
CS 512 Lecture Notes

Nathan Cordner

22 March 2018

Today’s class notes are largely based on the lecture notes Hoare Logic and Variations [HL+V].

1 Review of Formal Semantics of Classical Hoare Logic (HL)

We quickly recapped the semantics defined in Section 1.3 at the top of page 7 in [HL+V]. We noted
that in the assignment operator, the notation σ[x 7→ n] assigns the value n to variable x. For example,
passing in a tuple 〈x, y, z〉 = 〈26, 5, 2〉 to σ[x 7→ 15] produces 〈15, 5, 2〉.

We also reviewed the idea of composing two relations together for the command C1;C2. For example, if

R = {(2, 3), (4, 5)}
S = {(1, 2), (3, 4), (100,−6)},

then working from S to R yields R ◦ S = {(1, 3), (3, 5)}.

1.1 Solving Fixpoint Equations

In general, given a function f(x) we call the problem x = f(x) a fixpoint equation. It is not always easy
to solve this problem analytically, so we often resort to using an iterative algorithm to repeatedly update
an initial guess x0 to obtain better solutions xn that more closely satisfy xn = f(xn). (For example,
think of using Newton’s method from calculus to find the solution to f(x)− x = 0).

It turns out that the key to the semantics of the while-do loop is a solution to a fixpoint equation. We
have the relation

R = {(σ, σ′) | JBKσ = true and (σ, σ′) ∈ R ◦ JCKrel} ∪ {(σ, σ) | JBKσ = false},

and the function F such that

F(R)
∆
= {(σ, σ′) | JBKσ = true and (σ, σ′) ∈ R ◦ JCKrel} ∪ {(σ, σ) | JBKσ = false}.

Thus defining the semantics of the while-do loop relies on solving the fixpoint equation F(R) = R.
Let’s look at a picture. Suppose we have Xi, where i denotes the number of times we have “unwrapped”
our while-do loop. Write X0 = ∅. Then

F(X0) = {(σ, σ) | JBKσ = false}.

Set X1 = F(X0), X2 = F(X1), and so on. Since X0 is empty, there is no picture to draw. For X1, we
have the diagram

//
B?

false

��

true
++
Cll

For X2, the picture looks like

//
B?

false

true // C //
B?

false

��

true
++
Cll

1

In general, there would be i copies of C in the diagram for Xi. We see that X0 ⊆ X1 ⊆ X2 ⊆

Sometimes fixpoint equations yield many solutions. We briefly considered Example 6 on page 8 of
[HL+V]. We define the set

A
∆
= {〈n, 1 + (n div 2) · 2〉 | n ∈ Z and n ≥ 0} ⊆ Z× Z,

and, for some relation R ⊆ Z× Z, we solve a fixpoint equation like

R = F(R) where F(R)
∆
= A ∪ (R div 〈2, 1〉) · 〈2, 1〉.

It turns out the solution set is infinite. In such cases, it is best to choose the least fixpoint (according to
whatever our notion of size is for the particular solutions at hand).

We also briefly touched on Example 7 on page 9 of [HL+V] concerning the factorial function as another
example of solving fixpoint equations.

2 Relational Hoare Logic (RHL)

This section begins in Section 2 on page 12 in [HL+V]. Recall that classical Hoare Logic is denoted by
Hoare triples that look like

{φ}P{ψ},
where φ is a precondition and ψ is a postcondition. By contrast, the relational Hoare Logic is denoted
by Hoare quadruples that look like

{Φ}C1 ∼ C2{Ψ},
where Φ is a prerelation and Ψ is a postrelation. This notation is used to show that C1 and C2 are related
to each other. We note that when started on Φ-related states, either C1 and C2 both diverge, or they
both terminate in Ψ-related states.

The relational Hoare Logic also has some inference rules. A (currently) incomplete list appears on page
15 of [HL+V].

We briefly commented on Example 12 on page 13 of [HL+V] as a way to use relational Hoare Logic to
show how two different programs can be related to each other. Here P1 and P2 are written in distinct
variables, but we can show that they are related by using a Hoare quadruple.

3 Probabilistic Hoare Logic (pHL)

The notes on probabilistic Hoare Logic start in Section 4 on page 17 of [HL+V]. The main distinction
between pHL and HL is the introduction of randomized steps in the program. For example, we can write

C
∆
=

(
(x := 1)⊕1/4 (x := 5)

)
.

We interpret this notation as x having a 1
4 chance of being assigned to be 1, and a 3

4 chance of being
assigned to 5.

We note that “randomized” is not the same as “nondeterministic.” The coin flip program presented in
Example 15 on page 17 of [HL+V] shows this difference. Even with the randomized step, the program
will always terminate. However, one possible path available to nondeterminism is “heads” forever which
would mean the program never terminates.

In Example 16 on page 18 of [HL+V], we adapt some classical HL into pHL. Suppose C is the instruction
y := x+ 2. We can write the Hoare triple

{x = 1}C{y = 3}.

But suppose we introduce a randomized step, and create the instruction C ′ given by y := x+random(2).
We need to tweak the pre- and post-conditions, and can now write something like

{P(x = 1) ≥ 3/4}C ′{P(y = 3) ≥ 1/4}.

2

