
CS 512, Spring 2018, Handout 09

Model Checking: Examples in LTL

Assaf Kfoury

February 13, 2018

Assaf Kfoury, CS 512, Spring 2018, Handout 09 page 1 of 14

reminder: top-view of model checking
(using a temporal logic such as LTL, but not only)

• what we are given :

1. a transition system TS, which may specify a protocol for the
simultaneous operation – asynchronous or synchronous – of
communicating/interacting processes

2. a temporal WFF ϕ expressing some desirable property of TS

• what we want to check :

1. do all paths/traces exhibited by TS satisfy ϕ?
2. if we cannot answer preceding question, can we determine whether

a “significant” subset of all paths/traces exhibited by TS satisfy ϕ?
3. preferably in a fully automated way

• this handout complements Handout 07,
Practical Patterns of Specification with LTL ,

which you should review before reading this one.

Assaf Kfoury, CS 512, Spring 2018, Handout 09 page 2 of 14

common properties expressible in LTL

• safety “something bad will not happen”

I �¬(reactor temp > 1000)
I �¬((x = 0) ∧ f(y = z/x))
I �¬(system crash) (the system should never crash)

I typical form: �¬(· · ·)

• liveness “something good will happen”

I � (start→ ♦ terminate)
I � (switch on→ ♦ start)
I � (switch on→ fstart) (perhaps too stringent?)
I � (packet sent→ ♦ packet received)

I typical form: � (· · · → ♦(· · ·)) or � (· · · → f(· · ·))

Assaf Kfoury, CS 512, Spring 2018, Handout 09 page 3 of 14

common properties expressible in LTL

• safety or liveness? sometimes both

I “from any state, it is possible to return to a reset state”
� (¬reset→ ♦ reset)

I “grant a request 3 cycles after receiving the request”
� (request→ f f fgrant)

Assaf Kfoury, CS 512, Spring 2018, Handout 09 page 4 of 14

common properties expressible in LTL

• fairness

“if something is attempted/requested infinitely often,

then it will be successful/allocated infinitely often”
I �♦ ready→ �♦ run
I �♦ give one→ �♦ receive one

I typically �♦ (· · ·)→ �♦ (· · ·)
I fairness w.r.t. a particular ϕ, the WFF �♦ϕ means

“ϕ holds infinitely often, if the path is infinite”
“ϕ holds at the last state, if the path is finite”

Remark: We allow paths/traces to be finite in this handout.

• (On the next slide fairness is called strong fairness)

Assaf Kfoury, CS 512, Spring 2018, Handout 09 page 5 of 14

common properties expressible in LTL

finer examination of fairness [PMC, Definition 5.25, page 258] :
consider many interacting processes, i = 1, 2, 3, . . ., with
eni = “i is enabled” and ci = “i is executing critical section”

• absolute fairness

for every i = 1, 2, . . ., expressed as “�♦ ci”

but which ignores that i may not be ready to execute at certain times

• strong fairness

for every i = 1, 2, . . ., expressed as “�♦ eni → �♦ ci”

i.e., “i enabled infinitely often, crit sect executed infinitely often”

• weak fairness

for every i = 1, 2, . . ., expressed as “♦� eni → �♦ ci”

i.e., “i enabled almost always, crit sect executed infinitely often”

• more details on unconditional fairness, strong fairness, and weak fairness, in

[PMC, Sect. 3.5, pp. 126-140] and handout Properties of Transition Systems .

Assaf Kfoury, CS 512, Spring 2018, Handout 09 page 6 of 14

common properties expressible in LTL

• reachability

“a particular state is reached from the present state”

(sometimes treated as a case of safety, more on reachability later)

• deadlock freedom

“a deadend state will never be reached”

(sometimes treated as a case of liveness, more on deadlocks later)

• mutual exclusion

“two processes are not allowed to enter same critical section”

(sometimes treated as a case of safety)

�¬ (P1 in critical section ∧ P2 in critical section)

Assaf Kfoury, CS 512, Spring 2018, Handout 09 page 7 of 14

specific properties, some related to reachability

I “ϕ never holds in two consecutive states”

� (ϕ→ f¬ϕ)
I “if ϕ holds in state s, then ϕ holds in all states after s”

� (ϕ→ �ϕ)

why is this different from � (ϕ→ ♦ϕ) ??

