CS 512, Spring 2018, Handout 21

Probabilistic Computation-Tree Logic (PCTL)

Assaf Kfoury

April 12, 2018

Minimal presentation of PCTL

- Syntax of PCTL:

$$
\begin{array}{ll}
\varphi::=\text { true } \mid \text { false }|p| \neg \varphi\left|\varphi \wedge \varphi^{\prime}\right| \mathbb{P}_{J}(\Psi) & \text { (state formulas) } \\
\Psi::=\varphi \uplus \varphi^{\prime} \mid \varphi \uplus \leqslant n \varphi^{\prime} & \text { (path formulas) }
\end{array}
$$

where p ranges over a finite set AP of atomic propositions, n ranges over \mathbb{N}, and
J ranges over intervals with rational bounds between 0 and 1, i.e.,

$$
\left.\left.J=\left[q_{1}, q_{2}\right] \quad \text { or } \quad J=\right] q_{1}, q_{2}\right] \quad \text { or } \quad J=\left[q_{1}, q_{2}[\quad \text { or } \quad J=] q_{1}, q_{2}[\right.
$$

for some $0 \leqslant q_{1} \leqslant q_{2} \leqslant 1$.

Minimal presentation of PCTL

- Syntax of PCTL:

$$
\begin{array}{ll}
\varphi::=\text { true } \mid \text { false }|p| \neg \varphi\left|\varphi \wedge \varphi^{\prime}\right| \mathbb{P}_{J}(\Psi) & \text { (state formulas) } \\
\Psi::=\varphi \mathbb{U} \varphi^{\prime} \mid \varphi \uplus \uplus^{\leqslant n} \varphi^{\prime} & \text { (path formulas) } \tag{pathformulas}
\end{array}
$$

where p ranges over a finite set AP of atomic propositions, n ranges over \mathbb{N}, and
J ranges over intervals with rational bounds between 0 and 1, i.e.,

$$
\left.\left.J=\left[q_{1}, q_{2}\right] \quad \text { or } \quad J=\right] q_{1}, q_{2}\right] \quad \text { or } \quad J=\left[q_{1}, q_{2}[\quad \text { or } \quad J=] q_{1}, q_{2}[\right.
$$

for some $0 \leqslant q_{1} \leqslant q_{2} \leqslant 1$.
Remark: We use only until "ש" and bounded until "ש $\leqslant n$ " as temporal connectives in this version of PCTL.

- Informal meaning of $\left(\varphi_{1} \mathbb{U} \leqslant n \varphi_{2}\right)$:
" φ_{2} will hold within at most n steps while
φ_{1} holds in all the states that are visited before a φ_{2}-state is reached"

Minimal presentation of PCTL

- Syntax of PCTL - some shorthands:

If $J=\left[q_{1}, q_{2}\right]$ we can read the formula $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{q_{1} \leqslant p \leqslant q_{2}}(\Psi)$, which asserts that path formula Ψ holds with a probability p between q_{1} and q_{2}. If $\left.J=] q_{1}, q_{2}\right]$ we can read the formula $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{q_{1}<p \leqslant q_{2}}(\Psi)$. If $J=\left[q_{1}, q_{2}\left[\right.\right.$ we can read the formula $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{q_{1} \leqslant p<q_{2}}(\Psi)$. If $J=] q_{1}, q_{2}\left[\right.$ we can read the formula $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{q_{1}<p<q_{2}}(\Psi)$.

Minimal presentation of PCTL

- Syntax of PCTL - some shorthands:

If $J=\left[q_{1}, q_{2}\right]$ we can read the formula $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{q_{1} \leqslant p \leqslant q_{2}}(\Psi)$, which asserts that path formula Ψ holds with a probability p between q_{1} and q_{2}.
If $\left.J=] q_{1}, q_{2}\right]$ we can read the formula $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{q_{1}<p \leqslant q_{2}}(\Psi)$.
If $J=\left[q_{1}, q_{2}\left[\right.\right.$ we can read the formula $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{q_{1} \leqslant p<q_{2}}(\Psi)$.
If $J=] q_{1}, q_{2}\left[\right.$ we can read the formula $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{q_{1}<p<q_{2}}(\Psi)$.

- If $J=\left[q_{1}, q_{2}\right]$ and $q_{1}=0$, we can read $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{\leqslant q_{2}}(\Psi)$.

