CS 512 Notes: Lecture 13 $\,$

Ben Gaudiosi

March 20th, 2018

1 Handout 17 Material

1.1 HL Classical

HL Classical requires 3 things:

- 1. Syntax [expressions]
- 2. Formal Semantics (model theory)
- 3. Formal Proof/inference rules

2 and 3 are linked by <u>soundness</u> and completeness.

For LTL and CTL, we only talked about 1 and 2.

1.2 Semantics

Recall HL: $\{\phi\}P\{\psi\}$

The book uses something we call Operational Semantics. There are three aspects to this:

- 1. Small-step Operational Semantics
- 2. Big-step Operational Semantics
- 3. Reduction Operational Semantics

We use something known as Denotational Semantics in class, however.

For proofs, we use the following notation: \models : Satisfaction. Can say \models_{par} and \models_{tot} for partial and total satisfaction. \vdash : Derivability.

E.g. $\models_{par} \{\phi\} P\{\psi\}$

2 Handout 18 Materials

For assignment, we say $\{\psi[x \mapsto E]\}x := E\{\psi\}.$

Are the following rules sound? Spec conjuction: Yes Spec disjunction: Yes

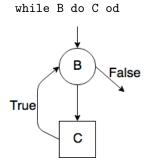
These are not derivable from the rules in handout 17 and need official semantics

2.1 Formal Semantics (Denotational)

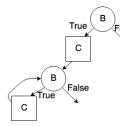
Note that we say [[C]] is the formal semantics of C. $[[C]] : \Sigma \to \Sigma$ is a partial function of states. It's partial because it may diverge. $[[C]]_{rel} \subset \Sigma \times \Sigma$ can be interpreted from function.

$$\left. \begin{array}{c} (\sigma, \sigma_1) \\ (\sigma, \sigma_2) \end{array} \right\} \in R$$

which is how we get the relation.


•

For a slightly more complex example:


$$\begin{split} & [[x := E]]_{rel} \stackrel{\Delta}{=} \{ (\sigma, \sigma | x \mapsto n) | \sigma \in \Sigma \text{ and } n = [[E]]_{\sigma} \} \\ & \sigma(x_1) = 3 \\ & \sigma(x_2) = -6 \\ & \sigma(x_3) = 20 \\ & \dots etc.\dots \end{split}$$

Thus, $\sigma = < 3, -6, 20, \dots$? > Then we can also say $\sigma[x_2 \mapsto 21] = < 3, 21, 20, \dots$ >.

In our core language, we can picture the following lines of code as a graph:

if B then C; while B do C od; else skip

