CS 512, Spring 2018, Handout 22 Counterexamples and Probabilistic Model Checking

Assaf Kfoury

April 17, 2018

Assaf Kfoury, CS 512, Spring 2018, Handout 22

page 1 of 28

Counterexamples - in general

(material in this and later slides mostly due to Prof. J-P Katoen of Aachen Univ)

- Reminder: model checking = bug hunting, bugs are discovered by counterexamples, states that refute a given property (desirable or harmful).
- Counterexamples are (formally expressed) instances of system behavior that contradict a system's (formally expressed) specification.

Counterexamples - in general

- Counterexamples in LTL are typically finite execution paths:
 - ► To contradict (□ φ), we want a finite path ending in a (¬φ)-state.
 - To contradict (◊ φ), we want a finite (¬φ)-path leading to a (¬φ)-cycle.

Methods of LTL model-checkers incorporate forms of **breadth-first search** for generating shortest counterexamples (*e.g.*, see Handout 13).

Counterexamples - in general

- Counterexamples in LTL are typically finite execution paths:
 - ► To contradict (□ φ), we want a finite path ending in a (¬φ)-state.
 - To contradict (◊ φ), we want a finite (¬φ)-path leading to a (¬φ)-cycle.

Methods of LTL model-checkers incorporate forms of **breadth-first search** for generating shortest counterexamples (*e.g.*, see Handout 13).

Counterexamples in CTL are typically finite trees of execution paths:

- To contradict universal CTL, we want all paths in a tree of execution paths.
- To contradict existential CTL, we want one path in a tree of execution paths.

Methods of CTL model-checkers also incorporate some form of breadth-first search, combined with more advanced data structures.

Problem statement:

Given a WFF of PCTL of the form $\mathbb{P}_{\leqslant p}(\varphi)$

- for example, in shorthand, $(p \bigcup \leq 1/2 q)$ or $(\bigcirc \leq 2/3 p)$ - together with a Markov chain \mathcal{M} and a state *s* in \mathcal{M} , we want to decide whether:

 $\mathcal{M},s \not\models \mathbb{P}_{\leqslant p}(\varphi) \quad \text{or, more succintly,} \quad s \not\models \mathbb{P}_{\leqslant p}(\varphi)$

Problem statement:

Given a WFF of PCTL of the form $\mathbb{P}_{\leq p}(\varphi)$

- for example, in shorthand, $(p \bigcup \leq 1/2 q)$ or $(\bigcirc \leq 2/3 p)$ - together with a Markov chain \mathcal{M} and a state *s* in \mathcal{M} , we want to decide whether:

 $\mathcal{M},s \not\models \mathbb{P}_{\leqslant p}(\varphi) \quad \text{or, more succintly,} \quad s \not\models \mathbb{P}_{\leqslant p}(\varphi)$

- A counterexample C for P_{≤p}(φ) at state s in M is a set of finite paths (or evidences) in M satisfying:
 - if $\pi \in C$, then π starts at s and $\pi \models \varphi$, and
 - Pr(C) > p where Pr(C) ≜ ∑_{π∈C} Pr(π),
 i.e., the sum of the probabilities of the paths in C, exceeds p.

If $\Pr(C) > p$, we conclude that $s \not\models \mathbb{P}_{\leqslant p}(\varphi)$.

Problem statement:

Given a WFF of PCTL of the form $\mathbb{P}_{\leq p}(\varphi)$

- for example, in shorthand, $(p \bigcup \leq 1/2 q)$ or $(\bigcirc \leq 2/3 p)$ - together with a Markov chain \mathcal{M} and a state *s* in \mathcal{M} , we want to decide whether:

 $\mathcal{M},s \not\models \mathbb{P}_{\leqslant p}(\varphi) \quad \text{or, more succintly,} \quad s \not\models \mathbb{P}_{\leqslant p}(\varphi)$

- A counterexample C for P_{≤p}(φ) at state s in M is a set of finite paths (or evidences) in M satisfying:
 - if $\pi \in C$, then π starts at s and $\pi \models \varphi$, and
 - Pr(C) > p where Pr(C) ≜ ∑_{π∈C} Pr(π),
 i.e., the sum of the probabilities of the paths in C, exceeds p.

If Pr(C) > p, we conclude that $s \not\models \mathbb{P}_{\leq p}(\varphi)$.

 In this handout, we limit attention to discrete-time Markov chains – we delay work done on continuous-time Markov chains till next year (!).

