CS 512, Spring 2018, Handout 23 Modal Logics

Assaf Kfoury

April 22, 2018 (adjusted April 27, 2018)

syntax [LCS, Section 5.2.1], click here for Wikipedia article

$\varphi, \psi::=$ true \mid false $|p| \neg \varphi|\varphi \wedge \psi| \cdots$
propositional logic
$\square \varphi$
"box φ "
"diamond φ "

syntax [LCS, Section 5.2.1], click here for Wikipedia article

$$
\begin{aligned}
\varphi, \psi::= & \text { true } \mid \text { false }|p| \neg \varphi|\varphi \wedge \psi| \cdots & & \text { propositional logic } \\
& \mid \square \varphi & & \text { "box } \varphi \text { " } \\
& \mid \diamond \varphi & & \text { "diamond } \varphi \text { " }
\end{aligned}
$$

- " \square " is now called a modality or a modal operator, rather than a temporal connective, and ditto for " \rangle ".

syntax [LCS, Section 5.2.1], click here for Wikipedia article

$$
\begin{aligned}
\varphi, \psi::= & \text { true } \mid \text { false }|p| \neg \varphi|\varphi \wedge \psi| \cdots & & \text { propositional logic } \\
& \mid \square \varphi & & \text { "box } \varphi \text { " } \\
& \mid \diamond \varphi & & \text { "diamond } \varphi \text { " }
\end{aligned}
$$

- " \square " is now called a modality or a modal operator, rather than a temporal connective, and ditto for " \rangle ".
- " $\square \varphi$ " can be also read as "necessarily φ ", and " $\rangle \varphi$ " as "possibly φ ".

syntax [LCS, Section 5.2.1], click here for Wikipedia article

$$
\begin{aligned}
\varphi, \psi::= & \text { true } \mid \text { false }|p| \neg \varphi|\varphi \wedge \psi| \cdots & & \text { propositional logic } \\
& \mid \square \varphi & & \text { "box } \varphi \text { " } \\
& \mid \diamond \varphi & & \text { "diamond } \varphi \text { " }
\end{aligned}
$$

- " \square " is now called a modality or a modal operator, rather than a temporal connective, and ditto for " $>$ ".
- " $\square \varphi$ " can be also read as "necessarily φ ", and " $\Delta \varphi$ " as "possibly φ ".
- Another intuitive understanding of " \square " and " \checkmark ":
- In many ways, " \square " in modal logic is like " $\forall \bigcirc$ " (not " $\forall \square$ ") in CTL.
- In many ways, " \diamond " in modal logic is like " $\exists \bigcirc$ " in CTL.

Caution: Although intuitively helpful, since we started with temporal logics before turning to modal logics, this correspondence with CTL does not always hold.

semantics [LCS, Section 5.2.2]

for a detailed and somewhat different presentation of the semantics of modal logic, click here for the Wikipedia article on Kripke semantics.

[^0]
semantics [LCS, Section 5.2.2]

for a detailed and somewhat different presentation of the semantics of modal logic, click here for the Wikipedia article on Kripke semantics.

- A model \mathcal{M} of basic modal logic (also called a Kripke model) is a triple:

$$
\mathcal{M}=(W, R, L) \quad \text { where }
$$

- W is the set of possible worlds,
- $R \subseteq W \times W$ is a binary accessibility relation,
- $L: W \rightarrow \mathcal{P}(\mathrm{AP})$ is a labelling function ${ }^{1}$

[^1]
semantics [LCS, Section 5.2.2]

for a detailed and somewhat different presentation of the semantics of modal logic, click here for the Wikipedia article on Kripke semantics.

- A model \mathcal{M} of basic modal logic (also called a Kripke model) is a triple:

$$
\mathcal{M}=(W, R, L) \quad \text { where }
$$

- W is the set of possible worlds,
- $R \subseteq W \times W$ is a binary accessibility relation,
- $L: W \rightarrow \mathcal{P}(\mathrm{AP})$ is a labelling function ${ }^{1}$

Yes, \mathcal{M} can be also viewed as a model of LTL and CTL!!

