
CS512 - Formal Methods
Thursday, February 1st, 2018
Note-taker: Glib Dolotov

Every invariant property is a regular safety property

Φ : a→ b{
a = “fuel < 5”

b = “warning signal on”
or

{
a = “smoke detected”

b = “alarm buzzer on”

Φ : a→ b ≡ ¬a ∨ b

P = {A0A1A2 · · · ∈ (2AP)ω |∀i ≥ Ai � Φ}

Ai a b ¬a ∨ b
∅ F F T
{a} T F F
{b} F T T
{a,b} T T T

The formula from P from above can be rewritten via the chart as:

P = {A0A1A2 · · · ∈ (2AP)ω |∀i ≥ Ai ∈ {M,P,Q}}

AP = {a, b} 2AP = {∅, {a}, {b}, {a,b}}
M, N, P, Q

AP: What is an example of a property over AP which is ALWAYS TRUE?

P = L [Mω] ? NO, this can still be false if atomic proposition
“a” or “b” is always held (or both).

P = L [(M + N + P + Q)ω] = (2AP)ω ? YES

What is an example of a property over AP [P ⊆ (2AP)ω] which is ALWAYS
FALSE?

• P = ∅ (note: P = {∅} can be true)
Since ∅ is a special type of regular expression, this property is also regular.

• E · (F)ω + . . . where E /∈ L [F]

n
Some things were added to Handout 04:
A safety property can be defined by its bad prefixes. From there, we want to
find the shortest of such prefixes: minimum bad prefix.

start
¬Φ

Φ

1

The previous diagram shows an automata that will accept bad prefixes to prop-
erty P .
Φ cooresponds to ∅, {b}, {a, b}.
¬Φ cooresponds to {a}.

Regular Safety Properties for Mutual Exclusion
AP = {crit1, crit2, . . . } 2AP = {∅, . . . }

P = {A0A1A2 · · · ∈ (2AP)ω |∀i ≥ Ai + {crit1, crit2}}

We use the above because we don’t want crit1 and crit2 to both occur.

Automata to accept BadPref(P)

start
crit1 ∧ crit2

¬(crit1 ∧ crit2)

Note: by de Morgan’s Law: ¬(crit1 ∧ crit2) ≡ crit1 ∧ crit2.

Example of Safety Property that IS NOT Regular

Safety Property for the Vending Machine:
“the number of inserted dollars ≥ the # of dispensed drinks.”

AP = {pay,drink} 2AP = {∅, {pay}, {drink}, {pay, drink}}
M, N, P, Q

P = {A0A1A2 · · · ∈ (2AP)ω : ∀i
|{j : 0 ≤ j ≤ i ∧ pay ∈ Aj}| ≥ |{j : 0 ≤ j ≤ i ∧ drink ∈ Aj}|}

i.e. “the number of states in which pay occurs is geq the number of states in
which drink occurs at any point in the sequence.”

Note: we use “:” instead of “—” for ”such that” to avoid confusion with the
notation for the cardinality of a set (“|X|”)

Note: There is no standardized way of creating formal models of systems. It is
a work in progress. There are different methods that have varying degrees of
success.

P = {(M∗Q∗N)m1(M∗Q∗P)n1(M∗Q∗N)m2(M∗Q∗P)n2 · · · ∈ (2AP)ω

: ∀i ≥ 1,mi ≥ 0 ∧ ni ≥ 0 ∧ m1 + m2 + · · ·+ mi ≥ n1 + n2 + · · ·+ ni}

More broadly: P = {((M + Q)∗)m1 · · · }

Note: L [(a + b)∗] = L [(a∗b∗)∗]

2

BadPref(P) = {((M + Q)∗N)m1((M + Q)∗P)n1 · · · ((M + Q)∗N)mk((M + Q)∗P)nk

: ∀k ≥ 0,m1 + · · ·+ mk < n1 + · · ·+ nk}

Note: BadPref(P) is a set of finite words. i.e. BadPref(P) ⊆ (2AP)∗

ambnapbq : m + n > p + q is not a regular expression, it is context-free.
ambnam is also not regular.

We concluded lecture with Handout 05 - ω-Regular Properties

3

