CS 512 Notes: Lecture 2

Nathan Cordner

23 January 2018

1 Set Operations

Given an alphabet $\Sigma=\{A, B\}$. We can define different operations on Σ, including:

- Concatenation: $\{A, B\} \cdot\{A, B\}=\{A A, A B, B A, B B\}$.
- We can use exponent notation as shorthand for multiple concatenations, as in $\{A, B\}^{3}=$ $\{A A A, \ldots, B B B\}$ (8 elements total).
- Kleene star: $\{A, B\}^{*}=\emptyset \cup\{A, B\} \cup\{A, B\}^{2} \cup \ldots$.
- Plus: $\{A, B\}^{+}=\{A, B\} \cup\{A, B\}^{2} \cup \ldots$.
- Omega: If $\sigma \in\{A, B\}^{\omega}$ with $\sigma=x_{0} x_{1} x_{2} x_{3} \ldots$ (right-infinite), then it has $x_{i} \in\{A, B\}$ for each i.

1.1 Regular Expressions

The language of a regular expression can be expressed in terms of these set operations. For example, $\mathcal{L}\left((A+B)^{*}\right)=\Sigma^{*}$. Another example is $\mathcal{L}((A+B) \cdot(A+B)+A)=\Sigma^{2} \cup\{A\}=\{A A, A B, B A, B B, A\}$.

2 Paths and Traces

Consider the following part of a transition system TS:

We can write down the infinite paths of TS using an ω-regular expression: $\left(s_{0} s_{1}+s_{0} s_{2}\right) \cdot\left(s_{3}+s_{3} s_{1}\right)^{\omega}$. Now let AP (the atomic propositions) be $\{a, b\}$. Suppose we now add labels for observables. Label s_{0} and s_{1} as $\{a\}$, label s_{2} as \emptyset, and label s_{3} as $\{a, b\}$. Let $X=\emptyset, Y=\{a\}, Z=\{a, b\}$, and $W=\{b\}$. Then we can describe the infinite traces of TS using these labels: $(Y Y+Y X) \cdot(Z+Z Y)^{\omega}$. Note that the traces don't convey as much information as the paths, since both s_{0} and s_{1} have the same label.

3 Linear Time (LT) Properties

Continuing with our example from the previous section, we have $2^{\mathrm{AP}}=\{\emptyset,\{a\},\{b\},\{a, b\}\}=\{X, Y, W, Z\}$. The set $\left(2^{\mathrm{AP}}\right)^{\omega}$ consists of all infinite strings, where each part of the string comes from 2^{AP}. A LT property is $P \subseteq\left(2^{\mathrm{AP}}\right)^{\omega}$, a subset of the ω-traces of a transition system.

For example, let P_{1} be "all infinite $\sigma=x_{0} x_{1} x_{2} \cdots \in\left(2^{\mathrm{AP}}\right)^{\omega}$ such that for infinitely many $i \geq 0$ we have that $x_{i}=Y$." Using the symbol $\stackrel{\infty}{\exists}$ (there exists infinitely many), we can abbreviate the latter half of
P_{1} as " $\exists i \geq 0$ with $x_{i}=Y$ ". Using a similar symbol ${ }^{\forall}$ (for all but finitely many, or almost all), we can create a second LT property $P_{2}=$ "all infinite $\sigma=x_{0} x_{1} x_{2} \cdots \in\left(2^{\mathrm{AP}}\right)^{\omega}$ such that $\forall i \geq 0, x_{i}=Y$."

We can see that P_{1} is satisfied if we loop $s_{3} s_{1}$ infinitely many times. However, P_{2} is not satisfiable since any infinite string visits s_{3} (with label Z) infinitely many times. We write $T S \mid=P_{1}$, and $T S \mid \vDash P_{2}$.

4 Finite Automata and Büchi Automata

See lecture slides for the notes.

