Thursday, March 29th, 2018
Note-taker: Glib Dolotov

Announcements: April 3, 5, 10 - Lectures by Alley Stoughton on EasyCrypt.
Assignment \#7: due Tomorrow, March 30th.

Consider

$$
\begin{aligned}
\mathcal{P}: \quad & \left((x:=0) \oplus_{1 / 2}(x:=1)\right) \oplus_{1 / 2}(x:=2) \\
& y:=3 ;
\end{aligned}
$$

SET A: countable
$\vartheta: A \rightarrow[0,1]$
ϑ is a probability distribution such that

$$
\sum_{a \in A} \vartheta(a)=1
$$

If, however, we write

$$
\sum_{a \in A} \vartheta(a) \leq 1,
$$

then ϑ is a sub-probability distribution. We allow for an event that we don't know the probability of.

$$
\mathcal{D}(A) \triangleq\left\{\vartheta: A \rightarrow[0,1] \mid \sum_{a \in A} \leq 1\right\}
$$

For a deterministic program P

$$
\llbracket P \rrbracket: \mathcal{S} \rightarrow \mathcal{S}
$$

where $\llbracket P \rrbracket$ is interpreted as a "state transformer".
Note: Previous versions of the lecture notes used " Σ " to represent the set of possible states, we are now using " \mathcal{S} " instead to avoid confusing it with "summation".

For a probabilistic program \mathcal{P}

$$
\langle\langle\mathcal{P}\rangle\rangle: \Theta \rightarrow \Theta
$$

\mathcal{S} (formerly called Σ) is the set of states σ.

$$
\mathcal{S}=\{\sigma: \mathcal{V} \rightarrow \mathbb{Z}\}
$$

\mathcal{V} is the set of all variables.
Θ is the set of all probabilistic states ϑ.

$$
\vartheta \in \mathcal{D}(\mathcal{S})=\{\mathcal{S} \rightarrow[0,1] \mid \ldots\}
$$

Example:

$$
\begin{aligned}
& \mathcal{V}=\{x, y\} \\
& \sigma:\{x, y\} \rightarrow \mathbb{Z} \\
& \sigma=\langle\sigma(x), \sigma(y)\rangle \\
& \mathcal{S}=\mathbb{Z} \times \mathbb{Z}
\end{aligned}
$$

$\sigma=\langle m, n\rangle$ where $m, n \in \mathbb{Z}$ has infinitely many possible states.

Suppose we start \mathcal{P} from $\langle 5,5\rangle$. What is the probabilistic state when \mathcal{P} terminates?

1. Note: we are inputting a state into a probabilistic program. However, probabilistic programs accept only probabilistic states. So we must first convert the state into a probabilistic state as follows:

$$
\vartheta_{\sigma}\left(\sigma^{\prime}\right)= \begin{cases}1 & \text { if } \sigma^{\prime}=\sigma \\ 0 & \text { if } \sigma^{\prime} \neq \sigma\end{cases}
$$

2. Inputting $\langle 5,5\rangle$ into \mathcal{P} yields a distribution function ϑ_{1} which produces probabilities when given a possible output state.

$$
\vartheta_{1}(\sigma)= \begin{cases}1 / 4 & \text { if } \sigma=\langle 0,3\rangle \\ 1 / 4 & \text { if } \sigma=\langle 1,3\rangle \\ 1 / 2 & \text { if } \sigma=\langle 2,3\rangle \\ 0 & \text { otherwise }\end{cases}
$$

Let us now consider a slightly different probabilistic program, \mathcal{P}_{2}. Differences between \mathcal{P} and \mathcal{P}_{2} are printed in blue.

$$
\begin{array}{ll}
\mathcal{P}_{2}: \quad & \left((x:=0) \oplus_{1 / 2}(x:=1)\right) \oplus_{1 / 2}(x:=2) ; \\
& \left((y:=3) \oplus_{1 / 2}(y:=4)\right) ; \\
& \text { while } y=4 \text { do } \\
& \text { skip } \\
& \text { od; }
\end{array}
$$

Working with \mathcal{P}_{2}, we must note that the program will never terminate with a probability of $1 / 2$. The yield of \mathcal{P}_{2} therefore becomes:

$$
\vartheta_{2}(\sigma)= \begin{cases}1 / 8 & \text { if } \sigma=\langle 0,3\rangle \\ 1 / 8 & \text { if } \sigma=\langle 1,3\rangle \\ 1 / 4 & \text { if } \sigma=\langle 2,3\rangle \\ 0 & \text { otherwise }\end{cases}
$$

