CS 512, Spring 2018, Handout 06
Linear Temporal Logic (LTL)

Assaf Kfoury

4 February 2018

Assaf Kfoury, CS 512, Spring 2018, Handout 06 page 1 of 13

reading assignment

e [PMC, Section 5.1, pages 229-270] : This is a long chapter, more than 40 pages.

Start from the very beginning and focus on the motivation and examples.
[LCS, Sections 3.1 and 3.2, pages 172-186] : There is considerable overlap with

the material in [PMC], from a somewhat different perspective.

Differences in the syntax of LTL between [PMC] and [LCS]:

’ modality ‘ where in [PMC] ‘ where in [LCS] ‘
“next” O, page 231 X, page 176
“until” U, page 231 U, page 176
“eventually” | ¢, page 232 F, page 176
“always” 0, page 232 G, page 176

More on differences in the syntax in [PMC, Remark 5.16, page 247].

e We follow notation and conventions of [PMC] rather than [LCS] — except that
we use “U” instead of “U” to avoid any possible confusion with set union “U”.

Assaf Kfoury, CS 512, Spring 2018, Handout 06

page 2 of 13

reading assignment

[PMC, Section 5.1, pages 229-270] : This is a long chapter, more than 40 pages.
Start from the very beginning and focus on the motivation and examples.

[LCS, Sections 3.1 and 3.2, pages 172-186] : There is considerable overlap with
the material in [PMC], from a somewhat different perspective.

Differences in the syntax of LTL between [PMC] and [LCS]:

’ modality ‘ where in [PMC] ‘ where in [LCS] ‘
“next” O, page 231 X, page 176
“until” U, page 231 U, page 176
“eventually” | ¢, page 232 F, page 176
“always” 0, page 232 G, page 176

More on differences in the syntax in [PMC, Remark 5.16, page 247].

We follow notation and conventions of [PMC] rather than [LCS] — except that

we use “U” instead of “U” to avoid any possible confusion with set union “U”.

In the context of temporal logics (e.g., all those considered in [PMC] and those in
[LCS, Chap 3]), {0, O} are usually called temporal connectives or operators .
In the context of modal logics (e.g., those in [LCS, Chap 5]), {0, O} are usually
called modal connectives or operators .

They are very close, but not identical, in the way {0, O} are used as temporal and
modal connectives.

Assaf Kfoury, CS 512, Spring 2018, Handout 06 page 3 of 13

linear temporal logic (LTL)

e syntax of LTL over the set AP of atomic propositions [PMC, Def. 5.1, p. 231] :
p,) == truel|a|-p|p AV propositional logic
| O¢p “next "
| Uy “p until 9"

Assaf Kfoury, CS 512, Spring 2018, Handout 06 page 4 of 13

linear temporal logic (LTL)

e syntax of LTL over the set AP of atomic propositions [PMC, Def. 5.1, p. 231] :

p,) == truel|a|-p|p AV propositional logic
| O¢ “next ¢”
| Uy “p until 9"

e syntax of LTL over the set AP, with more connectives [LCS, pp. 175-176] :

w,) u= true|al-@|pAY|pVY|p—|--- propositional logic
| Op “next "
| Uy “ until ¢”
| O “eventually ¢”
| Ogp “always ”
|

Assaf Kfoury, CS 512, Spring 2018, Handout 06 page 5 of 13

linear temporal logic (LTL)

e syntax of LTL over the set AP of atomic propositions [PMC, Def. 5.1, p. 231] :

p,) == truel|a|-p|p AV propositional logic
| O¢ “next ¢”
| Uy “p until 9"

e syntax of LTL over the set AP, with more connectives [LCS, pp. 175-176] :

w,) u= true|al-@|pAY|pVY|p—|--- propositional logic
| Op “next "
| Uy “ until ¢”
| Op “eventually ¢”
| Ogp “always ”
|

e In [PMC]/ [LCS] “V”, “=”, etc., are shorthand for / equivalent to combinations
of “A” and “=", and “¢”, “O0", etc., are shorthand for / equivalent to combinations
of “U” and “=”, as shown in [PMC, p. 232] / [LCS, pp. 184-187] .

Assaf Kfoury, CS 512, Spring 2018, Handout 06 page 6 of 13

linear temporal logic (LTL)
precedence rules to simplify syntax and omit matching parentheses:

e unary connectives , both logical and temporal, bind most tightly,

binary temporal connectives {U, ...} bind more tightly than binary logical
connectives {A,V, —, ...},

e Dinary logical connectives {A, V} bind more tightly than {—1},

e in case of doubt, use matching parentheses.