► A counterexample *C* for $\mathbb{P}_{\leq p}(\varphi)$ is **minimal** if $|C| \leq |C'|$ for any counterexample *C'* for $\mathbb{P}_{\leq p}(\varphi)$.

- A counterexample C for P_{≤p}(φ) is minimal if |C| ≤ |C'| for any counterexample C' for P_{≤p}(φ).
- ► A counterexample *C* for $\mathbb{P}_{\leq p}(\varphi)$ is **smallest** if *C* is minimal and $\Pr(C) \ge \Pr(C')$ for any minimal counterexample *C'* for $\mathbb{P}_{\leq p}(\varphi)$.

- A counterexample C for P_{≤p}(φ) is minimal if |C| ≤ |C'| for any counterexample C' for P_{≤p}(φ).
- ► A counterexample *C* for $\mathbb{P}_{\leq p}(\varphi)$ is **smallest** if *C* is minimal and $\Pr(C) \ge \Pr(C')$ for any minimal counterexample *C'* for $\mathbb{P}_{\leq p}(\varphi)$.
- ► Fact: Counterexamples for non-strict probability bounds (*i.e.*, bounds of the form "≤ p", not "< p") are finite.</p>

- A counterexample C for P_{≤p}(φ) is minimal if |C| ≤ |C'| for any counterexample C' for P_{≤p}(φ).
- ► A counterexample *C* for $\mathbb{P}_{\leq p}(\varphi)$ is **smallest** if *C* is minimal and $\Pr(C) \ge \Pr(C')$ for any minimal counterexample *C'* for $\mathbb{P}_{\leq p}(\varphi)$.
- ► Fact: Counterexamples for non-strict probability bounds (*i.e.*, bounds of the form "≤ p", not "< p") are finite.</p>
- Infinite counterexamples may be needed for WFF's with strict probability bounds.
- For example, an **infinite** counterexample is needed for $s_0 \not\models \mathbb{P}_{<1}(\Diamond a)$, *i.e.*, for $s_0 \not\models (\Diamond^{<1} a)$ in the following Markov chain:

Partly inspired by Example 10.41 in [PMC, page 786].

Assaf Kfoury, CS 512, Spring 2018, Handout 22

1

blue states : only prop WFF φ holds, red states : only prop WFF ψ holds, yellow states : neither φ nor ψ hold. Wanted:

counterexamples for $s_0 \not\models (\varphi \boxtimes^{\leqslant 1/2} \psi)$

Partly inspired by Example 10.41 in [PMC, page 786].

blue states : only prop WFF φ holds, red states : only prop WFF ψ holds, yellow states : neither φ nor ψ hold.

Wanted:

counterexamples for $s_0 \not\models (\varphi \boxtimes^{\leqslant 1/2} \psi)$

evidence	probability		
$\pi_1 \triangleq s_0 s_1 t_1$	0.2		
$\pi_2 \triangleq s_0 s_1 s_2 t_1$	0.2		
$\pi_3 \triangleq s_0 s_2 t_1$	0.15		
$\pi_4 \triangleq s_0 s_1 s_2 t_2$	0.12		
$\pi_5 \triangleq s_0 s_2 t_2$	0.09		
•••	•••		

Partly inspired by Example 10.41 in [PMC, page 786].

blue states : only prop WFF φ holds, red states : only prop WFF ψ holds, yellow states : neither φ nor ψ hold.

Wanted:

counterexamples for $s_0 \not\models (\varphi U^{\leqslant 1/2} \psi)$

evidence	probability
$\pi_1 \stackrel{\Delta}{=} s_0 s_1 t_1$	0.2
$\pi_1 = 30 31 t_1$	0.2
$\pi_2 \stackrel{\scriptscriptstyle \Delta}{=} s_0 s_1 s_2 t_1$	0.2
$\pi_3 \triangleq s_0 s_2 t_1$	0.15
$\pi_4 \triangleq s_0 s_1 s_2 t_2$	0.12
$\pi_5 \triangleq s_0 s_2 t_2$	0.09
• • •	

		counterexample	cardinality	probability
		$\{\pi_1, \pi_2, \pi_3, \pi_4, \pi_5\}$	5	0.76
		$\{\pi_1, \pi_3, \pi_4, \pi_5\}$	4	0.56
		$\{\pi_2, \pi_3, \pi_4, \pi_5\}$	4	0.76
minimal	\longrightarrow	$\{\pi_1,\pi_2,\pi_4\}$	3	0.52
minimal	\longrightarrow	$\{\pi_1,\pi_2,\pi_3\}$	3	0.55

Partly inspired by Example 10.41 in [PMC, page 786]. Assaf Kfoury, CS 512, Spring 2018, Handout 22

blue states : only prop WFF φ holds, red states : only prop WFF ψ holds, yellow states : neither φ nor ψ hold.