[^2]
semantics [LCS, Section 5.2.2]

for a detailed and somewhat different presentation of the semantics of modal logic, click here for the Wikipedia article on Kripke semantics.

- A model \mathcal{M} of basic modal logic (also called a Kripke model) is a triple:

$$
\mathcal{M}=(W, R, L) \quad \text { where }
$$

- W is the set of possible worlds,
- $R \subseteq W \times W$ is a binary accessibility relation,
- $L: W \rightarrow \mathcal{P}(\mathrm{AP})$ is a labelling function ${ }^{1}$

Yes, \mathcal{M} can be also viewed as a model of LTL and CTL!!

- In different accounts of modal logic, the members of W may be referred by different names: possible worlds, states, nodes, times, etc., depending on the semantics of the logic.

[^3]
semantics [LCS, Section 5.2.2]

As usual, the formal semantics is syntax-directed, with one step for each step in the formal definition of WFF's.
For every model $\mathcal{M}=(W, R, L)$ of modal logic and every world $x \in W$:

semantics [LCS, Section 5.2.2]

As usual, the formal semantics is syntax-directed, with one step for each step in the formal definition of WFF's.
For every model $\mathcal{M}=(W, R, L)$ of modal logic and every world $x \in W$:
basis steps

- $\mathcal{M}, x \Vdash$ true
- $\mathcal{M}, x \nmid$ false
- $\mathcal{M}, x \Vdash p \quad$ iff $\quad p \in L(x)$

semantics [LCS, Section 5.2.2]

As usual, the formal semantics is syntax-directed, with one step for each step in the formal definition of WFF's.
For every model $\mathcal{M}=(W, R, L)$ of modal logic and every world $x \in W$:
basis steps

- $\mathcal{M}, x \Vdash$ true
- $\mathcal{M}, x \nmid$ false
- $\mathcal{M}, x \Vdash p \quad$ iff $\quad p \in L(x)$
induction steps: propositional-logic connectives
- $\mathcal{M}, x \Vdash \neg \varphi$ iff $\mathcal{M}, x \Vdash \varphi$
- $\mathcal{M}, x \Vdash \varphi \wedge \psi \quad$ iff $\quad \mathcal{M}, x \Vdash \varphi$ and $\mathcal{M}, x \Vdash \psi$

semantics [LCS, Section 5.2.2]

As usual, the formal semantics is syntax-directed, with one step for each step in the formal definition of WFF's.
For every model $\mathcal{M}=(W, R, L)$ of modal logic and every world $x \in W$:

basis steps

- $\mathcal{M}, x \Vdash$ true
- $\mathcal{M}, x \nvdash$ false
- $\mathcal{M}, x \Vdash p \quad$ iff $\quad p \in L(x)$
induction steps: propositional-logic connectives
- $\mathcal{M}, x \Vdash \neg \varphi$ iff $\mathcal{M}, x \Vdash \varphi$
- $\mathcal{M}, x \Vdash \varphi \wedge \psi \quad$ iff $\quad \mathcal{M}, x \Vdash \varphi$ and $\mathcal{M}, x \Vdash \psi$
induction steps: modal-logic connectives
- $\mathcal{M}, x \Vdash \square \varphi \quad$ iff $\quad(\mathcal{M}, y \Vdash \varphi \quad$ for every $y \in W$ such that $R(x, y))$
- $\mathcal{M}, x \Vdash \diamond \varphi \quad$ iff $\quad(\mathcal{M}, y \Vdash \varphi \quad$ for some $y \in W$ such that $R(x, y))$

semantics [LCS, Section 5.2.2]

Given a set Γ of WFF's and a WFF φ, all of basic modal logic, we say:

