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Counterexamples – in general
(material in this and later slides mostly due to Prof. J-P Katoen of Aachen Univ)

I Reminder: model checking = bug hunting ,
bugs are discovered by counterexamples,
states that refute a given property (desirable or harmful).

I Counterexamples are (formally expressed) instances of system
behavior that contradict a system’s (formally expressed) specification.
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Counterexamples – in general

I Counterexamples in LTL are typically finite execution paths:

I To contradict (�ϕ),
we want a finite path ending in a (¬ϕ)-state.

I To contradict (♦ϕ),
we want a finite (¬ϕ)-path leading to a (¬ϕ)-cycle.

Methods of LTL model-checkers incorporate forms of breadth-first search
for generating shortest counterexamples (e.g., see Handout 13).

I Counterexamples in CTL are typically finite trees of execution paths:

I To contradict universal CTL,
we want all paths in a tree of execution paths.

I To contradict existential CTL,
we want one path in a tree of execution paths.

Methods of CTL model-checkers also incorporate some form of
breadth-first search, combined with more advanced data structures.
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Counterexamples – in PCTL (Probabilistic CTL)

I Problem statement:

Given a WFF of PCTL of the form P6p(ϕ)

– for example, in shorthand, (p d61/2 q) or ( f62/3 p) –
together with a Markov chainM and a state s inM,
we want to decide whether:

M, s 6|= P6p(ϕ) or, more succintly, s 6|= P6p(ϕ)

I A counterexample C for P6p(ϕ) at state s inM
is a set of finite paths (or evidences) inM satisfying:

I if π ∈ C, then π starts at s and π |= ϕ, and
I Pr(C) > p where Pr(C) ,

∑
π∈C Pr(π),

i.e., the sum of the probabilities of the paths in C, exceeds p.

If Pr(C) > p, we conclude that s 6|= P6p(ϕ).

I In this handout, we limit attention to discrete-time Markov chains –
we delay work done on continuous-time Markov chains till next year (!).
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Counterexamples – in PCTL (Probabilistic CTL)

I A counterexample C for P6p(ϕ) is minimal if
∣∣C∣∣ 6 ∣∣C′∣∣

for any counterexample C′ for P6p(ϕ).

I A counterexample C for P6p(ϕ) is smallest if C is minimal and
Pr(C) > Pr(C′) for any minimal counterexample C′ for P6p(ϕ).

I Fact: Counterexamples for non-strict probability bounds
(i.e., bounds of the form “6 p”, not “< p”) are finite.

I Infinite counterexamples may be needed for WFF’s with strict probability
bounds.

I For example, an infinite counterexample is needed for s0 6|= P<1(♦ a),
i.e., for s0 6|= (♦<1 a) in the following Markov chain:

1
1/2

1/2

s0 s1

a
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Example showing how to handle “until” WFF’s in PCTL1

s0 s1 t1

u s2 t2

0.6 0.333

0.2 0.3

0.8 0.2 1

0.1 0.667 0.10.3 0.5 0.9

blue states : only prop WFF ϕ holds,

red states : only prop WFF ψ holds,

yellow states : neither ϕ nor ψ hold.

1
Partly inspired by Example 10.41 in [PMC, page 786].
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Obtaining smallest counterexamples
s0 s1 t1

u s2 t2

0.6 0.333

0.3

1 0.2 1

0.1 0.6670.3 0.5

1

Step 1: Make all ψ-states and all (¬ϕ ∧ ¬ψ)-states absorbing,
which requires eliminating some transitions (e.g., the transitions out of t1 and u)
and making the transition probability = 1 on all self-loops.
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Adapting a bit more
s0 s1 t1

u s2 t2

0.6 0.333

0.3

1 0.2

0.1 0.6670.3 0.5

1

1

1

Step 2: Insert a sink state and redirect all outgoing edges of ψ-states to it.
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A weighted diagraph
s0 s1 t1

u s2 t2

log(5/3) log 3

log(10/3)

0 log 5

log 10 log(3/2)

log(10/3) log 2

0

0

0

Step 3: Turn the Markov chain into a weighted digraph (directed graph), where:

w(s, s′) , log
( 1
Pr(s, s′)

)
for every pair of nodes/states s and s′. The logarithm can be base 10, or base e,
or base 2 – it does not matter which base we choose.
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A simple derivation

Given a finite path π , s0 s1 s2 · · · sn:

w(π) = w(s0, s1) + w(s1, s2) + · · ·+ w(sn−1, sn)

= log
( 1
Pr(s0, s1)

)
+ log

( 1
Pr(s1, s2)

)
+ · · ·+ log

( 1
Pr(sn−1, sn)

)
= log

( 1
Pr(s0, s1) · Pr(s1, s2) · · · · · Pr(sn−1, sn)

)
= log

( 1
Pr(π)

)
Conclusion 1: For all finite paths π and π′ in the Markov chain, we have:

Pr(π) > Pr(π′)︸ ︷︷ ︸
in the Markov chain

if and only if w(π) 6 w(π′)︸ ︷︷ ︸
in the weighted digraph

Conclusion 2: Finding a strongest evidence in the Markov chain is

translated to a shortest path problem in the weighted digraph.
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Another example: How to handle reachability properties

Wanted: counterexamples for P60.4(♦ϕ), or, in shorthand, (♦60.4ϕ).

s0 s1

s2

s4

s5 s6

s7 s8

s3

0.5 0.7

0.25 0.5 0.50.5

1 1

1

0.5

0.25
0.250.5

0.5

0.25 0.30.5

blue state : only one ϕ-state.