If $J=\left[q_{1}, q_{2}\right]$ and $q_{2}=1$, we can read $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{\geqslant q_{1}}(\Psi)$.
If $J=\left[q_{1}, q_{2}\right]$ and $q_{1}=q_{2}=q$, we can read $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{=q}(\Psi)$.

- And similarly, if $\left.J=] q_{1}, q_{2}\right]$ or $J=\left[q_{1}, q_{2}[\ldots\right.$.

Minimal presentation of PCTL

- Syntax of PCTL - some shorthands:

If $J=\left[q_{1}, q_{2}\right]$ we can read the formula $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{q_{1} \leqslant p \leqslant q_{2}}(\Psi)$, which asserts that path formula Ψ holds with a probability p between q_{1} and q_{2}.

If $\left.J=] q_{1}, q_{2}\right]$ we can read the formula $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{q_{1}<p \leqslant q_{2}}(\Psi)$.
If $J=\left[q_{1}, q_{2}\left[\right.\right.$ we can read the formula $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{q_{1} \leqslant p<q_{2}}(\Psi)$.
If $J=] q_{1}, q_{2}\left[\right.$ we can read the formula $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{q_{1}<p<q_{2}}(\Psi)$.

- If $J=\left[q_{1}, q_{2}\right]$ and $q_{1}=0$, we can read $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{\leqslant q_{2}}(\Psi)$.

If $J=\left[q_{1}, q_{2}\right]$ and $q_{2}=1$, we can read $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{\geqslant q_{1}}(\Psi)$.
If $J=\left[q_{1}, q_{2}\right]$ and $q_{1}=q_{2}=q$, we can read $\mathbb{P}_{J}(\Psi)$ as $\mathbb{P}_{=q}(\Psi)$.

- And similarly, if $\left.J=] q_{1}, q_{2}\right]$ or $J=\left[q_{1}, q_{2}[\ldots\right.$.
- If $J=\left[q_{1}, 1\right]$ and $\Psi=\left(\varphi_{1} \mathbb{U} \varphi_{2}\right)$ we can read $\mathbb{P}_{J}(\Psi)$ as $\left(\varphi_{1} \mathbb{\uplus} q_{1} \varphi_{2}\right)$.
- Etc.

Minimal presentation of PCTL

- Semantics of PCTL:

$$
\begin{array}{ll}
\mathcal{M}, s \models \text { true } & \\
\mathcal{M}, s \models p & \text { iff } \quad p \in L(s) \\
\mathcal{M}, s \models \neg \varphi & \text { iff } \quad \mathcal{M}, s \not \models \varphi \\
\mathcal{M}, s \models \varphi_{1} \wedge \varphi_{2} & \text { iff } \quad \mathcal{M}, s \models \varphi_{1} \text { and } \mathcal{M}, s \models \varphi_{2} \\
\mathcal{M}, s \models \mathbb{P}_{J}(\Psi) & \quad \text { iff } \quad \operatorname{Pr}(\mathcal{M}, s \models \Psi) \in J
\end{array}
$$

where $\operatorname{Pr}(\mathcal{M}, s \models \Psi):=\operatorname{Pr}\{\pi \in \operatorname{Paths}(s) \mid \mathcal{M}, \pi \models \Psi\} \quad$ with:

$$
\begin{array}{ll}
\mathcal{M}, \pi \models \varphi_{1} 巴 \varphi_{2} \quad \text { iff } \quad & \text { there is } j \geqslant 0 \text { such } \pi[j . .] \models \varphi_{2} \text { and } \\
& \pi[i . .] \models \varphi_{1} \text { for every } 0 \leqslant i<j
\end{array}
$$

$$
\mathcal{M}, \pi \models \varphi_{1} \uplus^{\leqslant n} \varphi_{2} \quad \text { iff } \quad \text { there is } 0 \leqslant j \leqslant n \text { such } \pi[j . .] \models \varphi_{2} \text { and }
$$

$$
\pi[i . .] \models \varphi_{1} \text { for every } 0 \leqslant i<j
$$

where $\pi=s_{0} s_{1} s_{2} \cdots$ is an ω-infinite execution path in \mathcal{M}.

Minimal presentation of PCTL

- Definitions of other temporal connectives in terms of \mathbb{U} and $\mathbb{U} \leqslant n$.