I “ϕ holds in at most one state”

� (ϕ→ f�¬ϕ)
I “ϕ holds in at least two states”

♦ (ϕ ∧ f♦ϕ)
I already seen: “ϕ holds infinitely often” �♦ϕ

I already seen: “eventually ϕ always holds” ♦�ϕ

I “unless s is the first state of the path, if ϕ holds in state s,

then ϕ must hold in at least one of the two states just before s”

(fϕ→ ϕ) ∧ � (f fϕ→ ϕ ∨ fϕ)
Assaf Kfoury, CS 512, Spring 2018, Handout 09 page 8 of 14

specific properties related to deadlocks

I “there is no next state”ffalse
I “every state which has no next state is a terminal state”

� (ffalse→ terminal)

I “the system is free of deadlocks”

this is the same as preceding assertion, i.e.,
� (ffalse→ terminal)

I “a dealock state can be reached” (negation of preceding assertion)

♦ (ffalse ∧ ¬terminal)

I “every execution/path is finite (system has no infinite execution)”

♦ ffalse
I “every execution/path is infinite (system has no finite execution)”

� ftrue
Assaf Kfoury, CS 512, Spring 2018, Handout 09 page 9 of 14

specific properties related to alternation

I “ϕ holds in every odd state and does not hold in every even state”

(assume that states are counted from 1)

ϕ ∧� (ϕ↔ f¬ϕ)
I what does the following say:

(ϕ ∧� (ϕ↔ f¬ϕ)) ∨ f(ϕ ∧� (ϕ↔ f¬ϕ)) ??

I can we replace the preceding WFF by: � (ϕ↔ f¬ϕ) ??

not quite, it is more restrictive than the preceding, as it is satisfied
by the first and the second, but not the third, of the following paths:

ϕ → ¬ϕ → ϕ → ¬ϕ → ϕ → ¬ϕ → · · · (ϕ true in odd states)

¬ϕ → ϕ → ¬ϕ → ϕ → ¬ϕ → ϕ → · · · (ϕ true in even states)

ϕ → ϕ → ¬ϕ → ϕ → ¬ϕ → ϕ → · · · (ϕ true in even states + first state)

Assaf Kfoury, CS 512, Spring 2018, Handout 09 page 10 of 14

specific properties related to alternation

I how about the following:
(ϕ ∧� (ϕ↔ f¬ϕ)) ∧ f(ϕ ∧� (ϕ↔ f¬ϕ)) ???

(contradictory WFF, i.e., complicated way of asserting false)

Assaf Kfoury, CS 512, Spring 2018, Handout 09 page 11 of 14

specific properties related to alternation

I suppose we want to express “ϕ holds in every odd state” , i.e.,

ϕ → ?? → ϕ → ?? → ϕ → ?? → · · ·

I can we use ϕ ∧� (ϕ→ f fϕ) ??

a good candidate, but NOT quite,
because it is not satisfied by a path of the form

ϕ → ϕ → ϕ → ¬ϕ → ϕ → ?? → · · ·

I in fact, “ϕ holds in every odd state” is NOT expressible in LTL

I describe in English the paths satisfying � (ϕ→ f fϕ)
I describe in English the paths satisfying ϕ ∧� (ϕ→ f fϕ)

Assaf Kfoury, CS 512, Spring 2018, Handout 09 page 12 of 14

specific properties related to responsiveness

I “every request is eventually acknowledged”

� (request→ f♦ ack)

I “every request remains true until it is acknowledged”

� (request→ (request d ack))

I “every request remains true until it is acknowledged,

after which it immediately becomes false”

� (request→ ((request ∧ ¬ack) d (¬request ∧ ack)))

Assaf Kfoury, CS 512, Spring 2018, Handout 09 page 13 of 14

(THIS PAGE INTENTIONALLY LEFT BLANK)

Assaf Kfoury, CS 512, Spring 2018, Handout 09 page 14 of 14