Assaf Kfoury, CS 512, Spring 2018, Handout 06 page 7 of 13

linear temporal logic (LTL)
precedence rules to simplify syntax and omit matching parentheses:

e unary connectives , both logical and temporal, bind most tightly,

binary temporal connectives {U, ...} bind more tightly than binary logical
connectives {A,V, —, ...},

e Dinary logical connectives {A, V} bind more tightly than {—1},
e in case of doubt, use matching parentheses.

intuitive and helpful readings of temporal/modal connectives:

e O : “eventually p” (temporal), “possibly ¢” (modality), “in some future state”

e [y : “always ¢” (temporal), “necessarily ¢” (modality), “in all future states”

Assaf Kfoury, CS 512, Spring 2018, Handout 06 page 8 of 13

linear temporal logic (LTL)
precedence rules to simplify syntax and omit matching parentheses:
e unary connectives , both logical and temporal, bind most tightly,

e binary temporal connectives {U, . ..} bind more tightly than binary logical
connectives {A,V, —, ...},

e Dinary logical connectives {A, V} bind more tightly than {—1},
e in case of doubt, use matching parentheses.

intuitive and helpful readings of temporal/modal connectives:

e O : “eventually p” (temporal), “possibly ¢” (modality), “in some future state”

e [y : “always ¢” (temporal), “necessarily ¢” (modality), “in all future states”
example: let ™ £ 59 — 51 — s2 — - - - be an infinite path in a transition system:
e OO : “infinitely often ¢,’

“Vi 3Jj (j > i and ¢ holds at state s;)” oralso “3j (¢ holds at state s;)”

Assaf Kfoury, CS 512, Spring 2018, Handout 06 page 9 of 13

linear temporal logic (LTL)
precedence rules to simplify syntax and omit matching parentheses:
e unary connectives , both logical and temporal, bind most tightly,

e binary temporal connectives {U, . ..} bind more tightly than binary logical
connectives {A,V, —, ...},

e Dinary logical connectives {A, V} bind more tightly than {—1},

e in case of doubt, use matching parentheses.
intuitive and helpful readings of temporal/modal connectives:

e O : “eventually p” (temporal), “possibly ¢” (modality), “in some future state”

e [y : “always ¢” (temporal), “necessarily ¢” (modality), “in all future states”
example: let ™ £ 59 — 51 — s2 — - - - be an infinite path in a transition system:

e OO : “infinitely often ¢,’

“Vi 3j (j > i and ¢ holds at state s;)” or also Oﬂoj (o holds at state s;)”
e (OOp : “eventually forever ¢,”

“JiVj (j > i implies o holds at state s;)” oralso “Vj (¢ holds at state s;)”

Assaf Kfoury, CS 512, Spring 2018, Handout 06 page 10 of 13

formal semantics of LTL

e Satisfaction of LTL formulas is relative to w-words o £ AgA14, - - - € (2°F)¥.
Using the notation of [PMC, page 235], we define for every j > 0:

olj...] 2 AjAjt1Ajif2 - -+ (the suffix of o starting at 4))

e Wewrite o = ¢ andsay “o satisfies (or models, or makes true) the formula ¢”

e Givenafixed 0 £ ApA 1A, - -- € (2°F)¥,
satisfaction of LTL formulas ¢ by o is defined by induction on ¢:

1. o}=true
2. okFa iff ae€ Ao
3. oE—yp iff ol~e

4. cEpANY iff cEpando EY

Assaf Kfoury, CS 512, Spring 2018, Handout 06 page 11 of 13

formal semantics of LTL
e Satisfaction of LTL formulas is relative to w-words o £ AgA14, - - - € (2°F)¥.
Using the notation of [PMC, page 235], we define for every j > 0:

olj...] 2 AjAjt1Ajif2 - -+ (the suffix of o starting at 4))

e Wewrite o = ¢ andsay “o satisfies (or models, or makes true) the formula ¢”

e Givenafixed 0 £ ApA 1A, - -- € (2°F)¥,
satisfaction of LTL formulas ¢ by o is defined by induction on ¢:

1. o}=true

2. oFa iff ac Ao

3. oE—yp iff ol~e

4. olE=peANY iff ol=pando =9

5. o O ifft o[l..]=A1AAs-- =

6. oclE=pUy iff thereisj > Osuchthato[j...] =9
andolfi...] = pforevery 0 <i<j

Assaf Kfoury, CS 512, Spring 2018, Handout 06 page 12 of 13

(THIS PAGE INTENTIONALLY LEFT BLANK)

Assaf Kfoury, CS 512, Spring 2018, Handout 06 page 13 of 13

