CS 512, Spring 2018, Handout 10 Model Checking: Branching-Time Temporal Logic (CTL)

Assaf Kfoury

February 12, 2018 (adjusted February 15, 2018)

Assaf Kfoury, CS 512, Spring 2018, Handout 10

reading assignment

- [PMC, Sections 6.1+6.2, pages 313-334]: Start from the very beginning and focus on motivation and examples. These are 30 pages that become increasingly more complicated.
- [LCS, Section 3.4, pages 207-216] :

Considerable overlap with the material in [PMC], with fewer examples.

• Differences in the syntax of LTL and CTL between [PMC] and [LCS] :

modality	where in [PMC]	where in [LCS]
"next"	○, page 231	X, page 176
"until"	U, page 231	U, page 176
"eventually"	◊, page 232	F, page 176
"always"	□, page 232	G, page 176
"for all"	∀, page 317	A, page 208
"there is"	∃, page 317	E, page 208

 We follow notation and conventions of [PMC] rather than [LCS] – except that we use "⊎" instead of "U" to avoid any possible confusion with set union "∪".

syntax of computation tree logic (CTL)

• according to [LCS, Definition 3.12, page 208], where *p* ranges over AP:

 $\varphi \, ::= \, \mathbf{true} \mid \mathbf{false} \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \quad \text{propositional logic}$

- $| \hspace{0.1cm} \forall \bigcirc \hspace{0.1cm} \varphi \hspace{0.1cm} | \hspace{0.1cm} \exists \bigcirc \hspace{0.1cm} \varphi \hspace{0.1cm} \texttt{``next" state}$
- $| \hspace{0.1cm} \forall \Diamond \hspace{0.1cm} \varphi \hspace{0.1cm} | \hspace{0.1cm} \exists \Diamond \hspace{0.1cm} \varphi \hspace{0.1cm} \text{some "future" state}$
- $| \forall \Box \varphi | \exists \Box \varphi$
 - $| \hspace{.1in} \forall [\varphi \ { { { \mathbb U } } } \varphi] \hspace{.1in} | \hspace{.1in} \exists [\varphi \ { { { \mathbb U } } } \varphi]$
 - $| \quad \forall [\varphi \, \mathbf{W} \, \varphi] \quad | \quad \exists [\varphi \, \mathbf{W} \, \varphi]$
 - $|\quad \forall [\varphi \, \mathbf{R} \, \varphi] \quad |\quad \exists [\varphi \, \mathbf{R} \, \varphi]$

all "future" states

"until"

"weak until"

"release"

- following [LCS, Section 3.4.2, pp 211-214] .
- satisfaction of a WFF of CTL is defined relative to a transition system TS \triangleq (*S*, Act, \rightarrow , *I*, AP, *L*) and a state *s* \in *S*

1.
$$TS, s \models true$$

2.
$$TS, s \not\models false$$

3. TS,
$$s \models p$$
 iff $p \in L(s)$

4.
$$\mathsf{TS}, s \models \neg \varphi$$
 iff $\mathsf{TS}, s \not\models \varphi$

- 5. $\mathsf{TS}, s \models \varphi \land \psi$ iff $\mathsf{TS}, s \models \varphi$ and $\mathsf{TS}, s \models \psi$
- $\textbf{6. } \textbf{TS}, s \models \varphi \lor \psi \quad \text{ iff } \textbf{TS}, s \models \varphi \text{ or } \textbf{TS}, s \models \psi$
- 7. $\mathsf{TS}, s \models \varphi \rightarrow \psi$ iff $\mathsf{TS}, s \models \psi$ whenever $\mathsf{TS}, s \models \varphi$

8. TS,
$$s \models \forall \bigcirc \varphi$$
 iff for every s' such that $s \to s'$
we have TS, $s' \models \varphi$

9. TS,
$$s \models \exists \bigcirc \varphi$$
 iff there is s' such that $s \to s'$
and TS, $s' \models \varphi$

10. TS,
$$s \models \forall \Box \varphi$$
 iff for every path $\pi \triangleq s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \cdots$ with $s = s_1$,
and for every s_i along π , we have TS, $s_i \models \varphi$

11. TS,
$$s \models \exists \Box \varphi$$
 iff there is a path $\pi \triangleq s_1 \to s_2 \to s_3 \to \cdots$ with $s = s_1$
such that for every s_i along π , we have TS, $s_i \models \varphi$

