CS 512, Spring 2018, Handout 07 Practical Patterns of Specifications with LTL

Assaf Kfoury

7 February 2018

Assaf Kfoury, CS 512, Spring 2018, Handout 07

page 1 of 16

formal semantics of LTL (continuation)

• The satisfaction relation over ω -words $\sigma \in (2^{AP})^{\omega}$ is defined in Handout 06:

$$\operatorname{Words}(\varphi) \triangleq \Big\{ \sigma \in (2^{\operatorname{AP}})^{\omega} \mid \sigma \models \varphi \Big\},$$

which is the set of all ω -words in $(2^{AP})^{\omega}$ satisfying the LTL formula φ .

formal semantics of LTL (continuation)

• The satisfaction relation over ω -words $\sigma \in (2^{AP})^{\omega}$ is defined in Handout 06:

$$\textit{Words}(\varphi) \, \triangleq \, \Big\{ \, \sigma \in (2^{\mathsf{AP}})^{\omega} \, \Big| \, \sigma \models \varphi \, \Big\},$$

which is the set of all $\omega\text{-words}$ in $(2^{\rm AP})^\omega$ satisfying the LTL formula $\varphi.$

- [PMC, Def 5.7, page 237]: Let TS \triangleq (*S*, Act, \rightarrow , *I*, AP, *L*) be a transition system without terminal states, and φ a formula of LTL over AP.
 - The satisfaction relation over (infinite) paths π of TS is defined by:

$$\pi \models \varphi$$
 iff trace $(\pi) \models \varphi$

• The satisfaction relation over states *s* of TS is defined by:

$$\begin{split} s \models \varphi & \text{iff} \quad \text{for every path } \pi \text{ starting at } s \text{ we have } \frac{\text{trace}(\pi) \models \varphi}{\text{iff}} & \text{for every } \sigma \in \textit{Traces}(s) \text{ we have } \sigma \models \varphi \end{split}$$

► TS satisfies
$$\varphi$$
, denoted TS $\models \varphi$, iff *Traces*(TS) \subseteq *Words*(φ).

$$\blacktriangleright \varphi \triangleq \Box(\mathsf{started} \to \mathsf{ready})$$

if $\pi \models \varphi$, then in every state along π , "ready" is true whenever "started" is true

$$\blacktriangleright \varphi \triangleq \Box(\mathsf{started} \to \mathsf{ready})$$

if $\pi \models \varphi$, then in every state along π , "ready" is true whenever "started" is true

 $\blacktriangleright \varphi \triangleq \Box (\text{requested} \rightarrow \Diamond \text{ acknowledged})$

if $\pi \models \varphi$, then in every state along π , if a "request" (of some resource) occurs, it will eventually be "acknowledged"

$$\blacktriangleright \varphi \triangleq \Box(\mathsf{started} \to \mathsf{ready})$$

if $\pi \models \varphi$, then in every state along π , "ready" is true whenever "started" is true

 $\blacktriangleright \varphi \triangleq \Box (\mathsf{requested} \to \Diamond \mathsf{acknowledged})$

if $\pi \models \varphi$, then in every state along π , if a "request" (of some resource) occurs, it will eventually be "acknowledged"

 $\blacktriangleright \varphi \triangleq \Box \diamondsuit enabled$

if $\pi\models\varphi,$ then π makes "enabled" true infinitely often

$$\blacktriangleright \varphi \triangleq \Box(\mathsf{started} \to \mathsf{ready})$$

if $\pi \models \varphi$, then in every state along π , "ready" is true whenever "started" is true

 $\blacktriangleright \varphi \triangleq \Box (\mathsf{requested} \to \Diamond \mathsf{acknowledged})$

if $\pi \models \varphi$, then in every state along π , if a "request" (of some resource) occurs, it will eventually be "acknowledged"

• $\varphi \triangleq \Box \Diamond$ enabled

if $\pi \models \varphi$, then π makes "enabled" true infinitely often

 $\blacktriangleright \quad \varphi \triangleq \ \Diamond \ \Box \ {\rm deadlock}$

if $\pi \models \varphi$, then π will eventually make "deadlock" continuously true

$$\blacktriangleright \varphi \triangleq \Box(\mathsf{started} \to \mathsf{ready})$$

if $\pi \models \varphi$, then in every state along π , "ready" is true whenever "started" is true

