
CS 512, Spring 2018, Handout 20

Hoare Logic (Continued)

Assaf Kfoury

March 21, 2018

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 1 of 25



using proof rules for PCA’s (program computes r = x mod y and q = x div y)

{>} (implied)

{x = x} (assignment)

r := x;

{x = r} (assignment)

q := 0;

{x = r + y · q} (partial-while)

while y 6 r

{x = r + y · q ∧ y 6 r} (implied)

{x = r + y · q} (implied)

{x = r − y + y · (q + 1)} (assignment)

do r := r − y

{x = r + y · (q + 1)} (assignment)

q := q + 1 od

{x = r + y · q}
{x = r + y · q ∧ r < y}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 2 of 25



using proof rules for PCA’s (program computes r = x mod y and q = x div y)

{>} (implied)

{x = x} (assignment)

r := x;

{x = r} (assignment)

q := 0;

{x = r + y · q} (partial-while)

while y 6 r

{x = r + y · q ∧ y 6 r} (implied)

{x = r + y · q} (implied)

{x = r − y + y · (q + 1)} (assignment)

do r := r − y

{x = r + y · (q + 1)} (assignment)

q := q + 1 od

{x = r + y · q}

{x = r + y · q ∧ r < y}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 3 of 25



using proof rules for PCA’s (program computes r = x mod y and q = x div y)

{>} (implied)

{x = x} (assignment)

r := x;

{x = r} (assignment)

q := 0;

{x = r + y · q} (partial-while)

while y 6 r

{x = r + y · q ∧ y 6 r} (implied)

{x = r + y · q} (implied)

{x = r − y + y · (q + 1)} (assignment)

do r := r − y

{x = r + y · (q + 1)} (assignment)

q := q + 1 od

{x = r + y · q}
{x = r + y · q ∧ r < y}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 4 of 25



using proof rules for PCA’s (program computes r = x mod y and q = x div y)

{>} (implied)

{x = x} (assignment)

r := x;

{x = r} (assignment)

q := 0;

{x = r + y · q} (partial-while)

while y 6 r

{x = r + y · q ∧ y 6 r} (implied)

{x = r + y · q} (implied)

{x = r − y + y · (q + 1)} (assignment)

do r := r − y

{x = r + y · (q + 1)} (assignment)

q := q + 1 od

{x = r + y · q}
{x = r + y · q ∧ r < y}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 5 of 25



using proof rules for PCA’s (program computes r = x mod y and q = x div y)

{>} (implied)

{x = x} (assignment)

r := x;

{x = r} (assignment)

q := 0;

{x = r + y · q} (partial-while)

while y 6 r

{x = r + y · q ∧ y 6 r} (implied)

{x = r + y · q} (implied)

{x = r − y + y · (q + 1)} (assignment)

do r := r − y

{x = r + y · (q + 1)} (assignment)

q := q + 1 od

{x = r + y · q}
{x = r + y · q ∧ r < y}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 6 of 25



using proof rules for PCA’s (program computes r = x mod y and q = x div y)

{>} (implied)

{x = x} (assignment)

r := x;

{x = r} (assignment)

q := 0;

{x = r + y · q} (partial-while)

while y 6 r

{x = r + y · q ∧ y 6 r} (implied)

{x = r + y · q} (implied)

{x = r − y + y · (q + 1)} (assignment)

do r := r − y

{x = r + y · (q + 1)} (assignment)

q := q + 1 od

{x = r + y · q}
{x = r + y · q ∧ r < y}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 7 of 25



using proof rules for PCA’s (program computes r = x mod y and q = x div y)

{>} (implied)

{x = x} (assignment)

r := x;

{x = r} (assignment)

q := 0;

{x = r + y · q} (partial-while)

while y 6 r

{x = r + y · q ∧ y 6 r} (implied)

{x = r + y · q} (implied)

