CS 512, Spring 2018, Handout 23 Modal Logics

Assaf Kfoury

April 22, 2018 (adjusted April 27, 2018)

Assaf Kfoury, CS 512, Spring 2018, Handout 23

page 1 of 39

$$\begin{array}{lll} \varphi,\psi \,::=\, {\tt true} \mid {\tt false} \mid p \mid \neg \varphi \mid \varphi \wedge \psi \mid \cdots & {\rm propositional \ logic} \\ & \mid & \Box \varphi & & {\rm "box} \ \varphi" \\ & \mid & \Diamond \varphi & & {\rm "diamond} \ \varphi" \end{array}$$

$$\begin{array}{lll} \varphi,\psi \,::=\, {\tt true} \mid {\tt false} \mid p \mid \neg \varphi \mid \varphi \wedge \psi \mid \cdots & {\rm propositional \ logic} \\ & \mid & \Box \varphi & & \text{"box } \varphi \\ & \mid & \Diamond \varphi & & \text{"diamond } \varphi \end{array}$$

"□" is now called a modality or a modal operator, rather than a temporal connective, and ditto for "◊".

$$\begin{array}{lll} \varphi,\psi \,::=\, {\tt true} \mid {\tt false} \mid p \mid \neg \varphi \mid \varphi \wedge \psi \mid \cdots & {\rm propositional \ logic} \\ & \mid & \Box \varphi & & \text{"box } \varphi \\ & \mid & \Diamond \varphi & & \text{"diamond } \varphi \end{array}$$

- "□" is now called a modality or a modal operator, rather than a temporal connective, and ditto for "◊".
- " $\Box \varphi$ " can be also read as "necessarily φ ", and " $\Diamond \varphi$ " as "possibly φ ".

$$\begin{array}{lll} \varphi,\psi \,::=\, {\tt true} \mid {\tt false} \mid p \mid \neg \varphi \mid \varphi \wedge \psi \mid \cdots & {\rm propositional \ logic} \\ & \mid & \Box \varphi & & \text{``box } \varphi `` \\ & \mid & \Diamond \varphi & & \text{``diamond } \varphi `` \end{array}$$

- "□" is now called a modality or a modal operator, rather than a temporal connective, and ditto for "◊".
- " $\Box \varphi$ " can be also read as "necessarily φ ", and " $\Diamond \varphi$ " as "possibly φ ".
- ► Another intuitive understanding of "□" and "◊":
 - ▶ In many ways, "□" in modal logic is like " \forall ○" (not " \forall □") in CTL.
 - ▶ In many ways, " \Diamond " in modal logic is like " \exists \bigcirc " in CTL.

Caution: Although intuitively helpful, since we started with temporal logics before turning to modal logics, this correspondence with CTL does not always hold.

for a detailed and somewhat different presentation of the semantics of modal logic, click **here** for the Wikipedia article on **Kripke semantics**.

 $^{{}^{1}\}mathcal{P}(AP)$ is the powerset of AP, which is the same as 2^{AP} in earlier handouts. Note that we can take the labelling function in the alternative form $L: AP \to \mathcal{P}(W)$; the two forms give equivalent definitions of Kripke models.

for a detailed and somewhat different presentation of the semantics of modal logic, click **here** for the Wikipedia article on **Kripke semantics**.

► A model *M* of **basic modal logic** (also called a **Kripke model**) is a triple:

 $\mathcal{M} = (W, R, L)$ where

- W is the set of possible worlds,
- $R \subseteq W \times W$ is a binary accessibility relation,
- $L: W \to \mathcal{P}(AP)$ is a labelling function¹

 $^{{}^{1}\}mathcal{P}(AP)$ is the powerset of AP, which is the same as 2^{AP} in earlier handouts. Note that we can take the labelling function in the alternative form $L: AP \to \mathcal{P}(W)$; the two forms give equivalent definitions of Kripke models.

for a detailed and somewhat different presentation of the semantics of modal logic, click **here** for the Wikipedia article on **Kripke semantics**.

► A model *M* of **basic modal logic** (also called a **Kripke model**) is a triple:

 $\mathcal{M} = (W, R, L)$ where

- W is the set of possible worlds,
- $R \subseteq W \times W$ is a binary accessibility relation,
- $L: W \to \mathcal{P}(AP)$ is a labelling function¹

Yes, $\mathcal M$ can be also viewed as a model of LTL and CTL!!

