CS 512, Spring 2018, Handout 22

Counterexamples and Probabilistic Model Checking

Assaf Kfoury

April 17, 2018

Counterexamples - in general

(material in this and later slides mostly due to Prof. J-P Katoen of Aachen Univ)

- Reminder: model checking = bug hunting , bugs are discovered by counterexamples, states that refute a given property (desirable or harmful).
- Counterexamples are (formally expressed) instances of system behavior that contradict a system's (formally expressed) specification.

Counterexamples - in general

- Counterexamples in LTL are typically finite execution paths:
- To contradict ($\square \varphi$), we want a finite path ending in a $(\neg \varphi)$-state.
- To contradict $(\diamond \varphi)$, we want a finite $(\neg \varphi)$-path leading to a $(\neg \varphi)$-cycle.

Methods of LTL model-checkers incorporate forms of breadth-first search for generating shortest counterexamples (e.g., see Handout 13).

Counterexamples - in general

- Counterexamples in LTL are typically finite execution paths:
- To contradict $(\square \varphi)$, we want a finite path ending in a $(\neg \varphi)$-state.
- To contradict $(\diamond \varphi)$, we want a finite $(\neg \varphi)$-path leading to a $(\neg \varphi)$-cycle.

Methods of LTL model-checkers incorporate forms of breadth-first search for generating shortest counterexamples (e.g., see Handout 13).

- Counterexamples in CTL are typically finite trees of execution paths:
- To contradict universal CTL, we want all paths in a tree of execution paths.
- To contradict existential CTL, we want one path in a tree of execution paths.

Methods of CTL model-checkers also incorporate some form of breadth-first search, combined with more advanced data structures.

Counterexamples - in PCTL (Probabilistic CTL)

- Problem statement:

Given a WFF of PCTL of the form $\mathbb{P}_{\leqslant p}(\varphi)$

- for example, in shorthand, $\left(p \mathbb{U}^{\leqslant 1 / 2} q\right)$ or $(\bigcirc \leqslant 2 / 3 p)$ together with a Markov chain \mathcal{M} and a state s in \mathcal{M}, we want to decide whether:

$$
\mathcal{M}, s \not \vDash \mathbb{P}_{\leqslant p}(\varphi) \quad \text { or, more succintly, } \quad s \not \vDash \mathbb{P}_{\leqslant p}(\varphi)
$$

Counterexamples - in PCTL (Probabilistic CTL)

- Problem statement:

Given a WFF of PCTL of the form $\mathbb{P}_{\leqslant p}(\varphi)$

- for example, in shorthand, $\left(p \omega^{\leqslant 1 / 2} q\right)$ or $(\bigcirc \leqslant 2 / 3 p)$ together with a Markov chain \mathcal{M} and a state s in \mathcal{M}, we want to decide whether:

$$
\mathcal{M}, s \not \vDash \mathbb{P}_{\leqslant p}(\varphi) \quad \text { or, more succintly, } \quad s \not \vDash \mathbb{P}_{\leqslant p}(\varphi)
$$

- A counterexample C for $\mathbb{P}_{\leqslant p}(\varphi)$ at state s in \mathcal{M} is a set of finite paths (or evidences) in \mathcal{M} satisfying:
- if $\pi \in C$, then π starts at s and $\pi \models \varphi$, and
- $\operatorname{Pr}(C)>p$ where $\operatorname{Pr}(C) \triangleq \sum_{\pi \in C} \operatorname{Pr}(\pi)$, i.e., the sum of the probabilities of the paths in C, exceeds p.

If $\operatorname{Pr}(C)>p$, we conclude that $s \not \vDash \mathbb{P}_{\leqslant p}(\varphi)$.