{x = r − y + y · (q + 1)} (assignment)

do r := r − y

{x = r + y · (q + 1)} (assignment)

q := q + 1 od

{x = r + y · q}
{x = r + y · q ∧ r < y}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 8 of 25



using proof rules for PCA’s (program computes r = x mod y and q = x div y)

{>} (implied)

{x = x} (assignment)

r := x;

{x = r} (assignment)

q := 0;

{x = r + y · q} (partial-while)

while y 6 r

{x = r + y · q ∧ y 6 r} (implied)

{x = r + y · q} (implied)

{x = r − y + y · (q + 1)} (assignment)

do r := r − y

{x = r + y · (q + 1)} (assignment)

q := q + 1 od

{x = r + y · q}
{x = r + y · q ∧ r < y}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 9 of 25



using proof rules for PCA’s (program computes r = x mod y and q = x div y)

{>} (implied)

{x = x} (assignment)

r := x;

{x = r} (assignment)

q := 0;

{x = r + y · q} (partial-while)

while y 6 r

{x = r + y · q ∧ y 6 r} (implied)

{x = r + y · q} (implied)

{x = r − y + y · (q + 1)} (assignment)

do r := r − y

{x = r + y · (q + 1)} (assignment)

q := q + 1 od

{x = r + y · q}
{x = r + y · q ∧ r < y}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 10 of 25



using proof rules for PCA’s (program computes r = x mod y and q = x div y)

{>} (implied)

{x = x} (assignment)

r := x;

{x = r} (assignment)

q := 0;

{x = r + y · q} (partial-while)

while y 6 r

{x = r + y · q ∧ y 6 r} (implied)

{x = r + y · q} (implied)

{x = r − y + y · (q + 1)} (assignment)

do r := r − y

{x = r + y · (q + 1)} (assignment)

q := q + 1 od

{x = r + y · q}
{x = r + y · q ∧ r < y}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 11 of 25



using proof rules for PCA’s (program computes r = x mod y and q = x div y)

{>} (implied)

{x = x} (assignment)

r := x;

{x = r} (assignment)

q := 0;

{x = r + y · q} (partial-while)

while y 6 r

{x = r + y · q ∧ y 6 r} (implied)

{x = r + y · q} (implied)

{x = r − y + y · (q + 1)} (assignment)

do r := r − y

{x = r + y · (q + 1)} (assignment)

q := q + 1 od

{x = r + y · q}
{x = r + y · q ∧ r < y}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 12 of 25



using proof rules for PCA’s (from last page of Handout 19)
{>} (implied)

{1 = 0!} (assignment)

y := 1;

{y = 0!} (assignment)

z := 0;

{y = z!} (partial-while)

while z 6= x

{y = z! ∧ z 6= x} (implied)

{y · (z + 1) = (z + 1)!} (assignment)

do z := z + 1

{y · z = z!} (assignment)

y := y ∗ z od

{y = z!}
{y = z! ∧ z = x} (implied)

{y = x!}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 13 of 25



using proof rules for TCA’s (I use logical variable v instead of E0)

{ x > 0 } (implied)

{1 = 0! ∧ 0 6 x− 0 } (assignment)

y := 1;

{y = 0! ∧ 0 6 x− 0 } (assignment)

z := 0;

{y = z! ∧ 0 6 x− z } (total-while)

while z 6= x

{y = z! ∧ z 6= x ∧ 0 6 x− z = v } (implied)

{y · (z + 1) = (z + 1)! ∧ 0 6 x− (z + 1) < v } (assignment)

do z := z + 1

{y · z = z! ∧ 0 6 x− z < v } (assignment)

y := y ∗ z od

{y = z! ∧ 0 6 x− z < v }
{y = z! ∧ z = x} (implied)

{y = x!}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 14 of 25



using proof rules for TCA’s (I use logical variable v instead of E0)

{ x > 0 } (implied)

{1 = 0! ∧ 0 6 x− 0 } (assignment)

y := 1;