I initial distribution over 9 states is d0 = (1, 0, 0, 0, 0, 0, 0, 0, 0) = [1 0 0 0 0 0 0 0 0].
I distribution after 1 transition, 2 transitions, and 3 transitions, respectively:

d1 = d0 · A = (0, .5, .25, 0 , 0, .25, 0, 0, 0)
d2 = d0 · A2 = (0, .125, .25, .25 , .125, 0, .25, 0, 0)
d3 = d0 · A3 = (0, .2125, .0625, .475 , .125, 0, 0, .125, 0)
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s0 s1 s2 s3 s4 s5 s6 s7 s8

s0 0 .5 .25 0 0 .25 0 0 0
s1 0 0 .5 .5 0 0 0 0 0
s2 0 .5 0 0 .5 0 0 0 0
s3 0 0 0 1 0 0 0 0 0
s4 0 .7 0 .3 0 0 0 0 0
s5 0 0 0 0 0 0 1 0 0
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I Conclusion: Starting from s0, state s3 is reached with probability .475 > .4 after 3
transitions.

I Hence, there is a counterexample C for s0 6|= (♦6.4ϕ) consisting of finite paths,
each with at most 3 transitions – but we have not determined the members of the
counterexample C yet, nor do we know if it is minimal or smallest (cf. page 8)
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Another example: How to handle reachability properties
Wanted: counterexamples for P60.4(♦ϕ), or, in shorthand, (♦60.4ϕ).

I Approach 2: Let S be the set of states in the Markov chain, s0 ∈ S a
single initial state , and Target ⊆ S a non-empty set of target states .

For every state s, we define the probability ps of reaching the states in
Target from s:

ps ,


1 if s ∈ Target,

0 if no state in Target is reachable from s,∑
s′∈S Pr(s, s

′) · ps′ otherwise.

I This defines a system of linear equations over the variables
V , { ps | s ∈ S } whose unique solution σ : V → [0, 1]
assigns to each ps the probability of reaching Target from s.

I Hence, M |= P6ρ(♦ target) iff σ(ps0) 6 ρ ,
where “target” is an atomic proposition which labels every state in Target.

I Advantage of Approach 2 over Approach 1: Solving a system of linear
equations instead of repeatedly multiplying stochastic matrices.
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Another example: How to handle reachability properties
Wanted: counterexamples for P60.4(♦ϕ), or, in shorthand, (♦60.4ϕ).

I For the Markov chainM shown on slide 21, we obtain:

ps0 = 0.5 ps1 + 0.25 ps2 + 0.25 ps5 ps1 = 0.5 ps2 + 0.5 ps3

ps2 = 0.5 ps1 + 0.5 ps4 ps3 = 1

ps4 = 0.7 ps1 + 0.3 ps3 ps5 = 1 ps6

ps6 = 0.5 ps3 + 0.5 ps7 ps7 = 0.25 ps5 + 0.25 ps6

We can remove all states fromM which do not reach states in Target. In
this example, we remove s8, thus also removing equation ps8 = 0.

I Solving the system of linear equations (by hand or by using Matlab or
Octave), we obtain a solution σ : {ps0 , ps1 , . . . , ps7} → [0, 1] such that:

σ(ps0) = 11/12 σ(ps1) = σ(ps2) = σ(ps3) = σ(ps4) = 1

σ(ps5) = σ(ps6) = 2/3 σ(ps7) = 1/3

I Conclusion: Starting from s0, state s3 is reached with probability
11
12

> .4

Hence, there is a counterexample C for s0 6|= (♦6.4ϕ), though we do not
know the members of C yet!!
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Another example: How to handle reachability properties
Wanted: counterexamples for P60.4(♦ϕ), or, in shorthand, (♦60.4ϕ).

I Approach 3, most efficient and most direct, repeats the steps carried out
to find counterexamples for s0 6|= (ϕ d61/2ψ), from slide 12 to slide 20.

I We obtain, in order of decreasing probabilities:

evidence weight (rounded) probability
π1 , s0 s1 s3 1.39 0.25
π2 , s0 s5 s6 s3 2.08 0.125
π3 , s0 s2 s1 s3 2.77 0.0625
π4 , s0 s1 s2 s1 s3 2.77 0.0625
π5 , s0 s2 s4 s1 s3 3.13 0.04375
π6 , s0 s1 s2 s4 s1 s3 3.13 0.04375
π7 , s0 s2 s4 s3 3.28 0.03750
π8 , s0 s1 s2 s4 s3 3.28 0.03750
· · · · · · · · ·

where we take weight w(s, s′) , − ln(Pr(s, s′)) for all states s, s′ ∈ S.

I
∑

i∈{1,2,3} Pr(πi) =
∑

i∈{1,2,4} Pr(πi) = 0.4375 > 0.4
(but why not {π1, π2, s0s2s4} or {π1, π2, s0s1s2s4}???)

implies both {π1, π2, π3} and {π1, π2, π4} are smallest counterexamples.
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