Counterexamples - in PCTL (Probabilistic CTL)

- Problem statement:

Given a WFF of PCTL of the form $\mathbb{P}_{\leqslant p}(\varphi)$

- for example, in shorthand, $(p \in \leqslant 1 / 2 q)$ or $(O \leqslant 2 / 3 p)$ together with a Markov chain \mathcal{M} and a state s in \mathcal{M}, we want to decide whether:

$$
\mathcal{M}, s \not \models \mathbb{P}_{\leqslant p}(\varphi) \quad \text { or, more succintly, } \quad s \not \models \mathbb{P}_{\leqslant p}(\varphi)
$$

- A counterexample C for $\mathbb{P}_{\leqslant p}(\varphi)$ at state s in \mathcal{M} is a set of finite paths (or evidences) in \mathcal{M} satisfying:
- if $\pi \in C$, then π starts at s and $\pi \models \varphi$, and
- $\operatorname{Pr}(C)>p$ where $\operatorname{Pr}(C) \triangleq \sum_{\pi \in C} \operatorname{Pr}(\pi)$, i.e., the sum of the probabilities of the paths in C, exceeds p. If $\operatorname{Pr}(C)>p$, we conclude that $s \notin \mathbb{P}_{\leqslant p}(\varphi)$.
- In this handout, we limit attention to discrete-time Markov chains we delay work done on continuous-time Markov chains till next year (!).

Counterexamples - in PCTL (Probabilistic CTL)

- A counterexample C for $\mathbb{P}_{\leqslant p}(\varphi)$ is minimal if $|C| \leqslant\left|C^{\prime}\right|$ for any counterexample C^{\prime} for $\mathbb{P}_{\leqslant p}(\varphi)$.

Counterexamples - in PCTL (Probabilistic CTL)

- A counterexample C for $\mathbb{P}_{\leqslant p}(\varphi)$ is minimal if $|C| \leqslant\left|C^{\prime}\right|$ for any counterexample C^{\prime} for $\mathbb{P}_{\leqslant p}(\varphi)$.
- A counterexample C for $\mathbb{P}_{\leqslant p}(\varphi)$ is smallest if C is minimal and $\operatorname{Pr}(C) \geqslant \operatorname{Pr}\left(C^{\prime}\right)$ for any minimal counterexample C^{\prime} for $\mathbb{P}_{\leqslant p}(\varphi)$.

Counterexamples - in PCTL (Probabilistic CTL)

- A counterexample C for $\mathbb{P}_{\leqslant p}(\varphi)$ is minimal if $|C| \leqslant\left|C^{\prime}\right|$ for any counterexample C^{\prime} for $\mathbb{P}_{\leqslant p}(\varphi)$.
- A counterexample C for $\mathbb{P}_{\leqslant p}(\varphi)$ is smallest if C is minimal and $\operatorname{Pr}(C) \geqslant \operatorname{Pr}\left(C^{\prime}\right)$ for any minimal counterexample C^{\prime} for $\mathbb{P}_{\leqslant p}(\varphi)$.
- Fact: Counterexamples for non-strict probability bounds (i.e., bounds of the form " $\leqslant p$ ", not " $<p$ ") are finite.

Counterexamples - in PCTL (Probabilistic CTL)

- A counterexample C for $\mathbb{P}_{\leqslant p}(\varphi)$ is minimal if $|C| \leqslant\left|C^{\prime}\right|$ for any counterexample C^{\prime} for $\mathbb{P}_{\leqslant p}(\varphi)$.
- A counterexample C for $\mathbb{P}_{\leqslant p}(\varphi)$ is smallest if C is minimal and $\operatorname{Pr}(C) \geqslant \operatorname{Pr}\left(C^{\prime}\right)$ for any minimal counterexample C^{\prime} for $\mathbb{P}_{\leqslant p}(\varphi)$.
- Fact: Counterexamples for non-strict probability bounds (i.e., bounds of the form " $\leqslant p$ ", not " $<p$ ") are finite.
- Infinite counterexamples may be needed for WFF's with strict probability bounds.
- For example, an infinite counterexample is needed for $s_{0} \not \vDash \mathbb{P}_{<1}(\diamond a)$, i.e., for $s_{0} \not \models\left(\diamond^{<1} a\right)$ in the following Markov chain:

Example showing how to handle "until" WFF's in PCTL"

1 Partly inspired by Example 10.41 in [PMC, page 786].

Example showing how to handle "until" WFF's in PCTL"

blue states: only prop WFF φ holds,
red states : only prop WFF ψ holds, yellow states : neither φ nor ψ hold.