{y = 0! ∧ 0 6 x− 0 } (assignment)

z := 0;

{y = z! ∧ 0 6 x− z } (total-while)

while z 6= x

{y = z! ∧ z 6= x ∧ 0 6 x− z = v } (implied)

{y · (z + 1) = (z + 1)! ∧ 0 6 x− (z + 1) < v } (assignment)

do z := z + 1

{y · z = z! ∧ 0 6 x− z < v } (assignment)

y := y ∗ z od

{y = z! ∧ 0 6 x− z < v }
{y = z! ∧ z = x} (implied)

{y = x!}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 15 of 25



using proof rules for TCA’s (I use logical variable v instead of E0)

{ x > 0 } (implied)

{1 = 0! ∧ 0 6 x− 0 } (assignment)

y := 1;

{y = 0! ∧ 0 6 x− 0 } (assignment)

z := 0;

{y = z! ∧ 0 6 x− z } (total-while)

while z 6= x

{y = z! ∧ z 6= x ∧ 0 6 x− z = v } (implied)

{y · (z + 1) = (z + 1)! ∧ 0 6 x− (z + 1) < v } (assignment)

do z := z + 1

{y · z = z! ∧ 0 6 x− z < v } (assignment)

y := y ∗ z od

{y = z! ∧ 0 6 x− z < v }

{y = z! ∧ z = x} (implied)

{y = x!}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 16 of 25



using proof rules for TCA’s (I use logical variable v instead of E0)

{ x > 0 } (implied)

{1 = 0! ∧ 0 6 x− 0 } (assignment)

y := 1;

{y = 0! ∧ 0 6 x− 0 } (assignment)

z := 0;

{y = z! ∧ 0 6 x− z } (total-while)

while z 6= x

{y = z! ∧ z 6= x ∧ 0 6 x− z = v } (implied)

{y · (z + 1) = (z + 1)! ∧ 0 6 x− (z + 1) < v } (assignment)

do z := z + 1

{y · z = z! ∧ 0 6 x− z < v } (assignment)

y := y ∗ z od

{y = z! ∧ 0 6 x− z < v }
{y = z! ∧ z = x} (implied)

{y = x!}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 17 of 25



using proof rules for TCA’s (I use logical variable v instead of E0)

{ x > 0 } (implied)

{1 = 0! ∧ 0 6 x− 0 } (assignment)

y := 1;

{y = 0! ∧ 0 6 x− 0 } (assignment)

z := 0;

{y = z! ∧ 0 6 x− z } (total-while)

while z 6= x

{y = z! ∧ z 6= x ∧ 0 6 x− z = v } (implied)

{y · (z + 1) = (z + 1)! ∧ 0 6 x− (z + 1) < v } (assignment)

do z := z + 1

{y · z = z! ∧ 0 6 x− z < v } (assignment)

y := y ∗ z od

{y = z! ∧ 0 6 x− z < v }
{y = z! ∧ z = x} (implied)

{y = x!}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 18 of 25



using proof rules for TCA’s (I use logical variable v instead of E0)

{ x > 0 } (implied)

{1 = 0! ∧ 0 6 x− 0 } (assignment)

y := 1;

{y = 0! ∧ 0 6 x− 0 } (assignment)

z := 0;

{y = z! ∧ 0 6 x− z } (total-while)

while z 6= x

{y = z! ∧ z 6= x ∧ 0 6 x− z = v } (implied)

{y · (z + 1) = (z + 1)! ∧ 0 6 x− (z + 1) < v } (assignment)

do z := z + 1

{y · z = z! ∧ 0 6 x− z < v } (assignment)

y := y ∗ z od

{y = z! ∧ 0 6 x− z < v }
{y = z! ∧ z = x} (implied)

{y = x!}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 19 of 25



using proof rules for TCA’s (I use logical variable v instead of E0)

{ x > 0 } (implied)

{1 = 0! ∧ 0 6 x− 0 } (assignment)

y := 1;

