CS 512, Spring 2018, Handout 21 Probabilistic Computation-Tree Logic (PCTL)

Assaf Kfoury

April 12, 2018

Assaf Kfoury, CS 512, Spring 2018, Handout 21

Syntax of PCTL:

$$\begin{split} \varphi & ::= \texttt{true} \mid \texttt{false} \mid p \mid \neg \varphi \mid \varphi \land \varphi' \mid \mathbb{P}_{J}(\Psi) \quad (\textit{state formulas}) \\ \Psi & ::= \varphi \sqcup \varphi' \mid \varphi \sqcup^{\leq n} \varphi' \quad (\textit{path formulas}) \end{split}$$

where p ranges over a finite set AP of atomic propositions, n ranges over \mathbb{N} , and J ranges over intervals with rational bounds between 0 and 1, *i.e.*, $J = [q_1, q_2]$ or $J =]q_1, q_2]$ or $J = [q_1, q_2[$ or $J =]q_1, q_2[$

for some $0 \leq q_1 \leq q_2 \leq 1$.

Syntax of PCTL:

$$\begin{split} \varphi & ::= \texttt{true} \mid \texttt{false} \mid p \mid \neg \varphi \mid \varphi \land \varphi' \mid \mathbb{P}_{J}(\Psi) \quad (\textit{state formulas}) \\ \Psi & ::= \varphi \cup \varphi' \mid \varphi \cup \overset{\leq n}{=} \varphi' \quad (\textit{path formulas}) \end{split}$$

where p ranges over a finite set AP of atomic propositions, n ranges over \mathbb{N} , and J ranges over intervals with rational bounds between 0 and 1, *i.e.*,

$$J = [q_1, q_2]$$
 or $J =]q_1, q_2]$ or $J = [q_1, q_2[$ or $J =]q_1, q_2[$

for some $0 \leqslant q_1 \leqslant q_2 \leqslant 1$.

Remark: We use only *until* "U" and *bounded until* " $U^{\leq n}$ " as temporal connectives in this version of PCTL.

• Informal meaning of $(\varphi_1 \sqcup^{\leq n} \varphi_2)$:

" φ_2 will hold within at most *n* steps while

 φ_1 holds in all the states that are visited before a φ_2 -state is reached"

Syntax of PCTL – some shorthands:

If $J = [q_1, q_2]$ we can read the formula $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{q_1 \leq p \leq q_2}(\Psi)$, which asserts that path formula Ψ holds with a probability p between q_1 and q_2 . If $J =]q_1, q_2]$ we can read the formula $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{q_1 \leq p \leq q_2}(\Psi)$. If $J = [q_1, q_2[$ we can read the formula $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{q_1 \leq p < q_2}(\Psi)$. If $J =]q_1, q_2[$ we can read the formula $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{q_1 \leq p < q_2}(\Psi)$.

Syntax of PCTL – some shorthands:

If $J = [q_1, q_2]$ we can read the formula $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{q_1 \leq p \leq q_2}(\Psi)$, which asserts that path formula Ψ holds with a probability p between q_1 and q_2 . If $J = [q_1, q_2]$ we can read the formula $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{q_1 \le p \le q_2}(\Psi)$. If $J = [q_1, q_2]$ we can read the formula $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{q_1 \leq p < q_2}(\Psi)$. If $J = [q_1, q_2]$ we can read the formula $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{q_1 .$

- If $J = [q_1, q_2]$ and $q_1 = 0$, we can read $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{\leq q_2}(\Psi)$. If $J = [q_1, q_2]$ and $q_2 = 1$, we can read $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{\geq q_1}(\Psi)$. If $J = [q_1, q_2]$ and $q_1 = q_2 = q$, we can read $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{=q}(\Psi)$.
- And similarly, if $J = [q_1, q_2]$ or $J = [q_1, q_2]$

Syntax of PCTL – some shorthands:

If $J = [q_1, q_2]$ we can read the formula $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{q_1 \leq p \leq q_2}(\Psi)$, which asserts that path formula Ψ holds with a probability p between q_1 and q_2 . If $J =]q_1, q_2]$ we can read the formula $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{q_1 \leq p \leq q_2}(\Psi)$. If $J = [q_1, q_2[$ we can read the formula $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{q_1 \leq p < q_2}(\Psi)$. If $J =]q_1, q_2[$ we can read the formula $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{q_1 \leq p < q_2}(\Psi)$.

- ▶ If $J = [q_1, q_2]$ and $q_1 = 0$, we can read $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{\leq q_2}(\Psi)$. If $J = [q_1, q_2]$ and $q_2 = 1$, we can read $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{\geq q_1}(\Psi)$. If $J = [q_1, q_2]$ and $q_1 = q_2 = q$, we can read $\mathbb{P}_J(\Psi)$ as $\mathbb{P}_{=q}(\Psi)$. ▶ And similarly, if $J =]q_1, q_2]$ or $J = [q_1, q_2]$
- ▶ If $J = [q_1, 1]$ and $\Psi = (\varphi_1 \cup \varphi_2)$ we can read $\mathbb{P}_J(\Psi)$ as $(\varphi_1 \cup \mathbb{P}_{q_1} \varphi_2)$. ▶ Etc.

