CS 512, Spring 2018, Handout 20 Hoare Logic (Continued)

Assaf Kfoury

March 21, 2018

Assaf Kfoury, CS 512, Spring 2018, Handout 20

page 1 of 25

r := x;

q := 0;

while $y \leq r$

do
$$r := r - y$$

q := q + 1 od

r := x;

q := 0;

while $y \leq r$

 $do \quad r := r - y$

q := q + 1 od

$$\{x = r + y \cdot q \land r < y\}$$

r := x;

q := 0;

while $y \leq r$

$$q := q + 1 \quad \text{od}$$
$$\{x = r + y \cdot q\}$$
$$\{x = r + y \cdot q \land r < y\}$$

do $r \cdot - r - v$

(program computes $r = x \mod y$ and $q = x \dim y$)

r := x;

q := 0;

while $y \leq r$

$$do \quad r := r - y$$

$$\{x = r + y \cdot (q + 1)\}$$

$$q := q + 1 \quad od$$

$$\{x = r + y \cdot q\}$$

$$\{x = r + y \cdot q \land r < y\}$$

(assignment)

r := x;

q := 0;

while $y \leq r$

$$\{x = r - y + y \cdot (q + 1)\}$$
 (assignment)
do $r := r - y$
 $\{x = r + y \cdot (q + 1)\}$ (assignment)
 $q := q + 1$ **od**
 $\{x = r + y \cdot q\}$
 $\{x = r + y \cdot q \land r < y\}$

(program computes $r = x \mod y$ and $q = x \dim y$)

(implied) (assignment)

(assignment)

r := x;

q := 0;

while $y \leq r$

$$\{x = r + y \cdot q\}$$

$$\{x = r - y + y \cdot (q + 1)\}$$
do $r := r - y$

$$\{x = r + y \cdot (q + 1)\}$$
 $q := q + 1$ od
$$\{x = r + y \cdot q\}$$

$$\{x = r + y \cdot q \land r < y\}$$

(program computes $r = x \mod y$ and $q = x \dim y$)

r := x;

q := 0;

(program computes $r = x \mod y$ and $q = x \dim y$)

r := x;

q := 0; $\{x = r + y \cdot q\}$ (partial-while) while $y \leq r$ $\{x = r + y \cdot q \land y \leq r\}$ (implied) $\{x = r + y \cdot q\}$ (implied) ${x = r - y + y \cdot (q + 1)}$ (assignment) **do** r := r - y $\{x = r + y \cdot (q+1)\}$ (assignment) q := q + 1 od $\{x = r + y \cdot q\}$ $\{x = r + y \cdot q \land r < y\}$

(program computes $r = x \mod y$ and $q = x \dim y$)

r := x: $\{x = r\}$ (assignment) q := 0; $\{x = r + y \cdot q\}$ (partial-while) while $y \leq r$ $\{x = r + y \cdot q \land y \leq r\}$ (implied) $\{x = r + y \cdot q\}$ (implied) ${x = r - y + y \cdot (q + 1)}$ (assignment) **do** r := r - y $\{x = r + y \cdot (q+1)\}$ (assignment) q := q + 1 od $\{x = r + y \cdot q\}$ $\{x = r + y \cdot q \land r < y\}$

(program computes $r = x \mod y$ and $q = x \dim y$)

$\{x = x\}$	(assignment)
r := x;	
$\{x = r\}$	(assignment)
q := 0;	
$\{x = r + y \cdot q\}$	(partial-while)
while $y \leq r$	
$\{x = r + y \cdot q \land y \leqslant r\}$	(implied)
$\{x = r + y \cdot q\}$	(implied)
$\{x = r - y + y \cdot (q+1)\}$	(assignment)
do r := r - y	
$\{x = r + y \cdot (q+1)\}$	(assignment)
q:=q+1 od	
$\{x = r + y \cdot q\}$	
$\{x = r + y \cdot q \land r < y\}$	

$\{\top\}$	(implied)
$\{x = x\}$	(assignment)
r := x;	
$\{x = r\}$	(assignment)
q := 0;	
$\{x = r + y \cdot q\}$	(partial-while)
while $y \leq r$	
$\{x = r + y \cdot q \land y \leqslant r\}$	(implied)
$\{x = r + y \cdot q\}$	(implied)
$\{x = r - y + y \cdot (q+1)\}$	(assignment)
do r := r - y	
$\{x = r + y \cdot (q+1)\}$	(assignment)
q:=q+1 od	
$\{x = r + y \cdot q\}$	
$\{x = r + y \cdot q \land r < y\}$	

using proof rules for PCA's (from last page of Handout 19)

$\{\top\}$	(implied)
$\{1 = 0!\}$	(assignment)
y := 1;	
$\{y = 0!\}$	(assignment)
z := 0;	
$\{y = z!\}$	(partial-while)
while $z \neq x$	
$\{y = z! \land z \neq x\}$	(implied)
$\{y \cdot (z+1) = (z+1)!\}$	(assignment)
do $z := z + 1$	
$\{y \cdot z = z!\}$	(assignment)
y := y * z od	
$\{y = z!\}$	
$\{y = z! \land z = x\}$	(implied)
$\{y = x!\}$	