Wanted:
counterexamples for $s_{0} \not \vDash\left(\boldsymbol{\varphi} \mathbb{U}^{\leqslant 1 / 2} \boldsymbol{\psi}\right)$

[^0]
Example showing how to handle "until" WFF's in PCTL"

blue states: only prop WFF φ holds, red states : only prop WFF ψ holds, yellow states : neither φ nor ψ hold.

Wanted:
counterexamples for $s_{0} \not \vDash\left(\varphi \operatorname{U}^{\leqslant 1 / 2} \psi\right)$

evidence	probability
$\pi_{1} \triangleq s_{0} s_{1} t_{1}$	0.2
$\pi_{2} \triangleq s_{0} s_{1} s_{2} t_{1}$	0.2
$\pi_{3} \triangleq s_{0} s_{2} t_{1}$	0.15
$\pi_{4} \triangleq s_{0} s_{1} s_{2} t_{2}$	0.12
$\pi_{5} \triangleq s_{0} s_{2} t_{2}$	0.09
\ldots	\cdots

Example showing how to handle "until" WFF's in PCTL"

Wanted:
counterexamples for $s_{0} \not \vDash\left(\varphi \uplus^{\leqslant 1 / 2} \psi\right)$

evidence	probability
$\pi_{1} \triangleq s_{0} s_{1} t_{1}$	0.2
$\pi_{2} \triangleq s_{0} s_{1} s_{2} t_{1}$	0.2
$\pi_{3} \triangleq s_{0} s_{2} t_{1}$	0.15
$\pi_{4} \triangleq s_{0} s_{1} s_{2} t_{2}$	0.12
$\pi_{5} \triangleq s_{0} s_{2} t_{2}$	0.09
\ldots	\ldots

	counterexample	cardinality	probability
	$\left\{\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}, \pi_{5}\right\}$	5	0.76
	$\left\{\pi_{1}, \pi_{3}, \pi_{4}, \pi_{5}\right\}$	4	0.56
	$\left\{\pi_{2}, \pi_{3}, \pi_{4}, \pi_{5}\right\}$	4	0.76
minimal \longrightarrow	$\left\{\pi_{1}, \pi_{2}, \pi_{4}\right\}$	3	0.52
minimal \longrightarrow	$\left\{\pi_{1}, \pi_{2}, \pi_{3}\right\}$	3	0.55

[^1]
Example showing how to handle "until" WFF's in PCTL"

Wanted:
counterexamples for $s_{0} \not \vDash\left(\varphi \uplus^{\leqslant 1 / 2} \psi\right)$

evidence	probability
$\pi_{1} \triangleq s_{0} s_{1} t_{1}$	0.2
$\pi_{2} \triangleq s_{0} s_{1} s_{2} t_{1}$	0.2
$\pi_{3} \triangleq s_{0} s_{2} t_{1}$	0.15
$\pi_{4} \triangleq s_{0} s_{1} s_{2} t_{2}$	0.12
$\pi_{5} \triangleq s_{0} s_{2} t_{2}$	0.09
\ldots	\ldots

	counterexample	cardinality	probability
	$\left\{\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}, \pi_{5}\right\}$	5	0.76
	$\left\{\pi_{1}, \pi_{3}, \pi_{4}, \pi_{5}\right\}$	4	0.56
	$\left\{\pi_{2}, \pi_{3}, \pi_{4}, \pi_{5}\right\}$	4	0.76
	$\left\{\pi_{1}, \pi_{2}, \pi_{4}\right\}$	3	0.52
smallest \longrightarrow	$\left\{\pi_{1}, \pi_{2}, \pi_{3}\right\}$	3	0.55

[^2]
Obtaining smallest counterexamples

Step 1: Make all ψ-states and all $(\neg \varphi \wedge \neg \psi)$-states absorbing, which requires eliminating some transitions (e.g., the transitions out of t_{1} and u) and making the transition probability $=1$ on all self-loops.

Adapting a bit more

Step 2: Insert a sink state and redirect all outgoing edges of ψ-states to it.

A weighted diagraph

Step 3: Turn the Markov chain into a weighted digraph (directed graph), where:

$$
w\left(s, s^{\prime}\right) \triangleq \log \left(\frac{1}{\operatorname{Pr}\left(s, s^{\prime}\right)}\right)
$$

for every pair of nodes/states s and s^{\prime}. The logarithm can be base 10 , or base e, or base 2 - it does not matter which base we choose.