 $^{{}^{1}\}mathcal{P}(AP)$ is the powerset of AP, which is the same as 2^{AP} in earlier handouts. Note that we can take the labelling function in the alternative form $L: AP \to \mathcal{P}(W)$; the two forms give equivalent definitions of Kripke models.

for a detailed and somewhat different presentation of the semantics of modal logic, click **here** for the Wikipedia article on **Kripke semantics**.

► A model *M* of **basic modal logic** (also called a **Kripke model**) is a triple:

 $\mathcal{M} = (W, R, L)$ where

- W is the set of possible worlds,
- $R \subseteq W \times W$ is a binary accessibility relation,
- $L: W \to \mathcal{P}(AP)$ is a labelling function¹

Yes, $\mathcal M$ can be also viewed as a model of LTL and CTL!!

In different accounts of modal logic, the members of W may be referred by different names: possible worlds, states, nodes, times, etc., depending on the semantics of the logic.

 $^{{}^{1}\}mathcal{P}(AP)$ is the powerset of AP, which is the same as 2^{AP} in earlier handouts. Note that we can take the labelling function in the alternative form $L: AP \to \mathcal{P}(W)$; the two forms give equivalent definitions of Kripke models.

As usual, the **formal semantics** is **syntax-directed**, with one step for each step in the formal definition of WFF's. For every model $\mathcal{M} = (W, R, L)$ of modal logic and every world $x \in W$:

As usual, the **formal semantics** is **syntax-directed**, with one step for each step in the formal definition of WFF's. For every model $\mathcal{M} = (W, R, L)$ of modal logic and every world $x \in W$:

basis steps

- ▶ $\mathcal{M}, x \Vdash \texttt{true}$
- ▶ $\mathcal{M}, x \not\Vdash \texttt{false}$
- $\blacktriangleright \quad \mathcal{M}, x \Vdash p \quad \text{iff} \quad p \in L(x)$

As usual, the **formal semantics** is **syntax-directed**, with one step for each step in the formal definition of WFF's. For every model $\mathcal{M} = (W, R, L)$ of modal logic and every world $x \in W$:

basis steps

- ▶ $\mathcal{M}, x \Vdash \texttt{true}$
- ▶ $\mathcal{M}, x \not\Vdash \texttt{false}$

. . .

 $\blacktriangleright \quad \mathcal{M}, x \Vdash p \quad \text{iff} \quad p \in L(x)$

induction steps: propositional-logic connectives

$$\blacktriangleright \quad \mathcal{M}, x \Vdash \neg \varphi \quad \text{iff} \quad \mathcal{M}, x \nvDash \varphi$$

$$\blacktriangleright \qquad \mathcal{M}, x \Vdash \varphi \land \psi \quad \text{iff} \quad \mathcal{M}, x \Vdash \varphi \text{ and } \mathcal{M}, x \Vdash \psi$$

As usual, the **formal semantics** is **syntax-directed**, with one step for each step in the formal definition of WFF's. For every model $\mathcal{M} = (W, R, L)$ of modal logic and every world $x \in W$:

basis steps

- ▶ $\mathcal{M}, x \Vdash \texttt{true}$
- ▶ $\mathcal{M}, x \not\Vdash \texttt{false}$
- $\blacktriangleright \quad \mathcal{M}, x \Vdash p \quad \text{iff} \quad p \in L(x)$

induction steps: propositional-logic connectives

$$\blacktriangleright \quad \mathcal{M}, x \Vdash \neg \varphi \quad \text{iff} \quad \mathcal{M}, x \nvDash \varphi$$

$$\blacktriangleright \qquad \mathcal{M}, x \Vdash \varphi \land \psi \quad \text{iff} \quad \mathcal{M}, x \Vdash \varphi \text{ and } \mathcal{M}, x \Vdash \psi$$

induction steps: modal-logic connectives

$$\mathcal{M}, x \Vdash \Box \varphi \quad \text{iff} \quad \left(\mathcal{M}, y \Vdash \varphi \quad \text{for every } y \in W \text{ such that } R(x, y) \right)$$
$$\mathcal{M}, x \Vdash \Diamond \varphi \quad \text{iff} \quad \left(\mathcal{M}, y \Vdash \varphi \quad \text{for some } y \in W \text{ such that } R(x, y) \right)$$

Given a set Γ of WFF's and a WFF φ , all of basic modal logic, we say:

▶ **Γ** (semantically) entails φ , in symbols $\Gamma \models \varphi$, iff for every model $\mathcal{M} = (W, R, L)$ and every world $x \in W$, if $\mathcal{M}, x \Vdash \Gamma$ then $\mathcal{M}, x \Vdash \varphi$.

