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additional temporal operators

• The syntax of LTL according to [LCS, Def 3.1, page 175] includes two additional
binary temporal operators:

W, pronounced “weak until”,
R, pronounced “release”.

• Using the notation of Handout 06, the formal semantics of W and R are defined by:

7. σ |= ϕ W ψ iff either σ |= ϕ d ψ

or σ[k . . .] |= ϕ for every k > 0

8. σ |= ϕ R ψ iff either there is j > 0 such that σ[j . . .] |= ϕ

and σ[i . . .] |= ψ for every 0 6 i 6 j

or σ[k . . .] |= ψ for every k > 0
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equivalence between LTL formulas, [LCS, pp 184-186]

I Definition [PMC, Def. 5.17, page 248], [LCS, Def. 3.9, page 184]:
Formulas ϕ and ψ of LTL are equivalent, in symbols ϕ ≡ ψ, iff
Words(ϕ) = Words(ψ).

I Dualities in LTL :

I ¬2ϕ ≡ ♦¬ϕ
I ¬♦ϕ ≡ 2¬ϕ
I ¬ eϕ ≡ e¬ϕ
I ¬(ϕ d ψ) ≡ ¬ϕR¬ψ
I ¬(ϕRψ) ≡ ¬ϕ d ¬ψ

I For a rigorous proof of the last equivalence: go to page 8 .
Rigorous proofs for all other equivalences are similar.
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equivalence between LTL formulas, [LCS, pp 184-186]

I Distributive Laws in LTL :

I e(ϕ ∨ ψ) ≡ eϕ ∨ eψ
I e(ϕ ∧ ψ) ≡ eϕ ∧ eψ
I e(ϕ d ψ) ≡ ( eϕ) d ( eψ)
I ♦ (ϕ ∨ ψ) ≡ ♦ϕ ∨ ♦ψ

I 2 (ϕ ∧ ψ) ≡ 2ϕ ∧ 2ψ

I ϕ d (ψ1 ∨ ψ2) ≡ (ϕ d ψ1) ∨ (ϕ d ψ2)

I (ϕ1 ∧ ϕ2) d ψ ≡ (ϕ1 d ψ) ∧ (ϕ2 d ψ)
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equivalence between LTL formulas, [LCS, pp 184-186]

I Inter-Definitions in LTL :

I ♦ϕ ≡ ¬2¬ϕ
I 2ϕ ≡ ¬♦¬ϕ
I ♦ϕ ≡ true d ϕ

I 2ϕ ≡ false Rϕ

I ϕ d ψ ≡ ϕWψ ∧ ♦ψ
I ϕWψ ≡ ϕ d ψ ∨ 2ϕ
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equivalence between LTL formulas

I Idempotency Laws in LTL :

I ♦♦ϕ ≡ ♦ϕ
I 22ϕ ≡ 2ϕ

I ϕ d ψ ≡ ϕ d (ϕ d ψ)

I Some (perhaps surprising) equivalences in LTL:

I 2♦2ϕ ≡ ♦2ϕ
I ♦2♦ϕ ≡ 2♦ϕ

I 2 (♦ϕ ∨ ♦ψ) ≡ 2♦ϕ ∨ 2♦ψ
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equivalence between LTL formulas

I ♦ has similarities with ∃, e.g., ♦ (ϕ ∨ ψ) ≡ (♦ϕ ∨ ♦ψ)

I 2 has similarities with ∀, e.g., 2 (ϕ ∧ ψ) ≡ (2ϕ ∧ 2ψ)

I ♦ does not distribute over ∧:

there is a model/transition system TS that distinguishes ♦ (ϕ ∧ ψ)
from (♦ϕ ∧ ♦ψ) for some ϕ and ψ
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rigorous proof of an equivalence:

To prove the equivalence ¬(ϕRψ) ≡ ¬ϕ d ¬ψ we need to show:

for every path π

(
π |= ¬(ϕRψ) iff π |= ¬ϕ d ¬ψ

)
Instead of “for every path” we can equivalently show the bi-implication “for every ω-trace”.

Equivalently, we need to show:

for every path π

(
π |= ϕRψ iff π |= ¬(¬ϕ d ¬ψ)

)
What follows in the succeeding pages is a proof of this equivalence:

Instead of writing “π[i . . .]” for the suffix of π starting with its i-th entry, we write “πi ”.
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rigorous proof of an equivalence:
For an arbitrarily given path π, we have the following sequence of equivalences:

(1) π |= ¬(¬ϕ d ¬ψ) iff

(by the definition of d)

(2) ¬(∃j > 0)
(
πj |= ¬ψ ∧ (∀i < j) (πi |= ¬ϕ)

)
iff

(by the semantics of ¬)

(3) ¬(∃j > 0)
(
πj 6|= ψ ∧ (∀i < j) (πi 6|= ϕ)

)
iff

(by the duality of ∃ and ∀)

(4) (∀j > 0)¬
(
πj 6|= ψ ∧ (∀i < j) (πi 6|= ϕ)

)
iff

(by de Morgan’s law)

(5) (∀j > 0)
(
¬(πj 6|= ψ) ∨ ¬(∀i < j) (πi 6|= ϕ)

)
iff

(by the semantics of ¬ and the duality of ∃ and ∀)

(6) (∀j > 0)
(
πj |= ψ ∨ (∃i < j) (πi |= ϕ)

)
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rigorous proof of an equivalence:
(6) (∀j > 0)

(
πj |= ψ ∨ (∃i < j) (πi |= ϕ)

)
iff

(by the duality of→ and ∨)

(7) (∀j > 0)
(
πj 6|= ψ → (∃i < j) (πi |= ϕ)

)
iff

(by a re-arrangement of subexpressions)

(8) (∀j > 0) (πj |= ψ) (8.1)

or (∃i > 0)
(
πi |= ϕ ∧ (∀k 6 i)(πk |= ψ)

)
(8.2)

All the preceding equivalences, from (1) to (7), are straightforward. The one which needs
further justification is (8) =

(
(8.1) or (8.2)

)
. We consider two possibilities for the path π:

(a) Either for every j > 0, we have πj |= ψ, in which case both (7) and (8.1) hold
– or, which is easier to see, both (6) and (8.1) hold. Hence, (6), (7) and (8) hold.

(b) Or there are 0 6 j0 < j1 < j2 < · · · such that πj0 6|= ψ, πj1 6|= ψ, πj2 6|= ψ, . . .
and for all k 6∈ {j0, j1, j2, . . .}, we have πk |= ψ. Hence, if (7) holds, there is i < j0

such that πi |= ϕ and for all k 6 i < j0, it holds that πk |= ψ, thus implying (8.2).
Conversely, if (8.2) holds, then (7) holds. Hence, (7) iff (8).

Hence, whether (a) or (b) is the case, we have (7) iff (8).
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rigorous proof of an equivalence:
A closer look at (8) shows that:

(8) (∀j > 0) (πj |= ψ) or (∃i > 0)
(
πi |= ϕ ∧ (∀k 6 i)(πk |= ψ)

)
is a more formal re-wording of the semantics of R. Hence, (8) holds iff:

(9) π |= ϕRψ

Since π is an arbitrarily given path, we conclude that for every path π, we have (1) iff (9).

This completes our rigorous proof.
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