A simple derivation

Given a finite path $\pi \triangleq s_{0} s_{1} s_{2} \cdots s_{n}$:

$$
\begin{aligned}
w(\pi) & =w\left(s_{0}, s_{1}\right)+w\left(s_{1}, s_{2}\right)+\cdots+w\left(s_{n-1}, s_{n}\right) \\
& =\log \left(\frac{1}{\operatorname{Pr}\left(s_{0}, s_{1}\right)}\right)+\log \left(\frac{1}{\operatorname{Pr}\left(s_{1}, s_{2}\right)}\right)+\cdots+\log \left(\frac{1}{\operatorname{Pr}\left(s_{n-1}, s_{n}\right)}\right) \\
& =\log \left(\frac{1}{\operatorname{Pr}\left(s_{0}, s_{1}\right) \cdot \operatorname{Pr}\left(s_{1}, s_{2}\right) \cdot \cdots \cdot \operatorname{Pr}\left(s_{n-1}, s_{n}\right)}\right) \\
& =\log \left(\frac{1}{\operatorname{Pr}(\pi)}\right)
\end{aligned}
$$

Conclusion 1: For all finite paths π and π^{\prime} in the Markov chain, we have:

Conclusion 2: Finding a strongest evidence in the Markov chain is translated to a shortest path problem in the weighted digraph.

Another example: How to handle reachability properties

Wanted: counterexamples for $\mathbb{P}_{\leqslant 0.4}(\diamond \varphi)$, or, in shorthand, $(\diamond \leqslant 0.4 \varphi)$.

blue state: only one φ-state.

Another example: How to handle reachability properties

Wanted: counterexamples for $\mathbb{P}_{\leqslant 0.4}(\diamond \varphi)$, or, in shorthand, $(\diamond \leqslant 0.4 \varphi)$.

Approach 1, based on using the transition (right-stochastic) 9×9 matrix A :
s_{0}
s_{1}
s_{2}
s_{3}
s_{4}
s_{5}
s_{6}
s_{7}
$s_{8}$$\quad\left[\begin{array}{ccccccccc}s_{0} & s_{1} & s_{2} & s_{3} & s_{4} & s_{5} & s_{6} & s_{7} & s_{8} \\ 0 & .5 & .25 & 0 & 0 & .25 & 0 & 0 & 0 \\ 0 & 0 & .5 & .5 & 0 & 0 & 0 & 0 & 0 \\ 0 & .5 & 0 & 0 & .5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & .7 & 0 & .3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & .5 & 0 & 0 & 0 & .5 & 0 \\ 0 & 0 & 0 & 0 & 0 & .25 & .25 & 0 & .5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
blue state : only one $\boldsymbol{\varphi}$-state.

Another example: How to handle reachability properties

Wanted: counterexamples for $\mathbb{P}_{\leqslant 0.4}(\diamond \varphi)$, or, in shorthand, $\left(\diamond^{\leqslant 0.4} \varphi\right)$.

Approach 1, based on using the transition (right-stochastic) 9×9 matrix A :
s_{0}
s_{1}
s_{2}
s_{3}
s_{4}
s_{5}
s_{6}
s_{7}
$s_{8}$$\quad\left[\begin{array}{ccccccccc}s_{0} & s_{1} & s_{2} & s_{3} & s_{4} & s_{5} & s_{6} & s_{7} & s_{8} \\ 0 & .5 & .25 & 0 & 0 & .25 & 0 & 0 & 0 \\ 0 & 0 & .5 & .5 & 0 & 0 & 0 & 0 & 0 \\ 0 & .5 & 0 & 0 & .5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & .7 & 0 & .3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & .5 & 0 & 0 & 0 & .5 & 0 \\ 0 & 0 & 0 & 0 & 0 & .25 & .25 & 0 & .5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
blue state: only one $\boldsymbol{\varphi}$-state.

