CS 512 Notes: Lecture 7

Ben Gaudiosi

February 8th, 2018

1 Homework 2 Problem 1 clarification

There was some confusion abou that " \rightarrow is the smallest relation defined by..."
First though, some clarifications: if $R \subseteq A \times A \times A$, then R is a ternary relation on A.
If we don't clarify what kind of relation R is, then it's fair to assume that R is actually a binary relation, i.e. $R \subseteq A \times B$.

Then, with respect to the homework question: If we say that R is a relation on A s.t. $(a, b) \in R$ and $(b, c) \in R$, then R is not uniquely defined. So when we say something "is the smallest relation defined by..." we're looking for a defintion that makes a uniquely defined relation.

2 LTL Equivalences

$\Phi \triangleq \square($ Started \rightarrow Ready $)$ means 'now and forever,' i.e., it's an invariant property.
$\Phi \triangleq \square($ Requested $\rightarrow \diamond$ Acknowledged $)$ means that if there is a request, it will eventually be acknowledged.
$\Phi \triangleq \square \diamond$ Enabled means for $A_{0}, A_{1}, A_{2}, \ldots \exists i \geq 0$, Enabled $\in A_{i}$
$\Phi \triangleq \diamond \square D e a d l o c k e d$ means after some point in the future, everything is deadlocked.
$\Phi \triangleq \square \diamond$ Enabled $\rightarrow \square \diamond$ Running means if Enabled occurs infinitely often, then we are infinitely often running.

3 LTL Operators and Dualities

Primitive Ops from big book: \circ means 'next' and \mathbb{U} means 'until.'

3.1 Dualities

A duality between \forall and \exists implies that $\neg \forall \neg \equiv \exists$ and $\neg \exists \neg \equiv \forall$.

Some other dualities are:
\vee and \wedge
U and R

3.2 Distributive property

$\diamond(\Phi \wedge \Psi) \rightarrow \diamond \Phi \wedge \diamond \Psi$ is true BUT not the other way around (i.e., not iff).
Another way to phrase this is that $\operatorname{Words}(\diamond(\Phi \wedge \Psi)) \subseteq \operatorname{Words}(\diamond \Phi \wedge \diamond \Psi)$
Also, note that $\square(\Phi \vee \Psi) \not \equiv \square \Phi \vee \square \Psi$
With respect to the distributive property, \diamond behave like \exists andbehaves like \forall.

