CS 512, Spring 2018, Handout 04 Regular Safety Properties

Assaf Kfoury

30 January 2018 (Last modified: 1 February 2018)

Assaf Kfoury, CS 512, Spring 2018, Handout 04

safety properties in general (once more)

• LT property *P* over AP is a safety property if for every bad ω -trace $\sigma \in ((2^{AP})^{\omega} - P)$ there is a finite prefix σ' of σ such that:

$$P \, \cap \, \left\{ \, \sigma'' \in (2^{\mathsf{AP}})^{\omega} \; \middle| \; \sigma' \text{ is a prefix of } \sigma'' \, \right\} \; = \; \varnothing$$

i.e., every ω -extension σ'' of the prefix σ' is a bad ω -trace.

safety properties in general (once more)

• LT property *P* over AP is a safety property if for every bad ω -trace $\sigma \in ((2^{AP})^{\omega} - P)$ there is a finite prefix σ' of σ such that:

$$P \cap \left\{ \left. \sigma'' \in (2^{\mathsf{AP}})^{\omega} \right| \sigma' \text{ is a prefix of } \sigma''
ight\} \ = \ arnothing$$

i.e., every ω -extension σ'' of the prefix σ' is a bad ω -trace.

- Equivalently: LT property P over AP is a safety property if there is a set of finite words BadPref(P) ⊆ (2^{AP})* such that:
 - 1. For every finite $\sigma \in \text{BadPref}(P)$ and every infinite $\sigma' \in (2^{\text{AP}})^{\omega}$, it holds that $\sigma \sigma'$ is a bad ω -trace, *i.e.*, $\sigma \sigma' \in ((2^{\text{AP}})^{\omega} - P)$.
 - 2. For every bad ω -trace $\sigma'' \in ((2^{AP})^{\omega} P)$, there is a $\sigma \in \text{BadPref}(P)$ such that σ is a prefix of σ'' .

safety properties in general (once more)

• LT property *P* over AP is a safety property if for every bad ω -trace $\sigma \in ((2^{AP})^{\omega} - P)$ there is a finite prefix σ' of σ such that:

$$P \, \cap \, \left\{ \, \sigma'' \in (2^{\mathsf{AP}})^{\omega} \, \middle| \, \sigma' \text{ is a prefix of } \sigma'' \, \right\} \, = \, \varnothing$$

i.e., every ω -extension σ'' of the prefix σ' is a bad ω -trace.

- Equivalently: LT property P over AP is a safety property if there is a set of finite words BadPref(P) ⊆ (2^{AP})* such that:
 - 1. For every finite $\sigma \in \text{BadPref}(P)$ and every infinite $\sigma' \in (2^{\text{AP}})^{\omega}$, it holds that $\sigma \sigma'$ is a bad ω -trace , *i.e.*, $\sigma \sigma' \in ((2^{\text{AP}})^{\omega} - P)$.
 - 2. For every bad ω -trace $\sigma'' \in ((2^{AP})^{\omega} P)$, there is a $\sigma \in \text{BadPref}(P)$ such that σ is a prefix of σ'' .
- Instead of BadPref(P) (not unique) use MinBadPref(P) (uniquely defined). (See [PMC, Definition3.22, page 112] for how to pass from BadPref(P) to MinBadPref(P).)

More on the preceding in the handout "Properties of Transition Systems" click here and in the book [PMC].

regular safety properties

- **Definition:** safety property *P* over AP is a regular safety property iff a set BadPref(*P*) of bad prefixes is a regular language over 2^{AP} .
- Fact: safety property *P* over AP is a regular safety property ⇔
 the set MinBadPref(*P*) of minimal bad prefixes is a regular language over 2^{AP} [PMC, Lemma 4.12, page 161].
- Fact: every invariant property *P* over AP is a regular safety property [PMC, page 159-160].
- Fact: not every LT safety property *P* over AP is regular [PMC, Example 4.15, page 163].
- Fact: verifying whether transition system TS satisfies regular safety property *P*, *i.e.*, TS ⊨ *P*, can be reduced to a reachability problem in the product TS ⊗ 𝔄 where 𝔄 is an appropriately defined NFA 𝔄 from MinBadPref(*P*). [PMC, Definition 4.16, page 165, Theorem 4.19, page 167].

(THIS PAGE INTENTIONALLY LEFT BLANK)