Wanted:

counterexamples for $s_0 \not\models (\varphi U^{\leqslant 1/2} \psi)$

evidence	probability
$\pi_1 \triangleq s_0 s_1 t_1$	0.2
$\pi_2 \triangleq s_0 s_1 s_2 t_1$	0.2
$\pi_3 \triangleq s_0 s_2 t_1$	0.15
$\pi_4 \triangleq s_0 s_1 s_2 t_2$	0.12
$\pi_5 \triangleq s_0 s_2 t_2$	0.09

	counterexample	cardinality	probability
	$\{\pi_1, \pi_2, \pi_3, \pi_4, \pi_5\}$	5	0.76
	$\{\pi_1, \pi_3, \pi_4, \pi_5\}$	4	0.56
	$\{\pi_2, \pi_3, \pi_4, \pi_5\}$	4	0.76
	$\{\pi_1,\pi_2,\pi_4\}$	3	0.52
smallest \longrightarrow	$\{\pi_1,\pi_2,\pi_3\}$	3	0.55

Partly inspired by Example 10.41 in [PMC, page 786]. Assaf Kfoury, CS 512, Spring 2018, Handout 22

Obtaining smallest counterexamples

Step 1: Make all ψ -states and all $(\neg \varphi \land \neg \psi)$ -states absorbing, which requires eliminating some transitions (*e.g.*, the transitions out of t_1 and u) and making the transition probability = 1 on all self-loops.

Adapting a bit more

Step 2: Insert a sink state and redirect all outgoing edges of ψ -states to it.

A weighted diagraph

Step 3: Turn the Markov chain into a weighted digraph (directed graph), where:

$$w(s,s') \triangleq \log\left(\frac{1}{\Pr(s,s')}\right)$$

for every pair of nodes/states s and s'. The logarithm can be base 10, or base e, or base 2 – it does not matter which base we choose.

A simple derivation

Given a finite path $\pi \triangleq s_0 s_1 s_2 \cdots s_n$:

$$\begin{split} w(\pi) &= w(s_0, s_1) + w(s_1, s_2) + \dots + w(s_{n-1}, s_n) \\ &= \log\left(\frac{1}{\Pr(s_0, s_1)}\right) + \log\left(\frac{1}{\Pr(s_1, s_2)}\right) + \dots + \log\left(\frac{1}{\Pr(s_{n-1}, s_n)}\right) \\ &= \log\left(\frac{1}{\Pr(s_0, s_1) \cdot \Pr(s_1, s_2) \cdot \dots \cdot \Pr(s_{n-1}, s_n)}\right) \\ &= \log\left(\frac{1}{\Pr(\pi)}\right) \end{split}$$

Conclusion 1: For all finite paths π and π' in the Markov chain, we have:

$$\underbrace{\Pr(\pi) \geqslant \Pr(\pi')}_{\text{in the Markov chain}} \quad \text{if and only if} \quad \underbrace{w(\pi) \leqslant w(\pi')}_{\text{in the weighted digraph}}$$

Conclusion 2: Finding astrongest evidencein the Markov chain istranslated to ashortest path problemin the weighted digraph.

Wanted: counterexamples for $\mathbb{P}_{\leq 0.4}(\Diamond \varphi)$, or, in shorthand, $(\Diamond^{\leq 0.4} \varphi)$.

blue state : only one φ -state.

Wanted: counterexamples for $\mathbb{P}_{\leq 0.4}(\Diamond \varphi)$, or, in shorthand, $(\Diamond^{\leq 0.4} \varphi)$.

blue state : only one φ -state.