- Γ (semantically) entails φ, in symbols $\Gamma \models \varphi$, iff for every model $\mathcal{M}=(W, R, L)$ and every world $x \in W$, if $\mathcal{M}, x \Vdash \Gamma$ then $\mathcal{M}, x \Vdash \varphi$.

semantics [LCS, Section 5.2.2]

Given a set Γ of WFF's and a WFF φ, all of basic modal logic, we say:

- Γ (semantically) entails φ, in symbols $\Gamma \models \varphi$, iff for every model $\mathcal{M}=(W, R, L)$ and every world $x \in W$, if $\mathcal{M}, x \Vdash \Gamma$ then $\mathcal{M}, x \Vdash \varphi$.

Remark: Note the switch from "|l" to " $=$ ", following [LCS, p. 313], although not every account of modal logic follows this convention. Somewhat at odds with other accounts, [LCS, p. 310] pronounces "|-" as "satisfies" (rather than "forces"), while satisfaction elsewhere is usually strictly reserved to denote a semantic relation.

semantics [LCS, Section 5.2.2]

Given a set Γ of WFF's and a WFF φ, all of basic modal logic, we say:

- Γ (semantically) entails φ, in symbols $\Gamma \models \varphi$, iff for every model $\mathcal{M}=(W, R, L)$ and every world $x \in W$, if $\mathcal{M}, x \Vdash \Gamma$ then $\mathcal{M}, x \Vdash \varphi$.

Remark: Note the switch from " $\mid \vdash$ " to " \vDash ", following [LCS, p. 313], although not every account of modal logic follows this convention. Somewhat at odds with other accounts, [LCS, p. 310] pronounces "|F" as "satisfies" (rather than "forces"), while satisfaction elsewhere is usually strictly reserved to denote a semantic relation.

Given a model $\mathcal{M}=(W, R, L)$ and a WFF φ of basic modal logic, we say:

- \mathcal{M} satisfies φ or φ is true in \mathcal{M}, in symbols $\mathcal{M} \models \varphi$, iff for every world $x \in W$ we have $\mathcal{M}, x \Vdash \varphi$.

semantics [LCS, Section 5.2.2]

Given a set Γ of WFF's and a WFF φ, all of basic modal logic, we say:

- Γ (semantically) entails φ, in symbols $\Gamma \models \varphi$, iff for every model $\mathcal{M}=(W, R, L)$ and every world $x \in W$, if $\mathcal{M}, x \Vdash \Gamma$ then $\mathcal{M}, x \Vdash \varphi$.

Remark: Note the switch from "|ト" to " \vDash ", following [LCS, p. 313], although not every account of modal logic follows this convention. Somewhat at odds with other accounts, [LCS, p. 310] pronounces "|-" as "satisfies" (rather than "forces"), while satisfaction elsewhere is usually strictly reserved to denote a semantic relation.

Given a model $\mathcal{M}=(W, R, L)$ and a WFF φ of basic modal logic, we say:

- \mathcal{M} satisfies φ or φ is true in \mathcal{M}, in symbols $\mathcal{M} \models \varphi$, iff for every world $x \in W$ we have $\mathcal{M}, x \Vdash \varphi$.

Given a WFF φ of basic modal logic, we say [LCS, p. 314]:

- φ is (semantically) valid, in symbols $\models \varphi$, iff for every model \mathcal{M} we have $\mathcal{M} \models \varphi$.

useful equivalences

φ and ψ are (semantically) equivalent, in symbols $\varphi \equiv \psi$, iff both:

$$
\varphi \models \psi \quad \text { and } \quad \psi \models \varphi
$$

or, equivalently, iff: $\mid=\varphi \leftrightarrow \psi$.

useful equivalences

φ and ψ are (semantically) equivalent, in symbols $\varphi \equiv \psi$, iff both:

$$
\varphi \models \psi \quad \text { and } \quad \psi \models \varphi
$$

or, equivalently, iff: $\mid=\varphi \leftrightarrow \psi$.

