CS 512, Spring 2018, Handout 14

Model-Checking: Temporal Logic CTL*

Assaf Kfoury

February 22, 2018

syntax of CTL*

Following [PMC, Sect 6.8, pp 422-427] rather than [LCS, Sect 3.5, pp 217-220] :

- state formulas (ranged by upper case Greek letters, Φ, Ψ, \ldots) with $p \in$ AP:

$$
\Phi::=\text { true }|p| \quad \neg \Phi \mid \quad \Phi_{1} \wedge \Phi_{2} \quad \exists \varphi
$$

- path formulas (ranged by lower case Greek letters, φ, ψ, \ldots):

$$
\varphi::=\Phi \quad|\quad \neg \varphi| \varphi_{1} \wedge \varphi_{2}|\bigcirc \varphi| \varphi_{1} \mathbb{U} \varphi_{2}
$$

syntax of CTL*

Following [PMC, Sect 6.8, pp 422-427] rather than [LCS, Sect 3.5, pp 217-220] :

- state formulas (ranged by upper case Greek letters, Φ, Ψ, \ldots) with $p \in$ AP:

$$
\Phi::=\text { true }|p| \quad \neg \Phi \mid \quad \Phi_{1} \wedge \Phi_{2} \quad \exists \varphi
$$

- path formulas (ranged by lower case Greek letters, φ, ψ, \ldots):

$$
\varphi::=\Phi \quad|\neg \varphi| \quad \varphi_{1} \wedge \varphi_{2}|\bigcirc \varphi| \varphi_{1} \mathbb{U} \varphi_{2}
$$

- shorthands (useful when using small set of primitive connectives as in [PMC])
(1) usual propositional connectives: $\rightarrow, \vee, \leftrightarrow, \ldots$, in terms of $\{\neg, \wedge\}$
(2) $\diamond \varphi \triangleq$ true $ய \varphi$
(3) $\square \varphi \triangleq \neg \diamond \neg \varphi$
(4) $\forall \varphi \triangleq \neg \exists \neg \varphi$

Similar shorthands as in (1), (2), and (3) hold for LTL and CTL (see [PMC, comments between Examples 6.2 and 6.3, pp 318-319]), but shorthand in (4) cannot be used in CTL (why?).

semantics of CTL* (syntax directed)

From [PMC, Definition 6.81, page 423],
the semantics of CTL* are omitted in [LCS, Section 3.5, pages 217-221] :

- satisfaction of a state formula of CTL* is defined relative to a transition system $\mathrm{TS} \triangleq(S, \mathrm{Act}, \rightarrow, I, \mathrm{AP}, L)$ and a state $s \in S$

1. TS, $s=$ true
2. TS, $s \models p \quad$ iff $\quad p \in L(s)$
3. TS, $s \models \neg \Phi \quad$ iff \quad TS, $s \not \vDash \Phi$
4. TS, $s \models \Phi \wedge \Psi \quad$ iff \quad TS, $s \models \Phi$ and $\mathrm{TS}, s \models \Psi$
5. TS, $s \models \exists \varphi \quad$ iff \quad TS, $\pi \models \varphi$ for some path π starting at s

semantics of CTL* (syntax directed)

- satisfaction of a path formula of CTL* is defined relative to a transition system $\mathrm{TS} \triangleq(S, \mathrm{Act}, \rightarrow, I, \mathrm{AP}, L)$ and a path $\pi \triangleq s_{0} \rightarrow s_{1} \rightarrow s_{2} \rightarrow \cdots$

1. TS, $\pi \models \Phi$
2. $\mathrm{TS}, \pi \models \neg \varphi$
3. $\mathrm{TS}, \pi \vDash \varphi_{1} \wedge \varphi_{2}$
4. $\quad \mathrm{TS}, \pi \models \bigcirc \varphi$
5. TS, $\pi \vDash \varphi_{1} \uplus \varphi_{2}$
iff \quad TS, $s_{0} \models \Phi$
iff TS, $\pi \not \vDash \varphi$
iff TS, $\pi \models \varphi_{1} \quad$ and TS, $\pi \models \varphi_{2}$
iff $\quad \mathrm{TS}, \pi[1 \ldots] \vDash \varphi$
iff there is $n \geqslant 0$ such that

$$
\mathrm{TS}, \pi[n \ldots] \models \varphi_{2}
$$

and for every $0 \leqslant k<n$ it holds that TS, $\pi[k \ldots] \models \varphi_{1}$

semantics of CTL*

- CTL* semantics for transition systems TS $\triangleq(S$, Act, $\rightarrow, I, \mathrm{AP}, L)$ from [PMC, Definition 6.82, page 423] :
- given a state formula Φ of CTL*:

$$
\text { TS } \models \Phi \quad \text { iff } \quad \text { TS, } s \models \Phi \quad \text { for every } s \in I
$$

- given a path formula φ of CTL*:

$$
\text { TS } \models \varphi \quad \text { iff } \quad \text { TS, } \pi \models \varphi \quad \text { for every path } \pi \text { starting at some } s \in I
$$

LTL and CTL are sublogics of CTL*

- LTL is a "subset" of CTL*
because a LTL formula φ is equivalent to the CTL* formula $\forall \varphi$
(this requires a rigorous proof, [PMC, Theorem 6.83, page 424] , based on the formal semantics of CTL*

LTL and CTL are sublogics of CTL*

- LTL is a "subset" of CTL*
because a LTL formula φ is equivalent to the CTL* formula $\forall \varphi$
(this requires a rigorous proof, [PMC, Theorem 6.83, page 424] ,
based on the formal semantics of CTL*
- CTL is a subset of CTL* because we can restrict paths formulas to be of the form

$$
\varphi::=\bigcirc \Phi \quad \mid \quad \Phi \mathbb{} \quad \Phi
$$

(check that this restriction on φ corresponds to enforcing the requirement that every temporal connective must be coupled with a quantifier)

(THIS PAGE INTENTIONALLY LEFT BLANK)