Given a set Γ of WFF's and a WFF φ , all of basic modal logic, we say:

▶ Γ (semantically) entails φ , in symbols $\Gamma \models \varphi$, iff for every model $\mathcal{M} = (W, R, L)$ and every world $x \in W$, if $\mathcal{M}, x \Vdash \Gamma$ then $\mathcal{M}, x \Vdash \varphi$.

Remark: Note the switch from " \Vdash " to " \models ", following [LCS, p. 313], although **not** every account of modal logic follows this convention. Somewhat at odds with other accounts, [LCS, p. 310] pronounces " \Vdash " as "satisfies" (rather than "forces"), while *satisfaction* elsewhere is usually strictly reserved to denote a **semantic** relation.

Given a set Γ of WFF's and a WFF φ , all of basic modal logic, we say:

▶ Γ (semantically) entails φ , in symbols $\Gamma \models \varphi$, iff for every model $\mathcal{M} = (W, R, L)$ and every world $x \in W$, if $\mathcal{M}, x \Vdash \Gamma$ then $\mathcal{M}, x \Vdash \varphi$.

Remark: Note the switch from " \Vdash " to " \models ", following [LCS, p. 313], although **not** every account of modal logic follows this convention. Somewhat at odds with other accounts, [LCS, p. 310] pronounces " \Vdash " as "satisfies" (rather than "forces"), while *satisfaction* elsewhere is usually strictly reserved to denote a **semantic** relation.

Given a model $\mathcal{M} = (W, R, L)$ and a WFF φ of basic modal logic, we say:

▶ \mathcal{M} satisfies φ or φ is true in \mathcal{M} , in symbols $\mathcal{M} \models \varphi$, iff for every world $x \in W$ we have $\mathcal{M}, x \Vdash \varphi$.

Given a set Γ of WFF's and a WFF φ , all of basic modal logic, we say:

▶ Γ (semantically) entails φ , in symbols $\Gamma \models \varphi$, iff for every model $\mathcal{M} = (W, R, L)$ and every world $x \in W$, if $\mathcal{M}, x \Vdash \Gamma$ then $\mathcal{M}, x \Vdash \varphi$.

Remark: Note the switch from " \Vdash " to " \models ", following [LCS, p. 313], although **not** every account of modal logic follows this convention. Somewhat at odds with other accounts, [LCS, p. 310] pronounces " \Vdash " as "satisfies" (rather than "forces"), while *satisfaction* elsewhere is usually strictly reserved to denote a **semantic** relation.

Given a model $\mathcal{M} = (W, R, L)$ and a WFF φ of basic modal logic, we say:

▶ \mathcal{M} satisfies φ or φ is true in \mathcal{M} , in symbols $\mathcal{M} \models \varphi$, iff for every world $x \in W$ we have $\mathcal{M}, x \Vdash \varphi$.

Given a WFF φ of basic modal logic, we say [LCS, p. 314]:

φ is (semantically) valid, in symbols ⊨ φ, iff for every model M we have M ⊨ φ.

 φ and ψ are (semantically) equivalent, in symbols $\varphi \equiv \psi$, iff both:

 $\varphi \models \psi \quad \text{and} \quad \psi \models \varphi$

or, equivalently, iff: $\models \varphi \leftrightarrow \psi$.

 φ and ψ are (semantically) equivalent, in symbols $\varphi \equiv \psi$, iff both:

 $\varphi \models \psi$ and $\psi \models \varphi$

or, equivalently, iff: $\models \varphi \leftrightarrow \psi$.

- 1. $\Box \varphi \equiv \neg \Diamond \neg \varphi$
- **2**. $\Diamond \varphi \equiv \neg \Box \neg \varphi$

the two preceding equivalences demonstrate the duality of \Box and \Diamond

 φ and ψ are (semantically) equivalent, in symbols $\varphi \equiv \psi$, iff both:

 $\varphi \models \psi \quad \text{and} \quad \psi \models \varphi$

or, equivalently, iff: $\models \varphi \leftrightarrow \psi$.