- initial distribution over 9 states is $\boldsymbol{d}_{0}=(1,0,0,0,0,0,0,0,0)=\left[\begin{array}{lll}100000000\end{array}\right]$.
- distribution after 1 transition, 2 transitions, and 3 transitions, respectively:

$$
\begin{aligned}
& \boldsymbol{d}_{1}=\boldsymbol{d}_{0} \cdot A=(0, .5, .25,0,0, .25,0,0,0) \\
& \boldsymbol{d}_{2}=\boldsymbol{d}_{0} \cdot A^{2}=(0, .125, .25, .25, .125,0, .25,0,0) \\
& \boldsymbol{d}_{3}=\boldsymbol{d}_{0} \cdot A^{3}=(0, .2125, .0625, .475, .125,0,0, .125,0)
\end{aligned}
$$

Another example: How to handle reachability properties

Wanted: counterexamples for $\mathbb{P}_{\leqslant 0.4}(\diamond \varphi)$, or, in shorthand, $\left(\diamond^{\leqslant 0.4} \varphi\right)$.

Approach 1, based on using the transition (right-stochastic) 9×9 matrix A :
s_{0}
s_{1}
s_{2}
s_{3}
s_{4}
s_{5}
s_{6}
s_{7}
$s_{8}$$\quad\left[\begin{array}{ccccccccc}s_{0} & s_{1} & s_{2} & s_{3} & s_{4} & s_{5} & s_{6} & s_{7} & s_{8} \\ 0 & .5 & .25 & 0 & 0 & .25 & 0 & 0 & 0 \\ 0 & 0 & .5 & .5 & 0 & 0 & 0 & 0 & 0 \\ 0 & .5 & 0 & 0 & .5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & .7 & 0 & .3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & .5 & 0 & 0 & 0 & .5 & 0 \\ 0 & 0 & 0 & 0 & 0 & .25 & .25 & 0 & .5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
blue state: only one φ-state.

- Conclusion: Starting from s_{0}, state s_{3} is reached with probability $.475>.4$ after 3 transitions.
- Hence, there is a counterexample C for $s_{0} \not \vDash\left(\diamond^{\leqslant .4} \varphi\right)$ consisting of finite paths, each with at most 3 transitions - but we have not determined the members of the counterexample C yet, nor do we know if it is minimal or smallest (cf. page 8)

Another example: How to handle reachability properties

Wanted: counterexamples for $\mathbb{P}_{\leqslant 0.4}(\diamond \varphi)$, or, in shorthand, $\left(\diamond^{\leqslant 0.4} \varphi\right)$.

- Approach 2: Let S be the set of states in the Markov chain, $s_{0} \in S$ a single initial state, and Target $\subseteq S$ a non-empty set of target states

For every state s, we define the probability p_{s} of reaching the states in Target from s :

$$
p_{s} \triangleq \begin{cases}1 & \text { if } s \in \text { Target } \\ 0 & \text { if no state in Target is reachable from } s \\ \sum_{s^{\prime} \in S} \operatorname{Pr}\left(s, s^{\prime}\right) \cdot p_{s^{\prime}} & \text { otherwise }\end{cases}
$$

- This defines a system of linear equations over the variables $V \triangleq\left\{p_{s} \mid s \in S\right\}$ whose unique solution $\sigma: V \rightarrow[0,1]$ assigns to each p_{s} the probability of reaching Target from s.
- Hence, $\mathcal{M} \models \mathbb{P}_{\leqslant \rho}(\diamond$ target $)$ iff $\sigma\left(p_{s_{0}}\right) \leqslant \rho$, where "target" is an atomic proposition which labels every state in Target.
- Advantage of Approach 2 over Approach 1: Solving a system of linear equations instead of repeatedly multiplying stochastic matrices.

Another example: How to handle reachability properties

Wanted: counterexamples for $\mathbb{P}_{\leqslant 0.4}(\diamond \varphi)$, or, in shorthand, $\left(\diamond^{\leqslant 0.4} \varphi\right)$.

- For the Markov chain \mathcal{M} shown on slide 21, we obtain:

$$
\begin{array}{ll}
p_{s_{0}}=0.5 p_{s_{1}}+0.25 p_{s_{2}}+0.25 p_{s_{5}} & p_{s_{1}}=0.5 p_{s_{2}}+0.5 p_{s_{3}} \\
p_{s_{2}}=0.5 p_{s_{1}}+0.5 p_{s_{4}} & p_{s_{3}}=1 \\
p_{s_{4}}=0.7 p_{s_{1}}+0.3 p_{s_{3}} & p_{s_{5}}=1 p_{s_{6}} \\
p_{s_{6}}=0.5 p_{s_{3}}+0.5 p_{s_{7}} & p_{s_{7}}=0.25 p_{s_{5}}+0.25 p_{s_{6}}
\end{array}
$$

We can remove all states from \mathcal{M} which do not reach states in Target. In this example, we remove s_{8}, thus also removing equation $p_{s_{8}}=0$.

