CS 512, Spring 2018, Handout 14 Model-Checking: Temporal Logic CTL*

Assaf Kfoury

February 22, 2018

Assaf Kfoury, CS 512, Spring 2018, Handout 14

syntax of CTL*

Following [PMC, Sect 6.8, pp 422-427] rather than [LCS, Sect 3.5, pp 217-220] :

• state formulas (ranged by upper case Greek letters, Φ, Ψ, \ldots) with $p \in AP$:

 $\Phi \, ::= \, \mathbf{true} \ | \ p \ | \ \neg \Phi \ | \ \Phi_1 \wedge \Phi_2 \ | \ \exists \varphi$

• path formulas (ranged by lower case Greek letters, φ , ψ , ...):

 $\varphi \, ::= \, \Phi \quad | \quad \neg \varphi \quad | \quad \varphi_1 \wedge \varphi_2 \quad | \quad \bigcirc \varphi \quad | \quad \varphi_1 \, \uplus \, \varphi_2$

syntax of CTL*

Following [PMC, Sect 6.8, pp 422-427] rather than [LCS, Sect 3.5, pp 217-220] :

• state formulas (ranged by upper case Greek letters, Φ, Ψ, \ldots) with $p \in AP$:

$$\Phi ::= \texttt{true} \mid p \mid \neg \Phi \mid \Phi_1 \land \Phi_2 \mid \exists \varphi$$

• path formulas (ranged by lower case Greek letters, φ , ψ , ...):

 $\varphi \, ::= \, \Phi \quad | \quad \neg \varphi \quad | \quad \varphi_1 \wedge \varphi_2 \quad | \quad \bigcirc \varphi \quad | \quad \varphi_1 \, \Cup \, \varphi_2$

- shorthands (useful when using small set of primitive connectives as in [PMC])
 - (1) usual propositional connectives: \rightarrow , \lor , \leftrightarrow , ..., in terms of $\{\neg, \land\}$

(2)
$$\Diamond \varphi \triangleq \texttt{true} \ \forall \varphi$$

(3)
$$\Box \varphi \triangleq \neg \Diamond \neg \varphi$$

(4)
$$\forall \varphi \triangleq \neg \exists \neg \varphi$$

Similar shorthands as in (1), (2), and (3) hold for LTL and CTL (see [PMC, comments between Examples 6.2 and 6.3, pp 318-319]), but shorthand in (4) cannot be used in CTL (why?).

Assaf Kfoury, CS 512, Spring 2018, Handout 14

semantics of CTL* (syntax directed)

From [PMC, Definition 6.81, page 423],

the semantics of CTL* are omitted in [LCS, Section 3.5, pages 217-221] :

- satisfaction of a state formula of CTL* is defined relative to a transition system TS ≜ (S, Act, →, I, AP, L) and a state s ∈ S
 - 1. $TS, s \models true$
 - 2. TS, $s \models p$ iff $p \in L(s)$
 - 3. $\mathsf{TS}, s \models \neg \Phi$ iff $\mathsf{TS}, s \not\models \Phi$
 - 4. $\mathsf{TS}, s \models \Phi \land \Psi$ iff $\mathsf{TS}, s \models \Phi$ and $\mathsf{TS}, s \models \Psi$
 - 5. TS, $s \models \exists \varphi$ iff TS, $\pi \models \varphi$ for some path π starting at s

semantics of CTL* (syntax directed)

 satisfaction of a path formula of CTL* is defined relative to a transition system TS ≜ (S, Act, →, I, AP, L) and a path π ≜ s₀ → s₁ → s₂ → ···

1.
$$\operatorname{TS}, \pi \models \Phi$$
 iff $\operatorname{TS}, s_0 \models \Phi$
2. $\operatorname{TS}, \pi \models \neg \varphi$ iff $\operatorname{TS}, \pi \not\models \varphi$
3. $\operatorname{TS}, \pi \models \varphi_1 \land \varphi_2$ iff $\operatorname{TS}, \pi \models \varphi_1$ and $\operatorname{TS}, \pi \models \varphi_2$
4. $\operatorname{TS}, \pi \models \bigcirc \varphi$ iff $\operatorname{TS}, \pi [1 \dots] \models \varphi$
5. $\operatorname{TS}, \pi \models \varphi_1 \Downarrow \varphi_2$ iff there is $n \ge 0$ such that
 $\operatorname{TS}, \pi [n \dots] \models \varphi_2$
and for every $0 \le k < n$ it holds that

$$\mathsf{TS}, \pi[k \ldots] \models \varphi_1$$

semantics of CTL*

• CTL* semantics for transition systems TS \triangleq (*S*, Act, \rightarrow , *I*, AP, *L*) from [PMC, Definition 6.82, page 423] :

• given a state formula Φ of CTL*:

 $\mathsf{TS} \models \Phi$ iff $\mathsf{TS}, s \models \Phi$ for every $s \in I$

• given a **path formula** φ of CTL*:

 $\mathsf{TS} \models \varphi$ iff $\mathsf{TS}, \pi \models \varphi$ for every path π starting at some $s \in I$

LTL and CTL are sublogics of CTL*

LTL is a "subset" of CTL*

because a LTL formula φ is equivalent to the CTL* formula $\forall \varphi$

(this requires a rigorous proof, $\circle{[PMC, Theorem 6.83, page 424]}$, based on the formal semantics of CTL*

LTL and CTL are sublogics of CTL*

LTL is a "subset" of CTL*

because a LTL formula φ is equivalent to the CTL* formula $\forall \varphi$

(this requires a rigorous proof, $\circlet{PMC}, Theorem 6.83, page 424]$, based on the formal semantics of CTL*

CTL is a subset of CTL*

because we can restrict paths formulas to be of the form

 $\varphi \, ::= \, \bigcirc \, \Phi \ \mid \ \mid \ \Phi \Cup \Phi$

(check that this restriction on φ corresponds to enforcing the requirement that every **temporal connective** must be coupled with a **quantifier**)

(THIS PAGE INTENTIONALLY LEFT BLANK)