Consider \mathcal{P}_{3} (changes between \mathcal{P}_{3} and \mathcal{P}_{2} are in purple):

$$
\begin{array}{ll}
\mathcal{P}_{3}: \quad & \left((x:=0) \oplus_{1 / 2}(x:=1)\right) \oplus_{1 / 2}(x:=2) ; \\
& \left((y:=3) \oplus_{2 / 3}(y:=4)\right) ; \\
& \text { while } y=4 \text { do } \\
& \text { skip } \\
& \text { od; }
\end{array}
$$

The yield of \mathcal{P}_{3} becomes:

$$
\vartheta_{2}(\sigma)= \begin{cases}1 / 6 & \text { if } \sigma=\langle 0,3\rangle \\ 1 / 6 & \text { if } \sigma=\langle 1,3\rangle \\ 1 / 3 & \text { if } \sigma=\langle 2,3\rangle \\ 0 & \text { otherwise }\end{cases}
$$

Consider \mathcal{P}_{4} (changes between \mathcal{P}_{4} and \mathcal{P}_{2} are in red):
$\mathcal{P}_{2}: \quad\left((x:=0) \oplus_{1 / 2}(x:=1)\right) \oplus_{1 / 2}(x:=2) ;$
$\left((y:=3) \oplus_{1 / 2}(y:=4)\right)$;
while $y=4$ do

$$
(y:=3) \oplus_{1 / 2}(y:=4)
$$

od;
\mathcal{P}_{4} does, in fact, terminate because

$$
\lim _{n \rightarrow \infty} p^{n}=0
$$

In other words, each iteration has a possibility of continuing the program with a probability (p) of $1 / 2$. As the number of iterations (n) approaches infinity, the probability that the program hasn't yet terminated collapses to 0 .

Consider integer expressions in classical Hoare logic:

$$
\begin{gathered}
E=x+y-4 \\
\sigma=\langle 2,13\rangle
\end{gathered}
$$

Recall, E is used to denote integer expressions.
$\llbracket E \rrbracket \sigma=2+13-4=11$
$\llbracket E \rrbracket: S \rightarrow \mathbb{Z}$

For probabilistic Hoare logic, integer expressions work as follows:

$$
\langle E\rangle: \Theta \rightarrow \mathcal{D}(\mathbb{Z}) \quad \text { note: } \Theta=\mathcal{D}(\mathcal{S}) .
$$

Therefore:

$$
\langle E\rangle: \mathcal{D}(\mathcal{S}) \rightarrow(\mathbb{Z} \rightarrow[0,1]) .
$$

Example: let's work with \mathcal{P} and it's output

$$
\left.\left.\begin{array}{c}
\vartheta_{1}(\sigma)= \begin{cases}1 / 4 & \text { if } \sigma=\langle 0,3\rangle \\
1 / 4 & \text { if } \sigma=\langle 1,3\rangle \\
1 / 2 & \text { if } \sigma=\langle 2,3\rangle \\
0 & \text { otherwise }\end{cases} \\
E \triangleq x+y=4 \\
\langle E\rangle\rangle \vartheta n=p \\
\langle\langle x+y-4\rangle\rangle \vartheta_{1}(-1)=1 / 4
\end{array}\right\} \begin{array}{ll}
1 / 4 & \text { if } n=-1 \\
1 / 4 & \text { if } n=0 \\
1 / 2 & \text { if } n=1 \\
0 & \text { otherwise }
\end{array}\right]
$$

Now for Boolean expressions:
In classical Hoare logic: $\llbracket B \rrbracket: \mathcal{S} \rightarrow \mathbb{B}$
In probabilistic Hoare logic: $\langle\langle B\rangle: \vartheta=\mathcal{D}(\mathcal{S}) \rightarrow \mathcal{D}(\mathbb{B})$.
A probabilistic program is a transformer of probabilistic states.

Binary relation vs. a function: a function is a specific case of a binary relation.

In classical Hoare logic:

$$
\llbracket x:=E \rrbracket=\{(\sigma, \sigma[x \mapsto n]) \mid \sigma \in \mathcal{S}, n=\llbracket E \rrbracket \sigma\}
$$

At this point in the lecture, we began looking at the denotational semantics of commands of probabilistic programs in the lecture notes.

Pre- \& Post-Conditions of Probabilistic H.L.

$\{\Phi\} \mathcal{P}\{\Psi\}$. We must somehow include probabilistic data in both pre- and post-conditions. We have yet to formally define these.

