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formal semantics of LTL (continuation)

• The satisfaction relation over ω-words σ ∈ (2AP)ω is defined in Handout 06:

Words(ϕ) ,
{
σ ∈ (2AP)ω

∣∣∣ σ |= ϕ
}
,

which is the set of all ω-words in (2AP)ω satisfying the LTL formula ϕ.

• [PMC, Def 5.7, page 237]: Let TS , (S,Act,→, I,AP, L) be a transition system
without terminal states, and ϕ a formula of LTL over AP.

I The satisfaction relation over (infinite) paths π of TS is defined by:

π |= ϕ iff trace(π) |= ϕ

I The satisfaction relation over states s of TS is defined by:

s |= ϕ iff for every path π starting at s we have trace(π) |= ϕ

iff for every σ ∈ Traces(s) we have σ |= ϕ

I TS satisfies ϕ , denoted TS |= ϕ, iff Traces(TS) ⊆ Words(ϕ).
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practical patterns of specifications with LTL [LCS,Sect. 3.2.3]

I ϕ , 2(started→ ready)

if π |= ϕ, then in every state along π, “ready” is true whenever “started” is true

I ϕ , 2(requested→ ♦ acknowledged)

if π |= ϕ, then in every state along π, if a “request” (of some resource) occurs, it
will eventually be “acknowledged”

I ϕ , 2♦ enabled

if π |= ϕ, then π makes “enabled” true infinitely often

I ϕ , ♦2 deadlock

if π |= ϕ, then π will eventually make “deadlock” continuously true

I ϕ , 2♦ enabled→ 2♦ running

if π |= ϕ, then if “enabled” occurs infinitely often along π, then “running” occurs
infinitely often along π
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practical patterns of specifications with LTL (not in [LCS])

I ϕ , 2 ¬(read ∧ write)

if π |= ϕ, then in every state along π, not both “read” and “write” are
simultaneously true

I ϕ , 2(requested→ (requested d granted)

if π |= ϕ, then in every state along π, if a “request” (of some resource) occurs,
then the “request” will persist in every subsequent state until it is “granted”
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ω-regular properties versus LTL properties

• Fact: For every formula ϕ of LTL (over AP) there exists an NBA Aϕ such that

1. Words(ϕ) = L (Aϕ), and
2. Aϕ can be constructed in time and space 2O(n log n) where n =

∣∣ϕ∣∣.

• Corollary: Every formula of LTL expresses an ω-regular property .

• However, not every ω-regular property can be expressed by a formula of LTL .

Example: There is no formula ϕ of LTL such that Words(ϕ) = P where P is:

P ,
{

A0A1A2 · · · ∈ (2{a})ω
∣∣∣ a ∈ A2i for every i > 0

}
.

But there exists an NBA A such that L (A) = P.
(Why? See Problem 4 in Assignment #2.)
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many properties not expressible in LTL [LCS,Sect 3.2.3]
Many properties of interest assert the existence of a path satisfying a certain condition,
and such properties cannot be expressed in LTL. Examples of such properties:

I from every state it is possible to reach a reset state, i.e.,
for every state s, there is a path from s that enters a state s′ where “reset” is true.

I one possible behavior of the elevator is to remain idle on the third floor, i.e.,
from the state in which it is on the third floor, there is a path that keeps it there.
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