- Solving the system of linear equations (by hand or by using Matlab or Octave), we obtain a solution $\sigma:\left\{p_{s_{0}}, p_{s_{1}}, \ldots, p_{s_{7}}\right\} \rightarrow[0,1]$ such that:

$$
\begin{array}{ll}
\sigma\left(p_{s_{0}}\right)=11 / 12 & \sigma\left(p_{s_{1}}\right)=\sigma\left(p_{s_{2}}\right)=\sigma\left(p_{s_{3}}\right)=\sigma\left(p_{s_{4}}\right)=1 \\
\sigma\left(p_{s_{5}}\right)=\sigma\left(p_{s_{6}}\right)=2 / 3 & \sigma\left(p_{s_{7}}\right)=1 / 3
\end{array}
$$

- Conclusion: Starting from s_{0}, state s_{3} is reached with probability $\frac{11}{12}>.4$ Hence, there is a counterexample C for $s_{0} \not \models\left(\diamond^{\leqslant .4} \varphi\right)$, though we do not know the members of C yet!!

Another example: How to handle reachability properties

Wanted: counterexamples for $\mathbb{P}_{\leqslant 0.4}(\diamond \varphi)$, or, in shorthand, $\left(\diamond^{\leqslant 0.4} \varphi\right)$.

- Approach 3, most efficient and most direct, repeats the steps carried out to find counterexamples for $s_{0} \not \models\left(\boldsymbol{\varphi} \uplus^{\leqslant 1 / 2} \boldsymbol{\psi}\right)$, from slide 12 to slide 20.
- We obtain, in order of decreasing probabilities:

evidence	weight (rounded)	probability
$\pi_{1} \triangleq s_{0} s_{1} s_{3}$	1.39	0.25
$\pi_{2} \triangleq s_{0} s_{5} s_{6} s_{3}$	2.08	0.125
$\pi_{3} \triangleq s_{0} s_{2} s_{1} s_{3}$	2.77	0.0625
$\pi_{4} \triangleq s_{0} s_{1} s_{2} s_{1} s_{3}$	2.77	0.0625
$\pi_{5} \triangleq s_{0} s_{2} s_{4} s_{1} s_{3}$	3.13	0.04375
$\pi_{6} \triangleq s_{0} s_{1} s_{2} s_{4} s_{1} s_{3}$	3.13	0.04375
$\pi_{7} \triangleq s_{0} s_{2} s_{4} s_{3}$	3.28	0.03750
$\pi_{8} \triangleq s_{0} s_{1} s_{2} s_{4} s_{3}$	3.28	0.03750
\cdots	\cdots	\cdots

where we take weight $w\left(s, s^{\prime}\right) \triangleq-\ln \left(\operatorname{Pr}\left(s, s^{\prime}\right)\right)$ for all states $s, s^{\prime} \in S$.

- $\sum_{i \in\{1,2,3\}} \operatorname{Pr}\left(\pi_{i}\right)=\sum_{i \in\{1,2,4\}} \operatorname{Pr}\left(\pi_{i}\right)=0.4375>0.4$
(but why not $\left\{\pi_{1}, \pi_{2}, s_{0} s_{2} s_{4}\right\}$ or $\left\{\pi_{1}, \pi_{2}, s_{0} s_{1} s_{2} s_{4}\right\}$???)
implies both $\left\{\pi_{1}, \pi_{2}, \pi_{3}\right\}$ and $\left\{\pi_{1}, \pi_{2}, \pi_{4}\right\}$ are smallest counterexamples.

(THIS PAGE INTENTIONALLY LEFT BLANK)

[^0]: Partly inspired by Example 10.41 in [PMC, page 786].

[^1]: Partly inspired by Example 10.41 in [PMC, page 786].

[^2]: Partly inspired by Example 10.41 in [PMC, page 786].