{y = 0! ∧ 0 6 x− 0 } (assignment)

z := 0;

{y = z! ∧ 0 6 x− z } (total-while)

while z 6= x

{y = z! ∧ z 6= x ∧ 0 6 x− z = v } (implied)

{y · (z + 1) = (z + 1)! ∧ 0 6 x− (z + 1) < v } (assignment)

do z := z + 1

{y · z = z! ∧ 0 6 x− z < v } (assignment)

y := y ∗ z od

{y = z! ∧ 0 6 x− z < v }
{y = z! ∧ z = x} (implied)

{y = x!}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 20 of 25



using proof rules for TCA’s (I use logical variable v instead of E0)

{ x > 0 } (implied)

{1 = 0! ∧ 0 6 x− 0 } (assignment)

y := 1;

{y = 0! ∧ 0 6 x− 0 } (assignment)

z := 0;

{y = z! ∧ 0 6 x− z } (total-while)

while z 6= x

{y = z! ∧ z 6= x ∧ 0 6 x− z = v } (implied)

{y · (z + 1) = (z + 1)! ∧ 0 6 x− (z + 1) < v } (assignment)

do z := z + 1

{y · z = z! ∧ 0 6 x− z < v } (assignment)

y := y ∗ z od

{y = z! ∧ 0 6 x− z < v }
{y = z! ∧ z = x} (implied)

{y = x!}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 21 of 25



using proof rules for TCA’s (I use logical variable v instead of E0)

{ x > 0 } (implied)

{1 = 0! ∧ 0 6 x− 0 } (assignment)

y := 1;

{y = 0! ∧ 0 6 x− 0 } (assignment)

z := 0;

{y = z! ∧ 0 6 x− z } (total-while)

while z 6= x

{y = z! ∧ z 6= x ∧ 0 6 x− z = v } (implied)

{y · (z + 1) = (z + 1)! ∧ 0 6 x− (z + 1) < v } (assignment)

do z := z + 1

{y · z = z! ∧ 0 6 x− z < v } (assignment)

y := y ∗ z od

{y = z! ∧ 0 6 x− z < v }
{y = z! ∧ z = x} (implied)

{y = x!}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 22 of 25



using proof rules for TCA’s (I use logical variable v instead of E0)

{ x > 0 } (implied)

{1 = 0! ∧ 0 6 x− 0 } (assignment)

y := 1;

{y = 0! ∧ 0 6 x− 0 } (assignment)

z := 0;

{y = z! ∧ 0 6 x− z } (total-while)

while z 6= x

{y = z! ∧ z 6= x ∧ 0 6 x− z = v } (implied)

{y · (z + 1) = (z + 1)! ∧ 0 6 x− (z + 1) < v } (assignment)

do z := z + 1

{y · z = z! ∧ 0 6 x− z < v } (assignment)

y := y ∗ z od

{y = z! ∧ 0 6 x− z < v }
{y = z! ∧ z = x} (implied)

{y = x!}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 23 of 25



using proof rules for TCA’s (I use logical variable v instead of E0)

{ x > 0 } (implied)

{1 = 0! ∧ 0 6 x− 0 } (assignment)

y := 1;

{y = 0! ∧ 0 6 x− 0 } (assignment)

z := 0;

{y = z! ∧ 0 6 x− z } (total-while)

while z 6= x

{y = z! ∧ z 6= x ∧ 0 6 x− z = v } (implied)

{y · (z + 1) = (z + 1)! ∧ 0 6 x− (z + 1) < v } (assignment)

do z := z + 1

{y · z = z! ∧ 0 6 x− z < v } (assignment)

y := y ∗ z od

{y = z! ∧ 0 6 x− z < v }
{y = z! ∧ z = x} (implied)

{y = x!}

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 24 of 25



(THIS PAGE INTENTIONALLY LEFT BLANK)

Assaf Kfoury, CS 512, Spring 2018, Handout 20 page 25 of 25