1. $\square \varphi \equiv \neg \diamond \neg \varphi$
2. $\forall \varphi \equiv \neg \square \neg \varphi$
the two preceding equivalences demonstrate the duality of \square and \diamond

useful equivalences

φ and ψ are (semantically) equivalent, in symbols $\varphi \equiv \psi$, iff both:

$$
\varphi \models \psi \quad \text { and } \quad \psi \models \varphi
$$

or, equivalently, iff: $\mid=\varphi \leftrightarrow \psi$.

1. $\square \varphi \equiv \neg \diamond \neg \varphi$
2. $\forall \varphi \equiv \neg \square \neg \varphi$
the two preceding equivalences demonstrate the duality of \square and \diamond
3. $\square(\varphi \wedge \psi) \equiv \square \varphi \wedge \square \psi$
4. $\diamond(\varphi \vee \psi) \equiv \diamond \varphi \vee \diamond \psi$
the two preceding are "distributivity laws" of: " \square over \wedge " and " \diamond over \vee "

useful equivalences

φ and ψ are (semantically) equivalent, in symbols $\varphi \equiv \psi$, iff both:

$$
\varphi \models \psi \quad \text { and } \quad \psi \models \varphi
$$

or, equivalently, iff: $\mid=\varphi \leftrightarrow \psi$.

1. $\square \varphi \equiv \neg \diamond \neg \varphi$
2. $\forall \varphi \equiv \neg \square \neg \varphi$
the two preceding equivalences demonstrate the duality of \square and \diamond
3. $\square(\varphi \wedge \psi) \equiv \square \varphi \wedge \square \psi$
4. $\diamond(\varphi \vee \psi) \equiv \diamond \varphi \vee \diamond \psi$
the two preceding are "distributivity laws" of: " \square over \wedge " and " \diamond over \vee "
5. $\square(\varphi \vee \psi) \not \equiv \square \varphi \vee \square \psi$ but $\vDash \square \varphi \vee \square \psi \longrightarrow \square(\varphi \vee \psi)$
6. $\diamond(\varphi \wedge \psi) \not \equiv \diamond \varphi \wedge \diamond \psi$ but $\models \diamond(\varphi \wedge \psi) \longrightarrow \diamond \varphi \wedge \diamond \psi$

We can also obtain the two preceding from the duality of \square and \diamond and the duality of \wedge and \vee.

useful equivalences

(more subtle, see [LCS, bottom of p. 311 and top of p. 312])
7. \square true \equiv true
8. \backslash false \equiv false
9. \models false $\longrightarrow \square$ false but $\vDash \square$ false \longrightarrow false
10. $\vDash \diamond$ true \longrightarrow true but $\not \vDash$ true \longrightarrow true

useful equivalences

11. More complicated equivalences can be obtained from appropriate substitutions into equivalences of propositional logic. For example, we know that $(p \rightarrow \neg q) \equiv \neg(p \wedge q)$. So, if we substitute $\square \varphi \wedge(\psi \rightarrow \varphi)$ for p and $\theta \rightarrow \diamond(\psi \vee \varphi)$ for q, we obtain the following equivalence:

$$
\begin{aligned}
& (\square \varphi \wedge(\psi \rightarrow \varphi)) \rightarrow \neg(\theta \rightarrow \diamond(\psi \vee \varphi)) \equiv \\
& \neg((\square \varphi \wedge(\psi \rightarrow \varphi)) \wedge(\theta \rightarrow \diamond(\psi \vee \varphi)))
\end{aligned}
$$

useful equivalences

11. More complicated equivalences can be obtained from appropriate substitutions into equivalences of propositional logic. For example, we know that $(p \rightarrow \neg q) \equiv \neg(p \wedge q)$. So, if we substitute $\square \varphi \wedge(\psi \rightarrow \varphi)$ for p and $\theta \rightarrow \diamond(\psi \vee \varphi)$ for q, we obtain the following equivalence:

$$
\begin{aligned}
& (\square \varphi \wedge(\psi \rightarrow \varphi)) \rightarrow \neg(\theta \rightarrow \diamond(\psi \vee \varphi)) \equiv \\
& \neg((\square \varphi \wedge(\psi \rightarrow \varphi)) \wedge(\theta \rightarrow \diamond(\psi \vee \varphi)))
\end{aligned}
$$

