating that some progress is taking place

• liveness properties assert that “something good will happen eventually”

definition: for every σ ∈ (2AP)ω , define

pref(σ),
{

σ
′ ∈ (2AP)∗

∣∣∣ σ
′ is a finite prefix of σ

}

• a linear-time property P over AP is a liveness property if pref(P) = (2AP)∗.

“a linear-time property P is a liveness property if

every finite word in (2AP)∗ can be extended to an infinite word in P.”

Assaf Kfoury, CS 512, Spring 2018, Handout 03 page 13 of 14

(THIS PAGE INTENTIONALLY LEFT BLANK)

Assaf Kfoury, CS 512, Spring 2018, Handout 03 page 14 of 14