12. TS,
$$s \models \forall \Diamond \varphi$$
 iff for every path $\pi \triangleq s_1 \to s_2 \to s_3 \to \cdots$ with $s = s_1$,
there is s_i along π such that TS, $s_i \models \varphi$

13. TS, $s \models \exists \Diamond \varphi$ iff there is a path $\pi \triangleq s_1 \to s_2 \to s_3 \to \cdots$ with $s = s_1$ and there is s_i along π such that TS, $s_i \models \varphi$

14. TS, $s \models \forall [\varphi \sqcup \psi]$ iff for every path $\pi \triangleq s_1 \to s_2 \to s_3 \to \cdots$ with $s = s_1$ we have $\pi \models \varphi \sqcup \psi$

14. TS, $s \models \forall [\varphi \sqcup \psi]$ iff for every path $\pi \triangleq s_1 \to s_2 \to s_3 \to \cdots$ with $s = s_1$ we have $\pi \models \varphi \sqcup \psi$

what is disturbing about the preceding definition?? see [LCS, Section 3.4.2, p 212, point 13]

14. TS, $s \models \forall [\varphi \sqcup \psi]$ iff for every path $\pi \triangleq s_1 \to s_2 \to s_3 \to \cdots$ with $s = s_1$ we have $\pi \models \varphi \sqcup \psi$

what is disturbing about the preceding definition?? see [LCS, Section 3.4.2, p 212, point 13]

15. TS, $s \models \exists [\varphi \sqcup \psi]$ iff there is a path $\pi \triangleq s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \cdots$ with $s = s_1$ such that $\pi \models \varphi \sqcup \psi$

14. TS, $s \models \forall [\varphi \sqcup \psi]$ iff for every path $\pi \triangleq s_1 \to s_2 \to s_3 \to \cdots$ with $s = s_1$ we have $\pi \models \varphi \sqcup \psi$

what is disturbing about the preceding definition?? see [LCS, Section 3.4.2, p 212, point 13]

15. TS,
$$s \models \exists [\varphi \Downarrow \psi]$$
 iff there is a path $\pi \triangleq s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \cdots$
with $s = s_1$ such that $\pi \models \varphi \Downarrow \psi$

again, what is disturbing about the preceding definition?? see [LCS, Section 3.4.2, p 212, point 14]

useful intuitive English qualifiers

- $\blacktriangleright \ \ \text{``potentially} \ \varphi" = \exists \Diamond \varphi$
- "inevitably φ " = $\forall \Diamond \varphi$
- "potentially always φ " = $\exists \Box \varphi$
- "invariantly φ " = $\forall \Box \varphi$

once more: syntax of computation tree logic (CTL)

• now according to [PMC, Definition 6.1, page 317], *a* ranges over AP:

$$\Phi ::= \mathbf{true} \mid a \mid \neg \Phi \mid \Phi_1 \land \Phi_2 \mid \exists \varphi \mid \forall \varphi \quad \text{state formulas}$$

$$arphi \, ::= \, \bigcirc \Phi \, ig| \, \Phi_1 \Cup \Phi_2$$
 path formulas

once more: semantics of CTL

- now according to [PMC, Definition 6.4, page 320] .
- satisfaction of state formulas and path formulas is defined relative to a transition system TS \triangleq (*S*, Act, \rightarrow , *I*, AP, *L*), state *s* \in *S*, and path π in TS:

1. $s \models \texttt{true}$ 2. $s \models a$ iff $a \in L(s)$ 3. $s \models \neg \Phi$ iff $s \not\models \Phi$ 4. $s \models \Phi \land \Psi$ iff $s \models \Phi$ and $s \models \Psi$ 5. $s \models \exists \varphi$ iff $\pi \models \varphi$ for some path π starting at s 6. $s \models \forall \varphi$ iff $\pi \models \varphi$ for *every* path π starting at *s* 7. $\pi \models \bigcirc \Phi$ iff $\pi[1] \models \Phi$ 8. $\pi \models \Phi \cup \Psi$ iff $\pi[j] \models \Psi$ for some $j \ge 0$ and $\pi[k] \models \Phi$ for every $0 \le k < j$

where for path $\pi \triangleq s_0 \ s_1 \ s_2 \cdots$ and integer $i \ge 0$, we denote s_i by $\pi[i]$.

(THIS PAGE INTENTIONALLY LEFT BLANK)