CS 512 Notes: Lecture 2

Nathan Cordner

23 January 2018

1 Set Operations

Given an alphabet $\Sigma = \{A, B\}$. We can define different operations on Σ , including:

- Concatenation: $\{A, B\} \cdot \{A, B\} = \{AA, AB, BA, BB\}.$
 - We can use exponent notation as shorthand for multiple concatenations, as in $\{A, B\}^3 = \{AAA, \dots, BBB\}$ (8 elements total).
- Kleene star: $\{A, B\}^* = \emptyset \cup \{A, B\} \cup \{A, B\}^2 \cup \dots$
- Plus: $\{A, B\}^+ = \{A, B\} \cup \{A, B\}^2 \cup \dots$
- Omega: If $\sigma \in \{A, B\}^{\omega}$ with $\sigma = x_0 x_1 x_2 x_3 \dots$ (right-infinite), then it has $x_i \in \{A, B\}$ for each *i*.

1.1 Regular Expressions

The *language* of a regular expression can be expressed in terms of these set operations. For example, $\mathcal{L}((A+B)^*) = \Sigma^*$. Another example is $\mathcal{L}((A+B) \cdot (A+B) + A) = \Sigma^2 \cup \{A\} = \{AA, AB, BA, BB, A\}$.

2 Paths and Traces

Consider the following part of a transition system TS:

We can write down the infinite *paths* of TS using an ω -regular expression: $(s_0s_1 + s_0s_2) \cdot (s_3 + s_3s_1)^{\omega}$. Now let AP (the atomic propositions) be $\{a, b\}$. Suppose we now add labels for observables. Label s_0 and s_1 as $\{a\}$, label s_2 as \emptyset , and label s_3 as $\{a, b\}$. Let $X = \emptyset$, $Y = \{a\}$, $Z = \{a, b\}$, and $W = \{b\}$. Then we can describe the infinite traces of TS using these labels: $(YY + YX) \cdot (Z + ZY)^{\omega}$. Note that the traces don't convey as much information as the paths, since both s_0 and s_1 have the same label.

3 Linear Time (LT) Properties

Continuing with our example from the previous section, we have $2^{AP} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\} = \{X, Y, W, Z\}$. The set $(2^{AP})^{\omega}$ consists of all infinite strings, where each part of the string comes from 2^{AP} . A *LT property* is $P \subseteq (2^{AP})^{\omega}$, a subset of the ω -traces of a transition system.

For example, let P_1 be "all infinite $\sigma = x_0 x_1 x_2 \cdots \in (2^{AP})^{\omega}$ such that for infinitely many $i \ge 0$ we have that $x_i = Y$." Using the symbol $\stackrel{\sim}{\exists}$ (there exists infinitely many), we can abbreviate the latter half of

 P_1 as " $\exists i \ge 0$ with $x_i = Y$ ". Using a similar symbol $\overset{\infty}{\forall}$ (for all but finitely many, or *almost all*), we can create a second LT property P_2 = "all infinite $\sigma = x_0 x_1 x_2 \cdots \in (2^{AP})^{\omega}$ such that $\overset{\infty}{\forall} i \ge 0, x_i = Y$."

We can see that P_1 is satisfied if we loop s_3s_1 infinitely many times. However, P_2 is not satisfiable since any infinite string visits s_3 (with label Z) infinitely many times. We write $TS \models P_1$, and $TS \not\models P_2$.

4 Finite Automata and Büchi Automata

See lecture slides for the notes.