CS 512, Spring 2018, Handout 13 Algorithm for CTL Model-Checking

Assaf Kfoury

February 15, 2018 (modified on February 20, 2018)

background reading for CTL model-checking algorithm

- [LCS, Section 3.6, pages 221-238] includes both:
- Algorithm for CTL model-checking in [LCS, Subsections 3.6.1-2],
- Algorithm for LTL model-checking in [LCS, Subsection 3.6.3] .
- Useful exercise: Compare the two algorithms.
- [PMC, Section 6.4, pages 341-358] is another presentation of the same algorithm for CTL model-checking, with many more examples and explanations.
- Algorithm for CTL model-checking processes a given CTL WFF φ "from the inside out", i.e., it starts from the smallest sub-WWF's and works outwards towards φ.
- In next slides, we illustrate the algorithm for CTL model-checking on an example, a variation of [PMC, Examples 6.26, 6.27, 6.28, pages 349, 353, 354].

an example using CTL model-checking algorithm

TWO INPUTS:

1. $\varphi \triangleq \forall O \exists \diamond \psi$
where
$\psi \triangleq(\neg p \wedge q \wedge \neg r) \vee(p \wedge \neg q \wedge r)$
2. transition system TS (on the right, start states not specified)

an example using CTL model-checking algorithm

TWO INPUTS:

1. $\varphi \triangleq \forall \bigcirc \exists \diamond \psi$
where
$\psi \triangleq(\neg p \wedge q \wedge \neg r) \vee(p \wedge \neg q \wedge r)$
2. transition system TS (on the right, start states not specified)

blue states are where sub-WFF:
$(\neg p \wedge q \wedge \neg r)$ is satisfied

an example using CTL model-checking algorithm

TWO INPUTS:

1. $\varphi \triangleq \forall \bigcirc \exists \diamond \psi$
where
$\psi \triangleq(\neg p \wedge q \wedge \neg r) \vee(p \wedge \neg q \wedge r)$
2. transition system TS (on the right, start states not specified)

blue states are where sub-WFF:
($p \wedge \neg q \wedge r)$ is satisfied

an example using CTL model-checking algorithm

TWO INPUTS:

1. $\varphi \triangleq \forall \bigcirc \exists \diamond \psi$
where
$\psi \triangleq(\neg p \wedge q \wedge \neg r) \vee(p \wedge \neg q \wedge r)$
2. transition system TS (on the right, start states not specified)

blue states are where sub-WFF: $\psi \triangleq(\neg p \wedge q \wedge \neg r) \vee(p \wedge \neg q \wedge r)$ is satisfied

an example using CTL model-checking algorithm

TWO INPUTS:

1. $\varphi \triangleq \forall O \exists \diamond \psi$
where
$\psi \triangleq(\neg p \wedge q \wedge \neg r) \vee(p \wedge \neg q \wedge r)$
2. transition system TS (on the right, start states not specified)

an example using CTL model-checking algorithm

TWO INPUTS:

1. $\varphi \triangleq \forall \bigcirc \exists \diamond \psi$
where
$\psi \triangleq(\neg p \wedge q \wedge \neg r) \vee(p \wedge \neg q \wedge r)$
2. transition system TS (on the right, start states not specified)

double-red states are where sub-WFF: $\forall \bigcirc(\exists \diamond \psi)$ is satisfied

- Conclusion: TS $\models \varphi$ iff s_{6} is one of the start states of TS

more on CTL model-checking algorithm

1. Exercise: Determine the states of TS (as defined in the preceding pages) satisfying the following CTL WFF's:

$$
\begin{aligned}
& \varphi_{1} \triangleq \exists \square q \\
& \varphi_{2} \triangleq \forall\left(p \text { U } \varphi_{1}\right)=\forall(p \text { U }(\exists \square q)) \\
& \varphi_{3} \triangleq \exists \bigcirc \varphi_{2}=\exists \bigcirc(\forall(p \text { U }(\exists \square q)))
\end{aligned}
$$

2. Problem - illustrating abstraction to alleviate state-explosion:

For an arbitrary CTL WFF φ and an arbitrary transition system TS, let TS $[\varphi]$ be the transition system obtained as follows:

- For every state s, if TS, $s \not \vDash \varphi$, then delete state s and all transitions (i.e., edges) to s and all transitions from s.

Prove the following statement:

- For a state s in transition system TS and CTL WFF φ, we have that TS, $s \vDash \exists \square \varphi$ iff two conditions:
(i) $\mathrm{TS}, s=\varphi$ and
(ii) there is a strongly-connected component of $\operatorname{TS}[\varphi]$ with at least one transition (i.e., edge) which is reachable from s.

(THIS PAGE INTENTIONALLY LEFT BLANK)

