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syntax [LCS, Section 5.2.1], click here for Wikipedia article

ϕ,ψ ::= true | false | p | ¬ϕ | ϕ ∧ ψ | · · · propositional logic

| �ϕ “box ϕ”

| ♦ϕ “diamond ϕ”

I “�” is now called a modality or a modal operator,
rather than a temporal connective, and ditto for “♦”.

I “�ϕ” can be also read as “necessarily ϕ”, and “♦ϕ” as “possibly ϕ”.

I Another intuitive understanding of “�” and “♦”:

I In many ways, “�” in modal logic is like “∀ f” (not “∀�”) in CTL.
I In many ways, “♦” in modal logic is like “∃ f” in CTL.

Caution: Although intuitively helpful, since we started with temporal logics
before turning to modal logics, this correspondence with CTL does not
always hold.
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semantics [LCS, Section 5.2.2]

for a detailed and somewhat different presentation of the semantics of
modal logic, click here for the Wikipedia article on Kripke semantics.

I A modelM of basic modal logic (also called a Kripke model) is a triple:

M = (W,R,L) where

• W is the set of possible worlds,

• R ⊆ W ×W is a binary accessibility relation,

• L : W → P(AP) is a labelling function1

Yes,M can be also viewed as a model of LTL and CTL!!

I In different accounts of modal logic, the members of W may be referred by
different names: possible worlds, states, nodes, times, etc., depending
on the semantics of the logic.

1P(AP) is the powerset of AP, which is the same as 2AP in earlier handouts. Note that we can take the labelling function in the
alternative form L : AP → P(W); the two forms give equivalent definitions of Kripke models.
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semantics [LCS, Section 5.2.2]
As usual, the formal semantics is syntax-directed,
with one step for each step in the formal definition of WFF’s.
For every modelM = (W,R, L) of modal logic and every world x ∈ W:

basis steps

I M, x  true

I M, x 6 false

I M, x  p iff p ∈ L(x)

induction steps: propositional-logic connectives

I M, x  ¬ϕ iff M, x 6 ϕ
I M, x  ϕ ∧ ψ iff M, x  ϕ andM, x  ψ

I . . .

induction steps: modal-logic connectives

I M, x  �ϕ iff
(
M, y  ϕ for every y ∈ W such that R(x, y)

)
I M, x  ♦ϕ iff

(
M, y  ϕ for some y ∈ W such that R(x, y)

)
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semantics [LCS, Section 5.2.2]

Given a set Γ of WFF’s and a WFF ϕ, all of basic modal logic, we say:

I Γ (semantically) entails ϕ, in symbols Γ |= ϕ, iff
for every modelM = (W,R,L) and every world x ∈ W,
ifM, x  Γ thenM, x  ϕ.

Remark: Note the switch from “” to “|=”, following [LCS, p. 313], although not
every account of modal logic follows this convention. Somewhat at odds with other
accounts, [LCS, p. 310] pronounces “” as “satisfies” (rather than “forces”), while
satisfaction elsewhere is usually strictly reserved to denote a semantic relation.

Given a modelM = (W,R,L) and a WFF ϕ of basic modal logic, we say:

I M satisfies ϕ or ϕ is true in M, in symbolsM |= ϕ, iff
for every world x ∈ W we haveM, x  ϕ.

Given a WFF ϕ of basic modal logic, we say [LCS, p. 314]:

I ϕ is (semantically) valid, in symbols |= ϕ, iff
for every modelM we haveM |= ϕ.
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useful equivalences

ϕ and ψ are (semantically) equivalent, in symbols ϕ ≡ ψ, iff both:

ϕ |= ψ and ψ |= ϕ

or, equivalently, iff: |= ϕ↔ ψ.

1. �ϕ ≡ ¬♦¬ϕ

2. ♦ϕ ≡ ¬�¬ϕ

the two preceding equivalences demonstrate the duality of � and ♦

3. �(ϕ ∧ ψ) ≡ �ϕ ∧�ψ

4. ♦(ϕ ∨ ψ) ≡ ♦ϕ ∨ ♦ψ

the two preceding are “distributivity laws” of: “� over ∧” and “♦ over ∨”

5. �(ϕ ∨ ψ) 6≡ �ϕ ∨�ψ but |= �ϕ ∨�ψ −→ �(ϕ ∨ ψ)

6. ♦(ϕ ∧ ψ) 6≡ ♦ϕ ∧ ♦ψ but |= ♦(ϕ ∧ ψ) −→ ♦ϕ ∧ ♦ψ

We can also obtain the two preceding from
the duality of � and ♦ and the duality of ∧ and ∨.
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useful equivalences
(more subtle, see [LCS, bottom of p. 311 and top of p. 312])

7. �true ≡ true

8. ♦false ≡ false

9. |= false −→ �false but 6|= �false −→ false

10. |= ♦true −→ true but 6|= true −→ ♦true
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useful equivalences

11. More complicated equivalences can be obtained from appropriate
substitutions into equivalences of propositional logic. For example, we
know that (p→ ¬q) ≡ ¬(p ∧ q) . So, if we substitute �ϕ ∧ (ψ → ϕ)

for p and θ → ♦(ψ ∨ ϕ) for q, we obtain the following equivalence:(
�ϕ ∧ (ψ → ϕ)

)
→ ¬

(
θ → ♦(ψ ∨ ϕ)

)
≡

¬
((
�ϕ ∧ (ψ → ϕ)

)
∧
(
θ → ♦(ψ ∨ ϕ)

))

12. Every equivalence can be turned into a (semantic) validity, and vice-versa.
For example, the equivalence �ϕ ≡ ¬♦¬ϕ can be turned into the
semantically valid WFF (�ϕ↔ ¬♦¬ϕ).

