
CS 512, Spring 2018, Handout 07

Practical Patterns of Specifications with LTL

Assaf Kfoury

7 February 2018

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 1 of 16

formal semantics of LTL (continuation)

• The satisfaction relation over ω-words σ ∈ (2AP)ω is defined in Handout 06:

Words(ϕ) ,
{
σ ∈ (2AP)ω

∣∣∣ σ |= ϕ
}
,

which is the set of all ω-words in (2AP)ω satisfying the LTL formula ϕ.

• [PMC, Def 5.7, page 237]: Let TS , (S,Act,→, I,AP, L) be a transition system
without terminal states, and ϕ a formula of LTL over AP.

I The satisfaction relation over (infinite) paths π of TS is defined by:

π |= ϕ iff trace(π) |= ϕ

I The satisfaction relation over states s of TS is defined by:

s |= ϕ iff for every path π starting at s we have trace(π) |= ϕ

iff for every σ ∈ Traces(s) we have σ |= ϕ

I TS satisfies ϕ , denoted TS |= ϕ, iff Traces(TS) ⊆ Words(ϕ).

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 2 of 16

formal semantics of LTL (continuation)

• The satisfaction relation over ω-words σ ∈ (2AP)ω is defined in Handout 06:

Words(ϕ) ,
{
σ ∈ (2AP)ω

∣∣∣ σ |= ϕ
}
,

which is the set of all ω-words in (2AP)ω satisfying the LTL formula ϕ.

• [PMC, Def 5.7, page 237]: Let TS , (S,Act,→, I,AP, L) be a transition system
without terminal states, and ϕ a formula of LTL over AP.

I The satisfaction relation over (infinite) paths π of TS is defined by:

π |= ϕ iff trace(π) |= ϕ

I The satisfaction relation over states s of TS is defined by:

s |= ϕ iff for every path π starting at s we have trace(π) |= ϕ

iff for every σ ∈ Traces(s) we have σ |= ϕ

I TS satisfies ϕ , denoted TS |= ϕ, iff Traces(TS) ⊆ Words(ϕ).

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 3 of 16

practical patterns of specifications with LTL [LCS,Sect. 3.2.3]

I ϕ , 2(started→ ready)

if π |= ϕ, then in every state along π, “ready” is true whenever “started” is true

I ϕ , 2(requested→ ♦ acknowledged)

if π |= ϕ, then in every state along π, if a “request” (of some resource) occurs, it
will eventually be “acknowledged”

I ϕ , 2♦ enabled

if π |= ϕ, then π makes “enabled” true infinitely often

I ϕ , ♦2 deadlock

if π |= ϕ, then π will eventually make “deadlock” continuously true

I ϕ , 2♦ enabled→ 2♦ running

if π |= ϕ, then if “enabled” occurs infinitely often along π, then “running” occurs
infinitely often along π

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 4 of 16

practical patterns of specifications with LTL [LCS,Sect. 3.2.3]

I ϕ , 2(started→ ready)

if π |= ϕ, then in every state along π, “ready” is true whenever “started” is true

I ϕ , 2(requested→ ♦ acknowledged)

if π |= ϕ, then in every state along π, if a “request” (of some resource) occurs, it
will eventually be “acknowledged”

I ϕ , 2♦ enabled

if π |= ϕ, then π makes “enabled” true infinitely often

I ϕ , ♦2 deadlock

if π |= ϕ, then π will eventually make “deadlock” continuously true

I ϕ , 2♦ enabled→ 2♦ running

if π |= ϕ, then if “enabled” occurs infinitely often along π, then “running” occurs
infinitely often along π

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 5 of 16

practical patterns of specifications with LTL [LCS,Sect. 3.2.3]

I ϕ , 2(started→ ready)

if π |= ϕ, then in every state along π, “ready” is true whenever “started” is true

I ϕ , 2(requested→ ♦ acknowledged)

if π |= ϕ, then in every state along π, if a “request” (of some resource) occurs, it
will eventually be “acknowledged”

I ϕ , 2♦ enabled

if π |= ϕ, then π makes “enabled” true infinitely often

I ϕ , ♦2 deadlock

if π |= ϕ, then π will eventually make “deadlock” continuously true

I ϕ , 2♦ enabled→ 2♦ running

if π |= ϕ, then if “enabled” occurs infinitely often along π, then “running” occurs
infinitely often along π

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 6 of 16

practical patterns of specifications with LTL [LCS,Sect. 3.2.3]

I ϕ , 2(started→ ready)

if π |= ϕ, then in every state along π, “ready” is true whenever “started” is true

I ϕ , 2(requested→ ♦ acknowledged)

if π |= ϕ, then in every state along π, if a “request” (of some resource) occurs, it
will eventually be “acknowledged”

I ϕ , 2♦ enabled

if π |= ϕ, then π makes “enabled” true infinitely often

I ϕ , ♦2 deadlock

if π |= ϕ, then π will eventually make “deadlock” continuously true

I ϕ , 2♦ enabled→ 2♦ running

if π |= ϕ, then if “enabled” occurs infinitely often along π, then “running” occurs
infinitely often along π

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 7 of 16

practical patterns of specifications with LTL [LCS,Sect. 3.2.3]

