CS512 - Formal Methods

Thursday, February 22nd, 2018 Note-taker: Glib Dolotov

ASSIGNMENT #5 posted, due Wednesday, Feb. 28th. <u>Definition:</u> Given a (state) formula Φ of CTL and a formula φ of LTL, we write $\Phi \equiv \varphi$ whenever for every transition system $TS : TS \vDash \Phi \longleftrightarrow TS \vDash \varphi$.

LTL, *CTL* can be under the umbrella of "**temporal logic**" but also, even more generally, "**model logic**".

There is the temptation to say "CTL is stronger than LTL, anything said in LTL can be said in CTL but not vice-versa." However, this isn't quite correct.

<u>Theorem:</u> 6.18 p335

 Φ is a (state) formula of CTL.

 φ is a formula of LTL s.t. φ obtained from Φ by omitting all-path (\forall) quantifiers.

Either

1. $\Phi \equiv \varphi$

OR

2. there is no *LTL* formula that is equivalent to Φ

Case	Holds?	Φ CTL	$\varphi \ LTL$
1	\checkmark	$orall \bigcirc a$	$\bigcirc a$
1	\checkmark	$\forall (a \sqcup b)$	$a \Cup b$
1	\checkmark	$\forall \diamondsuit a)$	$\Diamond a$
1	\checkmark	$\forall \Box a$	$\Box a$
1	\checkmark	$\forall \Box \forall \diamondsuit a$	$\Box \diamondsuit a$
2	No	$\forall \diamondsuit \forall \Box a$	$\Diamond \Box a$
2	No	$\forall \diamondsuit(a \land \forall \bigcirc a)$	$\Diamond(a \land \bigcirc a)$

Examining $\forall \diamond \forall \Box a \ \mathbf{vs} \ \diamond \Box a$

 $\Phi \triangleq \forall \diamondsuit \forall \Box a \\ \varphi \triangleq \diamondsuit \Box a$

VIEWING HANDOUT 14 $\frac{\text{pg 3}}{\forall x \ \varphi} \triangleq \neg \exists x \neg \varphi$

Syntax is defined by BNF formula is now the standard. Furthermore, formal semantics are syntax-directed.

<u>Note:</u> $\neg \exists \neg \varphi$ is **NOT LEGAL** in *CTL*, but it **IS LEGAL** in *CTL*^{*}.

<u>Handout 10 pg 11:</u> syntax definition of CTL doesn't allow negation in path formulas φ .

Kripke - 1950's-60's: "modal logic" **Computer Science** - 1980's-90's: "*CTL*, *LTL*, *CTL* *. It was eventually realized that these are extensions / redescriptions of Kripke's modal logic.

Handout 14, page 5

1. $TS, \pi \models \Phi \dots$ why Φ , not φ ? Because of the syntax! **Recall:** Path WFF: $\varphi ::= \Phi | \dots$ Handout 14, page 7

LTL is a subset / sublogic of CTL *. CTL is a sublogic of CTL *.

Handout 15, page 2 $\,$

Bullet #4: this is due to the way LTL , CTL syntax is defined. (See Handout 10).