- 1. $\Box \varphi \equiv \neg \Diamond \neg \varphi$
- **2**. $\Diamond \varphi \equiv \neg \Box \neg \varphi$

the two preceding equivalences demonstrate the duality of \Box and \Diamond

- **3**. $\Box(\varphi \land \psi) \equiv \Box \varphi \land \Box \psi$
- 4. $\Diamond(\varphi \lor \psi) \equiv \Diamond \varphi \lor \Diamond \psi$

the two preceding are "distributivity laws" of: " \Box over \wedge " and " \Diamond over \vee "

 φ and ψ are (semantically) equivalent, in symbols $\varphi \equiv \psi$, iff both:

 $\varphi \models \psi$ and $\psi \models \varphi$

or, equivalently, iff: $\models \varphi \leftrightarrow \psi$.

- 1. $\Box \varphi \equiv \neg \Diamond \neg \varphi$
- **2**. $\Diamond \varphi \equiv \neg \Box \neg \varphi$

the two preceding equivalences demonstrate the duality of \Box and \Diamond

- **3**. $\Box(\varphi \land \psi) \equiv \Box \varphi \land \Box \psi$
- 4. $\Diamond(\varphi \lor \psi) \equiv \Diamond \varphi \lor \Diamond \psi$

the two preceding are "distributivity laws" of: " \Box over \wedge " and " \Diamond over \vee "

- 5. $\Box(\varphi \lor \psi) \not\equiv \Box \varphi \lor \Box \psi$ but $\models \Box \varphi \lor \Box \psi \longrightarrow \Box(\varphi \lor \psi)$
- 6. $\Diamond(\varphi \land \psi) \neq \Diamond \varphi \land \Diamond \psi$ but $\models \Diamond(\varphi \land \psi) \longrightarrow \Diamond \varphi \land \Diamond \psi$

We can also obtain the two preceding from the duality of \Box and \Diamond and the duality of \wedge and $\vee.$

Assaf Kfoury, CS 512, Spring 2018, Handout 23

(more subtle, see [LCS, bottom of p. 311 and top of p. 312])

- 7. \Box true \equiv true
- 8. \Diamond false \equiv false
- 9. |= false \longrightarrow \Box false but $\not\models$ \Box false \longrightarrow false
- 10. $\models \Diamond$ true \longrightarrow true but $\not\models$ true $\longrightarrow \Diamond$ true

11. More complicated equivalences can be obtained from appropriate substitutions into equivalences of propositional logic. For example, we know that $(p \rightarrow \neg q) \equiv \neg (p \land q)$. So, if we substitute $\Box \varphi \land (\psi \rightarrow \varphi)$ for *p* and $\theta \rightarrow \Diamond (\psi \lor \varphi)$ for *q*, we obtain the following equivalence:

$$\begin{split} & \left(\Box \varphi \land (\psi \to \varphi) \right) \ \to \ \neg \Big(\theta \to \Diamond (\psi \lor \varphi) \Big) \ \equiv \\ & \neg \Big(\Big(\Box \varphi \land (\psi \to \varphi) \Big) \land \Big(\theta \to \Diamond (\psi \lor \varphi) \Big) \Big) \end{split}$$

11. More complicated equivalences can be obtained from appropriate substitutions into equivalences of propositional logic. For example, we know that $(p \rightarrow \neg q) \equiv \neg (p \land q)$. So, if we substitute $\Box \varphi \land (\psi \rightarrow \varphi)$ for *p* and $\theta \rightarrow \Diamond (\psi \lor \varphi)$ for *q*, we obtain the following equivalence:

$$\begin{aligned} \left(\Box \varphi \land (\psi \to \varphi) \right) \: \to \: \neg \left(\theta \to \Diamond (\psi \lor \varphi) \right) \: \equiv \: \neg \left(\left(\Box \varphi \land (\psi \to \varphi) \right) \land \left(\theta \to \Diamond (\psi \lor \varphi) \right) \right) \end{aligned}$$

12. Every equivalence can be turned into a (semantic) validity, and vice-versa. For example, the equivalence $\Box \varphi \equiv \neg \Diamond \neg \varphi$ can be turned into the semantically valid WFF ($\Box \varphi \leftrightarrow \neg \Diamond \neg \varphi$).

Remark: Equivalence denoted by " \equiv " is a notion at the **meta level**, whereas the symbol " \leftrightarrow " is at the **object level**. Thus, $\Box \varphi \equiv \neg \Diamond \neg \varphi$ is **not** a WFF.