 $\blacktriangleright | \varphi \triangleq \Box (\text{requested} \rightarrow \Diamond \text{ acknowledged})$

if $\pi \models \varphi$, then in every state along π , if a "request" (of some resource) occurs, it will eventually be "acknowledged"

$$\blacktriangleright \varphi \triangleq \Box \diamondsuit enabled$$

if $\pi \models \varphi$, then π makes "enabled" true infinitely often

 $\blacktriangleright \varphi \triangleq \Diamond \Box \text{ deadlock}$

if $\pi \models \varphi$, then π will eventually make "deadlock" continuously true

• $\varphi \triangleq \Box \Diamond$ enabled $\rightarrow \Box \Diamond$ running

if $\pi\models\varphi,$ then if "enabled" occurs infinitely often along $\pi,$ then "running" occurs infinitely often along π

practical patterns of specifications with LTL (not in [LCS])

• $\varphi \triangleq \Box \neg (\mathsf{read} \land \mathsf{write})$

if $\pi\models\varphi,$ then in every state along $\pi,$ not both "read" and "write" are simultaneously true

practical patterns of specifications with LTL (not in [LCS])

$$\blacktriangleright \varphi \triangleq \Box \neg (\mathsf{read} \land \mathsf{write})$$

if $\pi\models\varphi,$ then in every state along $\pi,$ not both "read" and "write" are simultaneously true

▶
$$\varphi \triangleq \Box$$
 (requested \rightarrow (requested \blacksquare granted

if $\pi \models \varphi$, then in every state along π , if a "request" (of some resource) occurs, then the "request" will persist in every subsequent state until it is "granted"

ω -regular properties versus LTL properties

• Fact: For every formula φ of LTL (over AP) there exists an NBA \mathcal{A}_{φ} such that

1. $Words(\varphi) = \mathscr{L}(\mathcal{A}_{\varphi})$, and

2. \mathcal{A}_{φ} can be constructed in time and space $2^{\mathcal{O}(n \log n)}$ where $n = |\varphi|$.

ω -regular properties versus LTL properties

• Fact: For every formula φ of LTL (over AP) there exists an NBA \mathcal{A}_{φ} such that

1. $Words(\varphi) = \mathscr{L}(\mathcal{A}_{\varphi})$, and

2. \mathcal{A}_{φ} can be constructed in time and space $2^{\mathcal{O}(n \log n)}$ where $n = |\varphi|$.

• Corollary: Every formula of LTL expresses an ω -regular property .

ω -regular properties versus LTL properties

• Fact: For every formula φ of LTL (over AP) there exists an NBA \mathcal{A}_{φ} such that

1. $Words(\varphi) = \mathscr{L}(\mathcal{A}_{\varphi})$, and

- 2. \mathcal{A}_{φ} can be constructed in time and space $2^{\mathcal{O}(n \log n)}$ where $n = |\varphi|$.
- Corollary: Every formula of LTL expresses an ω -regular property .
- However, not every ω -regular property can be expressed by a formula of LTL.

Example: There is no formula φ of LTL such that $Words(\varphi) = P$ where P is:

$$P \triangleq \left\{ A_0 A_1 A_2 \cdots \in (2^{\{a\}})^{\omega} \mid a \in A_{2i} \text{ for every } i \ge 0 \right\}.$$

But there exists an NBA A such that $\mathscr{L}(A) = P$. (Why? See Problem 4 in Assignment #2.)

many properties not expressible in LTL [LCS,Sect 3.2.3]

Many properties of interest assert *the existence of a path* satisfying a certain condition, and such properties cannot be expressed in LTL. Examples of such properties:

- from every state it is possible to reach a reset state, i.e., for every state s, there is a path from s that enters a state s' where "reset" is true.
- one possible behavior of the elevator is to remain idle on the third floor, i.e., from the state in which it is on the third floor, there is a path that keeps it there.

(THIS PAGE INTENTIONALLY LEFT BLANK)