CS 512, Spring 2018, Handout 17 Hoare Logic (Continued)

Assaf Kfoury

15 March 2018

examples using Hoare triples

- write a program P satisfying the specification

$$
\{x>0\} P\{y \cdot y<x\}
$$

- let P be the program " $y:=0$ "
(not very interesting!!)
- let P be the program

$$
\begin{aligned}
& \begin{array}{l}
y:=0 ; \\
\text { while } \quad(y * y<x) \text { do } \\
\\
\\
\quad y:=y+1 ; \\
\quad \text { od; } \\
y:=y-1
\end{array}
\end{aligned}
$$

(y is the largest integer whose square is less than x)

examples using Hoare triples

- write a program P satisfying the specification

$$
\{x>0\} P\left\{y^{2}<x \wedge(y+1)^{2} \geqslant x\right\}
$$

- how about a program P satisfying the following specification?

$$
\{x>0\} P\left\{x-2 y-1 \leqslant y^{2}<x\right\}
$$

- how about a program P satisfying the following specification?

$$
\{x>0\} P\left\{y^{2}<x \wedge \forall z\left(\neg(z=0) \rightarrow(y+z)^{2} \geqslant x\right\}\right.
$$

program P (on preceding page) satisfies 3 specifications above

examples using Hoare triples

- how about a program P satisfying the following specification?

$$
\{x>0\} P\left\{y^{2}<x \wedge(y+2)^{2} \geqslant x\right\}
$$

a different program P has to be written for this Hoare specification

examples using Hoare triples

- should the following Hoare triple hold?

$$
\{x+1=43\} \quad y:=x+1 \quad\{y=43\}
$$

Yes!

- should the following Hoare triple hold?

$$
\{x+1 \leqslant n\} \quad x:=x+1 \quad\{x \leqslant n\}
$$

Yes!

partial correctness vs. total correctness

- partial correctness, [LCS, Definition 4.5, p 265], denoted:

$$
\models_{\text {par }}\{\varphi\} P\{\psi\}
$$

- total correctness, [LCS, Definition 4.6, p 266], denoted:

$$
\models_{\text {tot }}\{\varphi\} P\{\psi\}
$$

- we write $\models_{\text {par }}\{\varphi\} P\{\psi\}$ instead of $\mathcal{M}, \ell \models_{\mathrm{par}}\{\varphi\} P\{\psi\}$, keeping \mathcal{M} (always the same!) and ℓ implicit
similarly for $\models_{\text {tot }}\{\varphi\} P\{\psi\}$ instead of $\mathcal{M}, \ell \models_{\text {tot }}\{\varphi\} P\{\psi\}$

examples of PCA's (partial correctness assertions) and TCS's (total correctness assertions)

- consider program Fac1 (x) which computes the factorial of x and stores the result in y (from Handout 16, also [LCS, Example 4.2, page 262])
- $\models_{\text {par }}\{x \geqslant 0\}$ Fac1 $\{y=x!\}$
- $\models_{\text {tot }}\{x \geqslant 0\}$ Fac1 $\{y=x!\}$
- $\models_{\text {par }}\{T\}$ Fac1 $\{y=x!\} \quad$ ("丁" is the same as "true")- $\left.\right|_{\text {tot }}\{丁\}$ Fac1 $\{y=x!\}$

proof rules for PCA's

$\frac{\{\varphi\} C_{1}\{\theta\} \quad\{\theta\} C_{2}\{\psi\}}{\{\varphi\} C_{1} ; C_{2}\{\psi\}}$ composition
$\{\psi[E / x]\} x:=E\{\psi\}$
$\frac{\{\varphi \wedge B\} C_{1}\{\psi\} \quad\{\varphi \wedge \neg B\} C_{2}\{\psi\}}{\{\varphi\} \text { if } B \text { then } C_{1} \text { else } C_{2}\{\psi\}}$ assignment

proof rules for PCA's

proof rules for TCA's

- rules "composition", "assignment", "if-statement", and "implied" are used again unchanged
- rule "partial-while" needs to be adapted into new rule "total-while"

$$
\frac{\{\psi \wedge B \wedge(0 \leqslant E=z)\} C\{\psi \wedge(0 \leqslant E<z)\}}{\{\psi \wedge(0 \leqslant E)\} \text { while } B \text { do } C \text { od }\{\psi \wedge \neg B\}}
$$

where z is a logical variable (not appearing anywhere in B and C

an imperative language + nondeterminism + concurrency

- integer expressions

$$
E::=\ldots \quad \text { (as before) }
$$

- boolean expressions

$$
B::=\ldots \quad \text { (as before) }
$$

- program expressions (or commands)

$$
\left.\begin{array}{rl}
C & ::= \\
& x:=E|C ; C| \text { if } B \text { then } C \text { else } C \mid \text { while } B \text { do } C \text { od } \\
& C \cup C \\
& C \| C
\end{array} \quad \text { (nondeterminism) }\right)
$$

- execution of program $(x:=1) \cup(x:=2)$ nondeterministically sets x either to 1 or to 2
- execution of program $(x:=1 ; x:=x+1) \|(x:=2 ; x:=x+2)$ interleaves the 4 assignments in any order, as long as x is set to 1 before being incremented by 1 , and set to 2 before being incremented by 2 . possible final values of x are 2,4 , and 5 .

(THIS PAGE INTENTIONALLY LEFT BLANK)

