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using proof rules for PCA’s

I show that `par { y = 5 } x := y + 1 { x = 6 }

{y = 5} (implied)

{y + 1 = 6} (assignment)

x := y + 1

{x = 6}
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using proof rules for PCA’s (continued)

I show that `par { y < 3 } y := y + 1 { y < 4 }

{y < 3} (implied)

{y + 1 < 4} (assignment)

y := y + 1

{y < 4}
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using proof rules for PCA’s (continued)

I show `par { > } z := x; z := z + y; u := z; { u = x + y }

{>} (implied)

{x + y = x + y} (assignment)

z := x;

{z + y = x + y} (assignment)

z := z + y;

{z = x + y} (assignment)

u := z;

{u = x + y}
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wrong uses of the rule (assignment)

assignment-wrong-1
{ ϕ } x := E { ϕ[x 7→ E] }

rule (assignment-wrong-1) allows us to show
`par { x = 0 } x := 1 { 1 = 0 }

assignment-wrong-2
{ ϕ } x := E { ϕ[E 7→ x] }

rule (assignment-wrong-2) allows us to show
`par { x = 0 } x := 1 { x = 0 }
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more proof rules for PCA’s?

Are the following proof rules (not in the book) sound?

{ ϕ1 } C { ψ1 } { ϕ2 } C { ψ2 }
spec conjunction

{ ϕ1 ∧ ϕ2 } C { ψ1 ∧ ψ2 }

{ ϕ1 } C { ψ1 } { ϕ2 } C { ψ2 }
spec disjunction

{ ϕ1 ∨ ϕ2 } C { ψ1 ∨ ψ2 }

YES!

Are these derivable from the rules in Handout 18?

ALMOST . . .
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more program constructs

I Exercise 4.2.2, page 299, in [LCS]: for loops

I Exercise 4.2.3, page 299, in [LCS]: repeat-until loops
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more program constructs (not in the book):
an imperative language + nondeterminism + concurrency

I integer expressions

E ::= . . . (as before)
I boolean expressions

B ::= . . . (as before)
I program expressions (or commands)

C ::= x := E | C;C | if B then C else C | while B do C od
| C ∪ C (nondeterminism)
| C ‖ C (concurrency)

I execution of program (x := 1) ∪ (x := 2)
nondeterministically sets x either to 1 or to 2

I execution of program (x := 1; x := x + 1) ‖ (x := 2; x := x + 2)
interleaves the 4 assignments in any order, as long as x is set to 1
before being incremented by 1, and set to 2 before being
incremented by 2. possible final values of x are 2, 4, and 5.
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more program constructs (not in the book):
an imperative language + nondeterminism + concurrency

I Write proof rules for concurrency

I Write proof rules for non-determinism
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