Remark: Equivalence denoted by “≡” is a notion at the meta level, whereas the
symbol “↔” is at the object level. Thus, �ϕ ≡ ¬♦¬ϕ is not a WFF.

13. More non-trivial equivalences are in [LCS, pp. 312-315] and the exercises
for [LCS, Sect 5.2, pp.350-351].
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more on duality in modal logic (not in [LCS])

Dualities of all sorts are found in formal methods and mathematical logic:

I syntax/proof theory versus semantics/model theory,

deducibility versus semantic validity,

consistency versus satisfiability,

soundness versus completeness

I between propositional connectives (e.g., ∧ and ∨), via negation

I between quantifiers (e.g., ∀ and ∃), via negation

I between modal operators (e.g., � and ♦), via negation

More generally, two n-ary modal operators ∆ and ∇ are dual of each other iff:

∆(ϕ1, . . . , ϕn) ≡ ¬∇(¬ϕ1, . . . ,¬ϕn)

Remark: “∇” is pronounced “nabla”.
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more on duality in modal logic (not in [LCS])

I In the presence of general modal operators, for each n-ary modal operator ∆ and
its dual∇, we need to introduce an (n + 1)-accessibility relation.

I Example: Let ∆i and∇i be dual 2-ary modal operators, for i = 1, 2.

I Syntax is now modified as:

ϕ,ψ ::= false | true | ¬ϕ | ϕ ∧ ψ | · · · | (propositional connectives)

∆1(ϕ,ψ) | ∆2(ϕ,ψ) | ∇1(ϕ,ψ) | ∇2(ϕ,ψ)

I A model is now a tupleM = (W,R1,R2,L), where Ri is a 3-ary
accessibility relation for 2-ary modal operators ∆i and ∇i, i = 1, 2.

I Formal semantics is modified as, for i = 1, 2:

I M, x  ∆i(ϕ1, ϕ2) iff there are y1, y2 ∈ W
such that Ri(x, y1, y2) andM, y1  ϕ1 andM, y2  ϕ2

I M, x  ∇i(ϕ1, ϕ2) iff for all y1, y2 ∈ W
if Ri(x, y1, y2) thenM, y1  ϕ1 andM, y2  ϕ2
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more on duality in modal logic (not in [LCS])

I In the presence of general modal operators, for each n-ary modal operator ∆ and
its dual∇, we need to introduce an (n + 1)-accessibility relation.

I Example: Let ∆i and∇i be dual 2-ary modal operators, for i = 1, 2.

I Syntax is now modified as:

ϕ,ψ ::= false | true | ¬ϕ | ϕ ∧ ψ | · · · | (propositional connectives)

∆1(ϕ,ψ) | ∆2(ϕ,ψ) | ∇1(ϕ,ψ) | ∇2(ϕ,ψ)

I A model is now a tupleM = (W,R1,R2,L), where Ri is a 3-ary
accessibility relation for 2-ary modal operators ∆i and ∇i, i = 1, 2.

I Formal semantics is modified as, for i = 1, 2:
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if Ri(x, y1, y2) thenM, y1  ϕ1 andM, y2  ϕ2
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more on duality in modal logic (not in [LCS])

Example: Suppose ♦i and �i are unary modal operators which are dual to
each other, for i = 1, 2. Examples of specific models for the corresponding
modal logic are – actually these are frames rather than models due to the
absence of labelling functions:

I N = (N, S1, S2) where N is the set of natural numbers and

m S1 n iff n = m + 1

m S2 n iff m < n

I B = (B,R1,R2) where B is the set {0, 1}∗ of all finite binary strings and

s R1 t iff t = s0 or t = s1

s R2 t iff s is a proper prefix of t
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more on duality in modal logic (not in [LCS])

Exercise: Which of the following WFF’s are satisfied by the frames N and B on
the preceding slide? Justify your answers:

1. (♦1ϕ ∧ ♦1ψ)→ ♦1(ϕ ∧ ψ)

2. (♦2ϕ ∧ ♦2ψ)→ ♦2(ϕ ∧ ψ)

3. (♦1ϕ ∧ ♦1ψ ∧ ♦1θ)→ ♦1(ϕ ∧ ψ) ∨ ♦1(ϕ ∧ θ) ∨ ♦1(ψ ∧ θ)

4. ϕ→ ♦1�2ϕ

5. ϕ→ ♦2�1ϕ

6. ϕ→ �1♦2ϕ

7. ϕ→ �2♦1ϕ
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axioms in modal logics
[LCS, Section 5.3, pp. 316-328]
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formal provability (natural deduction)
[LCS, Sect 5.4, pp. 328-331]
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more examples: reasoning in multi-agent systems
[LCS, Sect 5.5, pp. 331-349]
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