11. More complicated equivalences can be obtained from appropriate substitutions into equivalences of propositional logic. For example, we know that $(p \rightarrow \neg q) \equiv \neg (p \land q)$. So, if we substitute $\Box \varphi \land (\psi \rightarrow \varphi)$ for *p* and $\theta \rightarrow \Diamond (\psi \lor \varphi)$ for *q*, we obtain the following equivalence:

$$\begin{aligned} \left(\Box \varphi \land (\psi \to \varphi) \right) \: \to \: \neg \left(\theta \to \Diamond (\psi \lor \varphi) \right) \: \equiv \: \neg \left(\left(\Box \varphi \land (\psi \to \varphi) \right) \land \left(\theta \to \Diamond (\psi \lor \varphi) \right) \right) \end{aligned}$$

12. Every equivalence can be turned into a (semantic) validity, and vice-versa. For example, the equivalence $\Box \varphi \equiv \neg \Diamond \neg \varphi$ can be turned into the semantically valid WFF ($\Box \varphi \leftrightarrow \neg \Diamond \neg \varphi$).

Remark: Equivalence denoted by " \equiv " is a notion at the **meta level**, whereas the symbol " \leftrightarrow " is at the **object level**. Thus, $\Box \varphi \equiv \neg \Diamond \neg \varphi$ is **not** a WFF.

13. More non-trivial equivalences are in [LCS, pp. 312-315] and the exercises for [LCS, Sect 5.2, pp.350-351].

Dualities of all sorts are found in formal methods and mathematical logic:

syntax/proof theory versus semantics/model theory,

deducibility versus semantic validity,

consistency versus satisfiability,

soundness versus completeness

Dualities of all sorts are found in formal methods and mathematical logic:

syntax/proof theory versus semantics/model theory,

deducibility versus semantic validity,

consistency versus satisfiability,

soundness versus completeness

- ▶ between propositional connectives (*e.g.*, ∧ and ∨), via negation
- ▶ between quantifiers (*e.g.*, \forall and \exists), via negation
- ▶ between modal operators (*e.g.*, \Box and \Diamond), via negation

Dualities of all sorts are found in formal methods and mathematical logic:

syntax/proof theory versus semantics/model theory,

deducibility versus semantic validity,

consistency versus satisfiability,

soundness versus completeness

- ▶ between propositional connectives (e.g., ∧ and ∨), via negation
- ▶ between quantifiers (*e.g.*, \forall and \exists), via negation
- ▶ between modal operators (*e.g.*, \Box and \Diamond), via negation

More generally, two *n*-ary modal operators Δ and ∇ are dual of each other iff:

$$\Delta(\varphi_1,\ldots,\varphi_n)\equiv\neg\nabla(\neg\varphi_1,\ldots,\neg\varphi_n)$$

Remark: " ∇ " is pronounced "nabla".

▶ In the presence of general modal operators, for each *n*-ary modal operator Δ and its dual ∇ , we need to introduce an (n + 1)-accessibility relation.

- ▶ In the presence of general modal operators, for each *n*-ary modal operator Δ and its dual ∇ , we need to introduce an (n + 1)-accessibility relation.
- **Example:** Let Δ_i and ∇_i be dual **2-ary modal operators**, for i = 1, 2.

- ▶ In the presence of general modal operators, for each *n*-ary modal operator Δ and its dual ∇ , we need to introduce an (n + 1)-accessibility relation.
- **Example:** Let Δ_i and ∇_i be dual **2-ary modal operators**, for i = 1, 2.
 - Syntax is now modified as:

 $\begin{array}{l} \varphi,\psi \,\,::= \texttt{false} \mid \texttt{true} \mid \neg \varphi \mid \varphi \land \psi \mid \cdots \mid & (\texttt{propositional connectives}) \\ & \Delta_1(\varphi,\psi) \mid \Delta_2(\varphi,\psi) \mid \nabla_1(\varphi,\psi) \mid \nabla_2(\varphi,\psi) \end{array}$

- ▶ In the presence of general modal operators, for each *n*-ary modal operator Δ and its dual ∇ , we need to introduce an (n + 1)-accessibility relation.
- **Example:** Let Δ_i and ∇_i be dual **2-ary modal operators**, for i = 1, 2.
 - Syntax is now modified as:

 $\begin{array}{l} \varphi,\psi \,\,::= \texttt{false} \mid \texttt{true} \mid \neg \varphi \mid \varphi \wedge \psi \mid \cdots \mid & (\text{propositional connectives}) \\ & \Delta_1(\varphi,\psi) \mid \Delta_2(\varphi,\psi) \mid \nabla_1(\varphi,\psi) \mid \nabla_2(\varphi,\psi) \end{array}$

A model is now a tuple $\mathcal{M} = (W, R_1, R_2, L)$, where R_i is a 3-ary accessibility relation for 2-ary modal operators Δ_i and ∇_i , i = 1, 2.