Approach 1, based on using the

transition (right-stochastic) 9×9 matrix A:

		s_0	s_1	<i>s</i> 2	<i>s</i> 3	<i>s</i> 4	<i>s</i> 5	<i>s</i> 6	<i>s</i> 7	<i>s</i> 8	
)	Γ	0	.5	.25	0	0	.25	0	0	0	
í		0	0	.5	.5	0	0	0	0	0	
,		0	.5	0	0	.5	0	0	0	0	
3		0	0	0	1	0	0	0	0	0	
1		0	.7	0	.3	0	0	0	0	0	
5		0	0	0	0	0	0	1	0	0	
5		0	0	0	.5	0	0	0	.5	0	
7		0	0	0	0	0	.25	.25	0	.5	
3	L	0	0	0	0	0	0	0	0	1	-

Wanted: counterexamples for $\mathbb{P}_{\leq 0.4}(\Diamond \varphi)$, or, in shorthand, $(\Diamond^{\leq 0.4} \varphi)$.

so

Sg

Approach 1, based on using the transition (right-stochastic) 9×9 matrix *A*:

	<i>s</i> 0	s_1	<i>s</i> 2	<i>s</i> 3	s_4	^s 5	<i>s</i> 6	<i>s</i> 7	<i>s</i> 8	
Γ	0	.5	.25	0	0	.25	0	0	0	-
	0	0	.5	.5	0	0	0	0	0	
	0	.5	0	0	.5	0	0	0	0	
	0	0	0	1	0	0	0	0	0	
	0	.7	0	.3	0	0	0	0	0	
	0	0	0	0	0	0	1	0	0	
	0	0	0	.5	0	0	0	.5	0	
	0	0	0	0	0	.25	.25	0	.5	
L	0	0	0	0	0	0	0	0	1	_

blue state : only one φ -state.

- initial distribution over 9 states is $d_0 = (1, 0, 0, 0, 0, 0, 0, 0, 0) = [1\ 0\ 0\ 0\ 0\ 0\ 0\ 0].$
- ► distribution after 1 transition, 2 transitions, and 3 transitions, respectively: $d_1 = d_0 \cdot A = (0, .5, .25, 0, 0, .25, 0, 0, 0)$ $d_2 = d_0 \cdot A^2 = (0, .125, .25, .25, .125, 0, .25, 0, 0)$ $d_3 = d_0 \cdot A^3 = (0, .2125, .0625, .475, .125, 0, 0, .125, 0)$

Wanted: counterexamples for $\mathbb{P}_{\leq 0.4}(\Diamond \varphi)$, or, in shorthand, $(\Diamond^{\leq 0.4} \varphi)$.

so

58

Approach 1, based on using the transition (right-stochastic) 9×9 matrix *A*:

	<i>s</i> 0	s_1	^s 2	<i>s</i> 3	<i>s</i> 4	^s 5	^s 6	<i>s</i> 7	<i>s</i> 8
Γ	0	.5	.25	0	0	.25	0	0	0
	0	0	.5	.5	0	0	0	0	0
	0	.5	0	0	.5	0	0	0	0
	0	0	0	1	0	0	0	0	0
	0	.7	0	.3	0	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	.5	0	0	0	.5	0
	0	0	0	0	0	.25	.25	0	.5
L	0	0	0	0	0	0	0	0	1 -

blue state : only one φ -state.

- ▶ **Conclusion:** Starting from *s*₀, state *s*₃ is reached with probability .475 > .4 after 3 transitions.
- ► Hence, there is a counterexample *C* for $s_0 \not\models (\Diamond^{\leq .4} \varphi)$ consisting of finite paths, each with at most 3 transitions but we have not determined the members of the counterexample *C* yet, nor do we know if it is **minimal** or **smallest** (cf. page 8)

Wanted: counterexamples for $\mathbb{P}_{\leq 0.4}(\Diamond \varphi)$, or, in shorthand, $(\Diamond^{\leq 0.4} \varphi)$.

Approach 2: Let S be the set of states in the Markov chain, s₀ ∈ S a single initial state, and Target ⊆ S a non-empty set of target states.

For every state s, we define the probability p_s of reaching the states in Target from s:

$$p_s \triangleq \begin{cases} 1 & \text{if } s \in \\ 0 & \text{if no s} \\ \sum_{s' \in S} \Pr(s, s') \cdot p_{s'} & \text{otherw} \end{cases}$$

if $s \in \text{Target}$,

if no state in Target is reachable from *s*, otherwise.