12. Every equivalence can be turned into a (semantic) validity, and vice-versa. For example, the equivalence $\square \varphi \equiv \neg \diamond \neg \varphi$ can be turned into the semantically valid WFF $(\square \varphi \leftrightarrow \neg \diamond \neg \varphi)$.

Remark: Equivalence denoted by " \equiv " is a notion at the meta level, whereas the symbol " \leftrightarrow " is at the object level. Thus, $\square \varphi \equiv \neg \diamond \neg \varphi$ is not a WFF.

useful equivalences

11. More complicated equivalences can be obtained from appropriate substitutions into equivalences of propositional logic. For example, we know that $(p \rightarrow \neg q) \equiv \neg(p \wedge q)$. So, if we substitute $\square \varphi \wedge(\psi \rightarrow \varphi)$ for p and $\theta \rightarrow \diamond(\psi \vee \varphi)$ for q, we obtain the following equivalence:

$$
\begin{aligned}
& (\square \varphi \wedge(\psi \rightarrow \varphi)) \rightarrow \neg(\theta \rightarrow \diamond(\psi \vee \varphi)) \equiv \\
& \neg((\square \varphi \wedge(\psi \rightarrow \varphi)) \wedge(\theta \rightarrow \diamond(\psi \vee \varphi)))
\end{aligned}
$$

12. Every equivalence can be turned into a (semantic) validity, and vice-versa. For example, the equivalence $\square \varphi \equiv \neg \diamond \neg \varphi$ can be turned into the semantically valid WFF ($\square \varphi \leftrightarrow \neg\rangle \neg \varphi$).

Remark: Equivalence denoted by " \equiv " is a notion at the meta level, whereas the symbol " \leftrightarrow " is at the object level. Thus, $\square \varphi \equiv \neg \diamond \neg \varphi$ is not a WFF.
13. More non-trivial equivalences are in [LCS, pp. 312-315] and the exercises for [LCS, Sect 5.2, pp.350-351].

more on duality in modal logic (not in [LCS])

Dualities of all sorts are found in formal methods and mathematical logic:

- syntax/proof theory versus semantics/model theory, deducibility versus semantic validity, consistency versus satisfiability, soundness versus completeness

more on duality in modal logic (not in [LCS])

Dualities of all sorts are found in formal methods and mathematical logic:

- syntax/proof theory versus semantics/model theory,
deducibility versus semantic validity,
consistency versus satisfiability,
soundness versus completeness
- between propositional connectives (e.g., \wedge and \vee), via negation
- between quantifiers (e.g., \forall and \exists), via negation
- between modal operators (e.g., \square and \diamond), via negation

more on duality in modal logic (not in [LCS])

Dualities of all sorts are found in formal methods and mathematical logic:

- syntax/proof theory versus semantics/model theory,
deducibility versus semantic validity,
consistency versus satisfiability,
soundness versus completeness
- between propositional connectives (e.g., \wedge and \vee), via negation
- between quantifiers (e.g., \forall and \exists), via negation
- between modal operators (e.g., \square and \diamond), via negation

More generally, two n-ary modal operators Δ and ∇ are dual of each other iff:

$$
\Delta\left(\varphi_{1}, \ldots, \varphi_{n}\right) \equiv \neg \nabla\left(\neg \varphi_{1}, \ldots, \neg \varphi_{n}\right)
$$

Remark: " ∇ " is pronounced "nabla".