1. $\diamond \varphi \triangleq($ true $ய \varphi)$
2. $\diamond^{\leqslant n} \varphi \triangleq$ (true $\left.ய U^{\leqslant n} \varphi\right)$,
a path satisfies $\left(\diamond^{\leqslant n} \varphi\right)$ if it reaches a φ-state within n steps
3. Can you define $\left(\square^{\leqslant n} \varphi\right) \triangleq \neg\left(\diamond^{\leqslant n} \neg \varphi\right)$?
a path satisfies $\left(\square^{\leqslant n} \varphi\right)$ if each of its first $n+1$ states satisfies φ
4. How about defining $\bigcirc \varphi \triangleq\left(\neg \varphi ש^{\leqslant 1} \varphi\right) \vee\left(\right.$ true $\left.巴^{\leqslant 1} \varphi\right)$?
5. $\mathbb{P}_{\leqslant p}(\square \varphi) \triangleq \mathbb{P}_{\geqslant 1-p}(\diamond \neg \varphi)$
6. $\mathbb{P}_{] p, q]}(\square \leqslant n \varphi) \triangleq \mathbb{P}_{[1-q, 1-p[}\left(\diamond^{\leqslant n} \neg \varphi\right)$
7. $\mathbb{P}_{J}\left(\square^{\leqslant n} \varphi\right) \triangleq \mathbb{P}_{J}\left(\varphi \mathrm{~W}^{\leqslant n} \perp\right)$
8. Etc.

Examples of modeling with PCTL

1. $\bigcirc \leqslant 0.2 \varphi$
" φ is true in the next state with probability $\leqslant 0.2$ "
2. $\left(\varphi_{1} \uplus \leqslant 0.3 \varphi_{2}\right)$
"probability of reaching a φ_{2}-state via a φ_{1}-path $\leqslant 0.3$ "
3. $\mathbb{P}_{\leqslant 0.4}\left(\varphi_{1} \mathbb{U} \leqslant 10 \varphi_{2}\right)$ or also $\left(\varphi_{1} \mathbb{U} \leqslant 10.4 \varphi_{2}\right)$
"probability of reaching a φ_{2}-state via a φ_{1}-path in at most 10 steps $\leqslant 0.4$ "

The two next formulas are equivalent (why?):
4. $\mathbb{P}_{\leqslant 0.001}\left(\diamond^{\leqslant 50}\right.$ error)
"probability of an error to occur within 50 steps $\leqslant 0.001$ "
5. $\mathbb{P}_{\geqslant 0.999}(\square \leqslant 50 \neg$ error $)$
"probability of no error to occur within 50 steps $\geqslant 0.999$ "

Examples of modeling with PCTL

6. In a transition system \mathcal{M} where, along every ω-infinite execution path a 6 -sided die is repeatedly cast, the following PCTL formula:

$$
\bigwedge_{1 \leqslant i \leqslant 6} \mathbb{P}_{=1 / 6}\left(\diamond a_{i}\right)
$$

expresses that "each of the 6 possible outcomes is equally probable", where a_{1}, \ldots, a_{6} are atomic propositions representing 6 sides of the die.

Examples of modeling with PCTL

7. $\mathbb{P}_{=1}(\diamond$ delivered $)$
"with probability $=1$ the message will be eventually delivered"
8. $\mathbb{P}_{=1}\left(\square\right.$ (try_to_send $\rightarrow \mathbb{P}_{\geqslant 0.99}(\diamond \leqslant 3$ delivered $\left.\left.)\right)\right)$
"with probability $=1$ every attempt to send the message will result in its delivery in at most 3 steps with probability $\geqslant 0.99$ "

Combining the two preceding formulas:
9. $\mathbb{P}_{=1}(\diamond$ delivered $) \wedge \mathbb{P}_{=1}\left(\square\left(\right.\right.$ try_to_send $\rightarrow \mathbb{P}_{\geqslant 0.99}\left(\diamond^{\leqslant 3}\right.$ delivered $\left.\left.)\right)\right)$
"with probability $=1$ the message will ... and
with probability $=1$ every attempt to send \ldots. ."

Exercise: Check that all the formulas on pages 9, 10, and 11, are valid in the formal syntax of PCTL on page 2.
Hint: Consult the equivalences on page 8.

(THIS PAGE INTENTIONALLY LEFT BLANK)

