CS 512 Notes: Lecture 7

Ben Gaudiosi

February 8th, 2018

1 Homework 2 Problem 1 clarification

There was some confusion abou that " \rightarrow is the smallest relation defined by..."

First though, some clarifications: if $R \subseteq A \times A \times A$, then R is a ternary relation on A.

If we don't clarify what kind of relation R is, then it's fair to assume that R is actually a binary relation, i.e. $R \subseteq A \times B$.

Then, with respect to the homework question: If we say that R is a relation on A s.t. $(a, b) \in R$ and $(b, c) \in R$, then R is not uniquely defined. So when we say something "is the smallest relation defined by..." we're looking for a definition that makes a uniquely defined relation.

2 LTL Equivalences

 $\Phi \stackrel{\Delta}{=} \Box(Started \rightarrow Ready)$ means 'now and forever,' i.e., it's an invariant property.

 $\Phi \stackrel{\Delta}{=} \Box(Requested \rightarrow \Diamond Acknowledged)$ means that if there is a request, it will eventually be acknowledged.

 $\Phi \stackrel{\Delta}{=} \Box \Diamond Enabled \text{ means for } A_0, A_1, A_2, \dots \stackrel{\infty}{\exists} i \ge 0, Enabled \in A_i$

 $\Phi \stackrel{\Delta}{=} \Diamond \Box Deadlocked$ means after some point in the future, everything is deadlocked.

 $\Phi \stackrel{\Delta}{=} \Box \Diamond Enabled \rightarrow \Box \Diamond Running$ means if Enabled occurs infinitely often, then we are infinitely often running.

3 LTL Operators and Dualities

Primitive Ops from big book: ◦ means 'next' and ⊎ means 'until.'

3.1 Dualities

A duality between \forall and \exists implies that $\neg \forall \neg \equiv \exists$ and $\neg \exists \neg \equiv \forall$.

Some other dualities are:

 \lor and \land \blacksquare and R

3.2 Distributive property

 $\Diamond(\Phi \land \Psi) \rightarrow \Diamond \Phi \land \Diamond \Psi$ is true BUT not the other way around (i.e., not iff). Another way to phrase this is that $Words(\Diamond(\Phi \land \Psi)) \subseteq Words(\Diamond \Phi \land \Diamond \Psi)$ Also, note that $\Box(\Phi \lor \Psi) \not\equiv \Box \Phi \lor \Box \Psi$

With respect to the distributive property, \Diamond behave like \exists and \Box behaves like $\forall.$