more on duality in modal logic (not in [LCS])

- In the presence of general modal operators, for each n-ary modal operator Δ and its dual ∇, we need to introduce an $(n+1)$-accessibility relation.

more on duality in modal logic (not in [LCS])

- In the presence of general modal operators, for each n-ary modal operator Δ and its dual ∇, we need to introduce an $(n+1)$-accessibility relation.
- Example: Let Δ_{i} and ∇_{i} be dual 2-ary modal operators, for $i=1,2$.

more on duality in modal logic (not in [LCS])

- In the presence of general modal operators, for each n-ary modal operator Δ and its dual ∇, we need to introduce an $(n+1)$-accessibility relation.
- Example: Let Δ_{i} and ∇_{i} be dual 2-ary modal operators, for $i=1,2$.
- Syntax is now modified as:

$$
\begin{aligned}
\varphi, \psi::= & \text { false } \mid \text { true }|\neg \varphi| \varphi \wedge \psi|\cdots| \quad \text { (propositional connectives) } \\
& \Delta_{1}(\varphi, \psi)\left|\Delta_{2}(\varphi, \psi)\right| \nabla_{1}(\varphi, \psi) \mid \nabla_{2}(\varphi, \psi)
\end{aligned}
$$

more on duality in modal logic (not in [LCS])

- In the presence of general modal operators, for each n-ary modal operator Δ and its dual ∇, we need to introduce an $(n+1)$-accessibility relation.
- Example: Let Δ_{i} and ∇_{i} be dual 2-ary modal operators, for $i=1,2$.
- Syntax is now modified as:

$$
\begin{aligned}
\varphi, \psi::= & \text { false } \mid \text { true }|\neg \varphi| \varphi \wedge \psi|\cdots| \quad \text { (propositional connectives) } \\
& \Delta_{1}(\varphi, \psi)\left|\Delta_{2}(\varphi, \psi)\right| \nabla_{1}(\varphi, \psi) \mid \nabla_{2}(\varphi, \psi)
\end{aligned}
$$

- A model is now a tuple $\mathcal{M}=\left(W, R_{1}, R_{2}, L\right)$, where R_{i} is a 3-ary accessibility relation for 2-ary modal operators Δ_{i} and $\nabla_{i}, i=1,2$.

more on duality in modal logic (not in [LCS])

- In the presence of general modal operators, for each n-ary modal operator Δ and its dual ∇, we need to introduce an $(n+1)$-accessibility relation.
- Example: Let Δ_{i} and ∇_{i} be dual 2-ary modal operators, for $i=1,2$.
- Syntax is now modified as:

$$
\begin{aligned}
\varphi, \psi::= & \text { false } \mid \text { true }|\neg \varphi| \varphi \wedge \psi|\cdots| \quad \text { (propositional connectives) } \\
& \Delta_{1}(\varphi, \psi)\left|\Delta_{2}(\varphi, \psi)\right| \nabla_{1}(\varphi, \psi) \mid \nabla_{2}(\varphi, \psi)
\end{aligned}
$$

- A model is now a tuple $\mathcal{M}=\left(W, R_{1}, R_{2}, L\right)$, where R_{i} is a 3-ary accessibility relation for 2-ary modal operators Δ_{i} and $\nabla_{i}, i=1,2$.
- Formal semantics is modified as, for $i=1,2$:
- $\mathcal{M}, x \Vdash \Delta_{i}\left(\varphi_{1}, \varphi_{2}\right)$ iff there are $y_{1}, y_{2} \in W$ such that $R_{i}\left(x, y_{1}, y_{2}\right)$ and $\mathcal{M}, y_{1} \Vdash \varphi_{1}$ and $\mathcal{M}, y_{2} \Vdash \varphi_{2}$
- $\mathcal{M}, x \Vdash \nabla_{i}\left(\varphi_{1}, \varphi_{2}\right) \quad$ iff for all $y_{1}, y_{2} \in W$ if $R_{i}\left(x, y_{1}, y_{2}\right)$ then $\mathcal{M}, y_{1} \Vdash \varphi_{1}$ and $\mathcal{M}, y_{2} \Vdash \varphi_{2}$

more on duality in modal logic (not in [LCS])