I ϕ , 2(started→ ready)

if π |= ϕ, then in every state along π, “ready” is true whenever “started” is true

I ϕ , 2(requested→ ♦ acknowledged)

if π |= ϕ, then in every state along π, if a “request” (of some resource) occurs, it
will eventually be “acknowledged”

I ϕ , 2♦ enabled

if π |= ϕ, then π makes “enabled” true infinitely often

I ϕ , ♦2 deadlock

if π |= ϕ, then π will eventually make “deadlock” continuously true

I ϕ , 2♦ enabled→ 2♦ running

if π |= ϕ, then if “enabled” occurs infinitely often along π, then “running” occurs
infinitely often along π

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 8 of 16

practical patterns of specifications with LTL [LCS,Sect. 3.2.3]

I ϕ , 2(started→ ready)

if π |= ϕ, then in every state along π, “ready” is true whenever “started” is true

I ϕ , 2(requested→ ♦ acknowledged)

if π |= ϕ, then in every state along π, if a “request” (of some resource) occurs, it
will eventually be “acknowledged”

I ϕ , 2♦ enabled

if π |= ϕ, then π makes “enabled” true infinitely often

I ϕ , ♦2 deadlock

if π |= ϕ, then π will eventually make “deadlock” continuously true

I ϕ , 2♦ enabled→ 2♦ running

if π |= ϕ, then if “enabled” occurs infinitely often along π, then “running” occurs
infinitely often along π

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 9 of 16

practical patterns of specifications with LTL (not in [LCS])

I ϕ , 2 ¬(read ∧ write)

if π |= ϕ, then in every state along π, not both “read” and “write” are
simultaneously true

I ϕ , 2(requested→ (requested d granted)

if π |= ϕ, then in every state along π, if a “request” (of some resource) occurs,
then the “request” will persist in every subsequent state until it is “granted”

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 10 of 16

practical patterns of specifications with LTL (not in [LCS])

I ϕ , 2 ¬(read ∧ write)

if π |= ϕ, then in every state along π, not both “read” and “write” are
simultaneously true

I ϕ , 2(requested→ (requested d granted)

if π |= ϕ, then in every state along π, if a “request” (of some resource) occurs,
then the “request” will persist in every subsequent state until it is “granted”

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 11 of 16

ω-regular properties versus LTL properties

• Fact: For every formula ϕ of LTL (over AP) there exists an NBA Aϕ such that

1. Words(ϕ) = L (Aϕ), and
2. Aϕ can be constructed in time and space 2O(n log n) where n =

∣∣ϕ∣∣.

• Corollary: Every formula of LTL expresses an ω-regular property .

• However, not every ω-regular property can be expressed by a formula of LTL .

Example: There is no formula ϕ of LTL such that Words(ϕ) = P where P is:

P ,
{

A0A1A2 · · · ∈ (2{a})ω
∣∣∣ a ∈ A2i for every i > 0

}
.

But there exists an NBA A such that L (A) = P.
(Why? See Problem 4 in Assignment #2.)

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 12 of 16

ω-regular properties versus LTL properties

• Fact: For every formula ϕ of LTL (over AP) there exists an NBA Aϕ such that

1. Words(ϕ) = L (Aϕ), and
2. Aϕ can be constructed in time and space 2O(n log n) where n =

∣∣ϕ∣∣.
• Corollary: Every formula of LTL expresses an ω-regular property .

• However, not every ω-regular property can be expressed by a formula of LTL .

Example: There is no formula ϕ of LTL such that Words(ϕ) = P where P is:

P ,
{

A0A1A2 · · · ∈ (2{a})ω
∣∣∣ a ∈ A2i for every i > 0

}
.

But there exists an NBA A such that L (A) = P.
(Why? See Problem 4 in Assignment #2.)

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 13 of 16

ω-regular properties versus LTL properties

• Fact: For every formula ϕ of LTL (over AP) there exists an NBA Aϕ such that

1. Words(ϕ) = L (Aϕ), and
2. Aϕ can be constructed in time and space 2O(n log n) where n =

∣∣ϕ∣∣.
• Corollary: Every formula of LTL expresses an ω-regular property .

• However, not every ω-regular property can be expressed by a formula of LTL .

Example: There is no formula ϕ of LTL such that Words(ϕ) = P where P is:

P ,
{

A0A1A2 · · · ∈ (2{a})ω
∣∣∣ a ∈ A2i for every i > 0

}
.

But there exists an NBA A such that L (A) = P.
(Why? See Problem 4 in Assignment #2.)

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 14 of 16

many properties not expressible in LTL [LCS,Sect 3.2.3]
Many properties of interest assert the existence of a path satisfying a certain condition,
and such properties cannot be expressed in LTL. Examples of such properties:

I from every state it is possible to reach a reset state, i.e.,
for every state s, there is a path from s that enters a state s′ where “reset” is true.

I one possible behavior of the elevator is to remain idle on the third floor, i.e.,
from the state in which it is on the third floor, there is a path that keeps it there.

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 15 of 16

(THIS PAGE INTENTIONALLY LEFT BLANK)

Assaf Kfoury, CS 512, Spring 2018, Handout 07 page 16 of 16