Semantics of PCTL:

where $\Pr(\mathcal{M}, s \models \Psi) := \Pr\{\pi \in \mathsf{Paths}(s) \mid \mathcal{M}, \pi \models \Psi\}$ with:

$$\begin{split} \mathcal{M}, \pi &\models \varphi_1 \Downarrow \varphi_2 & \text{ iff } \quad \text{there is } j \geqslant 0 \text{ such } \pi[j..] \models \varphi_2 \text{ and } \\ \pi[i..] &\models \varphi_1 \text{ for every } 0 \leqslant i < j \\ \mathcal{M}, \pi &\models \varphi_1 \Downarrow^{\leqslant n} \varphi_2 & \text{ iff } \quad \text{there is } 0 \leqslant j \leqslant n \text{ such } \pi[j..] \models \varphi_2 \text{ and } \\ \pi[i..] &\models \varphi_1 \text{ for every } 0 \leqslant i < j \\ \end{split}$$

where $\pi = s_0 s_1 s_2 \cdots$ is an ω -infinite execution path in \mathcal{M} .

- Definitions of other temporal connectives in terms of U and U^{≤n}.
 - 1. $\Diamond \varphi \triangleq (\texttt{true} \ \uplus \ \varphi)$

2.
$$\Diamond^{\leqslant n} \varphi \triangleq (\texttt{true} \boxtimes^{\leqslant n} \varphi),$$

a path satisfies $(\Diamond^{\leqslant n} \varphi)$ if it reaches a φ -state within n steps

- 3. Can you define $(\Box^{\leq n} \varphi) \triangleq \neg(\Diamond^{\leq n} \neg \varphi)$? a path satisfies $(\Box^{\leq n} \varphi)$ if each of its first n + 1 states satisfies φ
- 4. How about defining $\bigcirc \varphi \triangleq (\neg \varphi \boxtimes^{\leqslant 1} \varphi) \lor (\texttt{true} \boxtimes^{\leqslant 1} \varphi)$?

5.
$$\mathbb{P}_{\leq p}(\Box \varphi) \triangleq \mathbb{P}_{\geq 1-p}(\Diamond \neg \varphi)$$

6. $\mathbb{P}_{]p,q]}(\Box^{\leqslant n}\varphi) \triangleq \mathbb{P}_{[1-q,1-p[}(\diamondsuit^{\leqslant n}\neg\varphi))$

7.
$$\mathbb{P}_J(\Box^{\leqslant n} \varphi) \triangleq \mathbb{P}_J(\varphi \mathbf{W}^{\leqslant n} \perp)$$

8. Etc. ...

Assaf Kfoury, CS 512, Spring 2018, Handout 21

Examples of modeling with PCTL

1. $\bigcirc \leq 0.2 \varphi$ " φ is true in the next state with probability ≤ 0.2 "

 $2. \ \left(\varphi_1 \, \mathbb{U}^{\leqslant 0.3} \, \varphi_2\right)$

"probability of reaching a φ_2 -state via a φ_1 -path $\leqslant 0.3$ "

3. $\mathbb{P}_{\leq 0.4}(\varphi_1 \boxtimes^{\leq 10} \varphi_2)$ or also $(\varphi_1 \boxtimes_{\leq 0.4}^{\leq 10} \varphi_2)$ "probability of reaching a φ_2 -state via a φ_1 -path in at most 10 steps ≤ 0.4 "

The two next formulas are equivalent (why?):

4. $\mathbb{P}_{\leq 0.001}(\Diamond^{\leq 50} \operatorname{error})$

"probability of an error to occur within $50 \; \text{steps} \leqslant 0.001$ "

5.
$$\mathbb{P}_{\geq 0.999}(\Box^{\leq 50} \neg \text{error})$$

"probability of **no** error to occur within 50 steps ≥ 0.999 "

Examples of modeling with PCTL

6. In a transition system \mathcal{M} where, along every ω -infinite execution path a 6-sided die is repeatedly cast, the following PCTL formula:

$$\bigwedge_{1\leqslant i\leqslant 6}\mathbb{P}_{=1/6}(\Diamond a_i)$$

expresses that "each of the 6 possible outcomes is equally probable", where a_1, \ldots, a_6 are atomic propositions representing 6 sides of the die.

Examples of modeling with PCTL

7. $\mathbb{P}_{=1}(\Diamond \text{ delivered})$ "with probability = 1 the message will be eventually delivered"

8.
$$\mathbb{P}_{=1}\left(\Box\left(\mathsf{try_to_send} \to \mathbb{P}_{\geq 0.99}(\Diamond^{\leq 3} \, \mathsf{delivered})\right)\right)$$

"with probability = 1 every attempt to send the message will result in its delivery in at most 3 steps with probability ≥ 0.99 "

Combining the two preceding formulas:

9. $\mathbb{P}_{=1}(\Diamond \text{ delivered}) \land \mathbb{P}_{=1}(\Box (\text{try_to_send} \to \mathbb{P}_{\geq 0.99}(\Diamond^{\leq 3} \text{ delivered})))$ "with probability = 1 the message will ... and

with probability = 1 every attempt to send \dots "

Exercise: Check that all the formulas on pages 9, 10, and 11, are valid in the formal syntax of PCTL on page 2.

Hint: Consult the equivalences on page 8. Assaf Kfoury, CS 512, Spring 2018, Handout 21

(THIS PAGE INTENTIONALLY LEFT BLANK)