- In the presence of general modal operators, for each *n*-ary modal operator ∆ and its dual ∇, we need to introduce an (*n* + 1)-accessibility relation.
- **Example:** Let Δ_i and ∇_i be dual **2-ary modal operators**, for i = 1, 2.
 - Syntax is now modified as:

 $\begin{array}{l} \varphi,\psi \ ::= \texttt{false} \mid \texttt{true} \mid \neg \varphi \mid \varphi \land \psi \mid \cdots \mid & (\text{propositional connectives}) \\ & \Delta_1(\varphi,\psi) \mid \Delta_2(\varphi,\psi) \mid \nabla_1(\varphi,\psi) \mid \nabla_2(\varphi,\psi) \end{array}$

- ► A model is now a tuple $\mathcal{M} = (W, R_1, R_2, L)$, where R_i is a 3-ary accessibility relation for 2-ary modal operators Δ_i and ∇_i , i = 1, 2.
- Formal semantics is modified as, for i = 1, 2:
 - $\begin{array}{l} \blacktriangleright \quad \mathcal{M}, x \Vdash \Delta_i(\varphi_1, \varphi_2) \quad \text{iff there are } y_1, y_2 \in W \\ \text{such that } R_i(x, y_1, y_2) \text{ and } \mathcal{M}, y_1 \Vdash \varphi_1 \text{ and } \mathcal{M}, y_2 \Vdash \varphi_2 \end{array}$

►
$$\mathcal{M}, x \Vdash \nabla_i(\varphi_1, \varphi_2)$$
 iff for all $y_1, y_2 \in W$
if $R_i(x, y_1, y_2)$ then $\mathcal{M}, y_1 \Vdash \varphi_1$ and $\mathcal{M}, y_2 \Vdash \varphi_2$

Example: Suppose \Diamond_i and \Box_i are unary modal operators which are dual to each other, for i = 1, 2. Examples of specific models for the corresponding modal logic are – actually these are **frames** rather than **models** due to the absence of labelling functions:

▶ $\mathcal{N} = (\mathbb{N}, S_1, S_2)$ where \mathbb{N} is the set of natural numbers and

 mS_1n iff n=m+1

 $m S_2 n$ iff m < n

▶ $\mathcal{B} = (\mathbb{B}, R_1, R_2)$ where \mathbb{B} is the set $\{0, 1\}^*$ of all finite binary strings and

 sR_1t iff t = s0 or t = s1

 sR_2t iff s is a proper prefix of t

Exercise: Which of the following WFF's are satisfied by the frames N and B on the preceding slide? Justify your answers:

1.
$$(\Diamond_1 \varphi \land \Diamond_1 \psi) \to \Diamond_1 (\varphi \land \psi)$$

- 2. $(\Diamond_2 \varphi \land \Diamond_2 \psi) \rightarrow \Diamond_2 (\varphi \land \psi)$
- 3. $(\Diamond_1 \varphi \land \Diamond_1 \psi \land \Diamond_1 \theta) \to \Diamond_1 (\varphi \land \psi) \lor \Diamond_1 (\varphi \land \theta) \lor \Diamond_1 (\psi \land \theta)$
- 4. $\varphi \rightarrow \Diamond_1 \Box_2 \varphi$
- 5. $\varphi \rightarrow \Diamond_2 \Box_1 \varphi$
- 6. $\varphi \to \Box_1 \Diamond_2 \varphi$
- 7. $\varphi \rightarrow \Box_2 \Diamond_1 \varphi$

axioms in modal logics

[LCS, Section 5.3, pp. 316-328]

formal provability (natural deduction)

[LCS, Sect 5.4, pp. 328-331]

more examples: reasoning in multi-agent systems

[LCS, Sect 5.5, pp. 331-349]

(THIS PAGE INTENTIONALLY LEFT BLANK)