Example: Suppose \diamond_{i} and \square_{i} are unary modal operators which are dual to each other, for $i=1,2$. Examples of specific models for the corresponding modal logic are - actually these are frames rather than models due to the absence of labelling functions:

- $\mathcal{N}=\left(\mathbb{N}, S_{1}, S_{2}\right)$ where \mathbb{N} is the set of natural numbers and

$$
\begin{array}{lll}
m S_{1} n & \text { iff } & n=m+1 \\
m S_{2} n & \text { iff } & m<n
\end{array}
$$

- $\mathcal{B}=\left(\mathbb{B}, R_{1}, R_{2}\right)$ where \mathbb{B} is the set $\{0,1\}^{*}$ of all finite binary strings and
$s R_{1} t$ iff $t=s 0$ or $t=s 1$
$s R_{2} t$ iff s is a proper prefix of t

more on duality in modal logic (not in [LCS])

Exercise: Which of the following WFF's are satisfied by the frames \mathcal{N} and \mathcal{B} on the preceding slide? Justify your answers:

1. $\left(\diamond_{1} \varphi \wedge \diamond_{1} \psi\right) \rightarrow \diamond_{1}(\varphi \wedge \psi)$
2. $\left(\diamond_{2} \varphi \wedge \nabla_{2} \psi\right) \rightarrow \nabla_{2}(\varphi \wedge \psi)$
3. $\left(\diamond_{1} \varphi \wedge \diamond_{1} \psi \wedge \diamond_{1} \theta\right) \rightarrow \diamond_{1}(\varphi \wedge \psi) \vee \diamond_{1}(\varphi \wedge \theta) \vee \diamond_{1}(\psi \wedge \theta)$
4. $\varphi \rightarrow \diamond_{1} \square_{2} \varphi$
5. $\varphi \rightarrow \diamond_{2} \square_{1} \varphi$
6. $\varphi \rightarrow \square_{1} \diamond_{2} \varphi$
7. $\left.\varphi \rightarrow \square_{2}\right\rangle_{1} \varphi$

axioms in modal logics

[LCS, Section 5.3, pp. 316-328]
formal provability (natural deduction)
[LCS, Sect 5.4, pp. 328-331]

more examples: reasoning in multi-agent systems

[LCS, Sect 5.5, pp. 331-349]

(THIS PAGE INTENTIONALLY LEFT BLANK)

[^0]: ${ }^{1} \mathcal{P}(\mathrm{AP})$ is the powerset of AP , which is the same as 2^{AP} in earlier handouts. Note that we can take the labelling function in the alternative form $L: A P \rightarrow \mathcal{P}(W)$; the two forms give equivalent definitions of Kripke models.

[^1]: ${ }^{1} \mathcal{P}(\mathrm{AP})$ is the powerset of AP , which is the same as 2^{AP} in earlier handouts. Note that we can take the labelling function in the alternative form $L: A P \rightarrow \mathcal{P}(W)$; the two forms give equivalent definitions of Kripke models.

[^2]: ${ }^{1} \mathcal{P}(\mathrm{AP})$ is the powerset of AP , which is the same as 2^{AP} in earlier handouts. Note that we can take the labelling function in the alternative form $L: A P \rightarrow \mathcal{P}(W)$; the two forms give equivalent definitions of Kripke models.

[^3]: ${ }^{1} \mathcal{P}(\mathrm{AP})$ is the powerset of AP , which is the same as 2^{AP} in earlier handouts. Note that we can take the labelling function in the alternative form $L: A P \rightarrow \mathcal{P}(W)$; the two forms give equivalent definitions of Kripke models.