(I use logical variable v instead of E_0)

y := 1;

z := 0;

while $z \neq x$

do z := z + 1

y := y * z od

(I use logical variable v instead of E_0)

y := 1;

z := 0;

while $z \neq x$

do z := z + 1

y := y * z od

 ${y = x!}$

(I use logical variable v instead of E_0)

y := 1;

z := 0;

while $z \neq x$

do z := z + 1

y := y * z od

$$\{y = z! \land z = x\}$$
$$\{y = x!\}$$

Assaf Kfoury, CS 512, Spring 2018, Handout 20

(implied)

page 16 of 25

(I use logical variable v instead of E_0)

y := 1;

z := 0;

while $z \neq x$

do z := z + 1 y := y * z od $\{y = z! \land 0 \leq x - z < v\}$ $\{y = z! \land z = x\}$ $\{y = x!\}$

(implied)

Assaf Kfoury, CS 512, Spring 2018, Handout 20

page 17 of 25

(I use logical variable v instead of E_0)

y := 1;

z := 0;

while $z \neq x$

do
$$z := z + 1$$

 $\{y \cdot z = z! \land 0 \leq x - z < v\}$ (assignment)
 $y := y * z$ od
 $\{y = z! \land 0 \leq x - z < v\}$
 $\{y = z! \land z = x\}$ (implied)
 $\{y = x!\}$

Assaf Kfoury, CS 512, Spring 2018, Handout 20

page 18 of 25

(I use logical variable v instead of E_0)

y := 1;

z := 0;

while $z \neq x$

$$\{y \cdot (z+1) = (z+1)! \land 0 \leq x - (z+1) < v\}$$
 (assignment)
do $z := z+1$

$$\{y \cdot z = z! \land 0 \leq x - z < v\}$$
 (assignment)
 $y := y * z$ **od**

$$\{y = z! \land 0 \leq x - z < v\}$$

$$\{y = z! \land 0 \leq x - z < v\}$$
 (implied)

$$\{y = x!\}$$

(I use logical variable v instead of E_0)

y := 1;

z := 0;

while
$$z \neq x$$

$$\{y = z! \land z \neq x \land 0 \leqslant x - z = v\}$$
 (implied)

$$\{y \cdot (z+1) = (z+1)! \land 0 \leqslant x - (z+1) < v\}$$
 (assignment)
do $z := z+1$

$$\{y \cdot z = z! \land 0 \leqslant x - z < v\}$$
 (assignment)
 $y := y * z$ od

$$\{y = z! \land 0 \leqslant x - z < v\}$$

$$\{y = z! \land z = x\}$$
 (implied)

$$\{y = x!\}$$

(I use logical variable v instead of E_0)

$$y := 1;$$

$$z := 0;$$

$$\{y = z! \land 0 \leq x - z\}$$
(total-while)
while $z \neq x$

$$\{y = z! \land z \neq x \land 0 \leq x - z = v\}$$
(implied)
$$\{y \cdot (z+1) = (z+1)! \land 0 \leq x - (z+1) < v\}$$
(assignment)
do
$$z := z+1$$

$$\{y \cdot z = z! \land 0 \leq x - z < v\}$$
(assignment)
$$y := y * z \text{ od}$$

$$\{y = z! \land 0 \leq x - z < v\}$$
(implied)
$$\{y = z! \land z = x\}$$
(implied)

(I use logical variable v instead of E_0)

$$y := 1;$$

$$\{y = 0! \land 0 \leq x - 0\}$$
(assignment)
$$z := 0;$$

$$\{y = z! \land 0 \leq x - z\}$$
(total-while)
while $z \neq x$

$$\{y = z! \land z \neq x \land 0 \leq x - z = v\}$$
(implied)
$$\{y \cdot (z + 1) = (z + 1)! \land 0 \leq x - (z + 1) < v\}$$
(assignment)
do
$$z := z + 1$$

$$\{y \cdot z = z! \land 0 \leq x - z < v\}$$
(assignment)
$$y := y * z \text{ od}$$

$$\{y = z! \land 0 \leq x - z < v\}$$
(implied)
$$\{y = z! \land 0 \leq x - z < v\}$$
(implied)
$$\{y = z! \land 0 \leq x - z < v\}$$

(I use logical variable v instead of E_0)

$$\{1 = 0! \land 0 \leq x - 0\}$$
 (assignment)

$$y := 1;$$
 (assignment)

$$z := 0;$$
 (total-while)
while $z \neq x$ (total-while)
while $z \neq x$ ($y = z! \land 0 \leq x - z = v$ } (implied)

$$\{y \cdot (z+1) = (z+1)! \land 0 \leq x - (z+1) < v\}$$
 (assignment)

$$do \quad z := z+1$$
 ($y \cdot z = z! \land 0 \leq x - z < v$ } (assignment)

$$y := y * z \quad od$$

$$\{y = z! \land 0 \leq x - z < v\}$$
 (assignment)

$$y := y * z \quad od$$

$$\{y = z! \land 0 \leq x - z < v\}$$
 (implied)

$$\{y = x! \land z = x\}$$
 (implied)

(I use logical variable v instead of E_0)

$$\{ x \ge 0 \}$$
(implied)

$$\{1 = 0! \land 0 \le x - 0 \}$$
(assignment)

$$y := 1;$$
(assignment)

$$z := 0;$$
(assignment)

$$z := 0;$$
(total-while)
while $z \ne x$

$$\{y = z! \land 0 \le x - z \}$$
(total-while)
while $z \ne x$

$$\{y = z! \land z \ne x \land 0 \le x - z = v \}$$
(implied)

$$\{y \cdot (z+1) = (z+1)! \land 0 \le x - (z+1) < v \}$$
(assignment)

$$do \quad z := z+1$$
(system of a standard or a stand

(THIS PAGE INTENTIONALLY LEFT BLANK)