- ► This defines a system of linear equations over the variables $V \triangleq \{ p_s \mid s \in S \}$ whose unique solution $\sigma : V \rightarrow [0, 1]$ assigns to each p_s the probability of reaching Target from *s*.
- ► Hence, $\mathcal{M} \models \mathbb{P}_{\leq \rho}(\Diamond \text{ target})$ iff $\sigma(p_{s_0}) \leq \rho$, where "target" is an atomic proposition which labels every state in Target.
- Advantage of Approach 2 over Approach 1: Solving a system of linear equations instead of repeatedly multiplying stochastic matrices.

Wanted: counterexamples for $\mathbb{P}_{\leq 0.4}(\Diamond \varphi)$, or, in shorthand, $(\Diamond^{\leq 0.4} \varphi)$.

For the Markov chain \mathcal{M} shown on slide 21, we obtain:

$$\begin{aligned} p_{s_0} &= 0.5 \, p_{s_1} + 0.25 \, p_{s_2} + 0.25 \, p_{s_5} & p_{s_1} &= 0.5 \, p_{s_2} + 0.5 \, p_{s_3} \\ p_{s_2} &= 0.5 \, p_{s_1} + 0.5 \, p_{s_4} & p_{s_3} &= 1 \\ p_{s_4} &= 0.7 \, p_{s_1} + 0.3 \, p_{s_3} & p_{s_5} &= 1 \, p_{s_6} \\ p_{s_6} &= 0.5 \, p_{s_3} + 0.5 \, p_{s_7} & p_{s_7} &= 0.25 \, p_{s_5} + 0.25 \, p_{s_6} \end{aligned}$$

We can remove all states from M which do not reach states in Target. In this example, we remove s_8 , thus also removing equation $p_{s_8} = 0$.

Solving the system of linear equations (by hand or by using Matlab or Octave), we obtain a solution σ : {p_{s0}, p_{s1},..., p_{s7}} → [0, 1] such that:

 $\begin{aligned} \sigma(p_{s_0}) &= 11/12 & \sigma(p_{s_1}) = \sigma(p_{s_2}) = \sigma(p_{s_3}) = \sigma(p_{s_4}) = 1 \\ \sigma(p_{s_5}) &= \sigma(p_{s_6}) = 2/3 & \sigma(p_{s_7}) = 1/3 \end{aligned}$

Conclusion: Starting from s₀, state s₃ is reached with probability ¹¹/₁₂ > .4 Hence, there is a counterexample C for s₀ ⊭ (◊^{≤.4} φ), though we do not know the members of C yet!!

Wanted: counterexamples for $\mathbb{P}_{\leq 0.4}(\Diamond \varphi)$, or, in shorthand, $(\Diamond^{\leq 0.4} \varphi)$.

Approach 3, most efficient and most direct, repeats the steps carried out to find counterexamples for s₀ ⊭ (φ ⊎^{≤1/2} ψ), from slide 12 to slide 20.

evidence	weight (rounded)	probability
$\pi_1 \triangleq s_0 s_1 s_3$	1.39	0.25
$\pi_2 \triangleq s_0 s_5 s_6 s_3$	2.08	0.125
$\pi_3 \triangleq s_0 s_2 s_1 s_3$	2.77	0.0625
$\pi_4 \triangleq s_0 s_1 s_2 s_1 s_3$	2.77	0.0625
$\pi_5 \triangleq s_0 s_2 s_4 s_1 s_3$	3.13	0.04375
$\pi_6 \triangleq s_0 s_1 s_2 s_4 s_1 s_3$	3.13	0.04375
$\pi_7 \triangleq s_0 s_2 s_4 s_3$	3.28	0.03750
$\pi_8 \triangleq s_0 s_1 s_2 s_4 s_3$	3.28	0.03750

We obtain, in order of decreasing probabilities:

where we take weight $w(s, s') \triangleq -\ln(\Pr(s, s'))$ for all states $s, s' \in S$.

$$\begin{split} & \sum_{i \in \{1,2,3\}} \Pr(\pi_i) = \sum_{i \in \{1,2,4\}} \Pr(\pi_i) = 0.4375 > 0.4 \\ & \text{(but why not } \{\pi_1, \pi_2, s_0 s_2 s_4\} \text{ or } \{\pi_1, \pi_2, s_0 s_1 s_2 s_4\}???) \\ & \text{implies both } \{\pi_1, \pi_2, \pi_3\} \text{ and } \{\pi_1, \pi_2, \pi_4\} \text{ are smallest counterexamples.} \end{split}$$

(THIS PAGE INTENTIONALLY LEFT BLANK)