CS512 - Formal Methods
Thursday, March 29th, 2018
Note-taker: Glib Dolotov

Announcements: April 3, 5, 10 - Lectures by Alley Stoughton on EasyCrypt.

Assignment #7: due Tomorrow, March 30th.

Consider

P: (x=0) @1 (v:=1)) ®15 (z:= 2);
y:=3;

SET A: countable
9:A-[0,1]
1 is a probability distribution such that

> d(a)=1.

acA

If, however, we write

> d(a) <1,

acA

then ¥ is a sub-probability distribution. We allow for an
event that we don’t know the probability of.

D(A)é{ﬂ:Ae[O,lﬂ > 31}

acA
For a deterministic program P

[P]:S-S8

where [P] is interpreted as a “state transformer”.

Note: Previous versions of the lecture notes used “X” to
represent the set of possible states, we are now using “S”

instead to avoid confusing it with “summation”.
)

For a probabilistic program P

(P):0~0

S (formerly called X) is the set of states o.

S={c:V->17)}

V is the set of all variables.
O is the set of all probabilistic states ¥.

9eD(S)={S—[0,1]]...}

Example:
V={zy}
o:{z,y} >7Z
o =(o(x),0(y))
S=7Zx17Z

o = {(m,n) where m,n € Z has infinitely many possible
states.

Suppose we start P from (5,5). What is the proba-
bilistic state when P terminates?

1. Note: we are inputting a state into a probabilistic
program. However, probabilistic programs accept
only probabilistic states. So we must first convert
the state into a probabilistic state as follows:

9,(0") 1 ifo’'=0
o\ )=
0 ifo'20

2. Inputting (5,5) into P yields a distribution func-
tion ¥ which produces probabilities when given a
possible output state.

1/4 if 0 =(0,3)
1/4 if 0 =(1,3)
1/2 ifo=(2,3)
0 otherwise

V(o) =

Let us now consider a slightly different probabilistic pro-
gram, Po. Differences between P and P, are printed in
blue.

Po: ((z:=0) D1/2 (z:=1)) D1/2 (= 2);
((y:=3) ®©1/2 (y:=4));
while y =4 do
skip
od;

Working with P53, we must note that the program will
never terminate with a probability of 1/2. The yield of
Py therefore becomes:

1/8 if 0 =(0,3)
1/8 ifo=(1,3)
1/4 if o =(2,3)
0 otherwise

Va(0) =



Consider Ps (changes between P3 and P, are in pur-
ple):

Ps: ((z:=0)@12 (z:=1)) &1y2 (v:=2);
((y:=3) @23 (y:=4));
while y =4 do
skip
od;

)

The yield of Ps becomes:

1/6 if o =(0,3)
1/6 if o =(1,3)
1/3 ifo=(2,3)
0 otherwise

Va(0) =

Consider P, (changes between P, and Py are in red):

Py : ((«T = 0) @1/2 (.'17 = 1)) @1/2 (33 = 2)7
((y=3) @12 (y:=4));
while y =4 do
(y:=3) @172 (y:=4);
od;

‘P4 does, in fact, terminate because

lim p™ = 0.

n—o0

In other words, each iteration has a possibility of contin-
uing the program with a probability (p) of 1/2. As the
number of iterations (n) approaches infinity, the proba-
bility that the program hasn’t yet terminated collapses
to 0.

Consider integer expressions in classical Hoare logic:
E=x+y-4

o =(2,13)

Recall, E is used to denote integer expressions.
[E]lec=2+13-4=11 [E]:S—-Z

For probabilistic Hoare logic, integer expressions work
as follows:

(E):0—->D(Z) note: ©=D(S).

Therefore:
(E):D(S) = (Z~[0,1]).

Example: let’s work with P and it’s output

1/4 if o =(0,3)
1/4 if o =(1,3)

19 =
=00 o= (2.3)
0 otherwise
Ezx+y=4
(E)9n=p
(z+y-4)1(-1)=1/4
1/4 ifn=-1
1/4 ifn=0
— 4% =
(e ry=apnem =100 "
0 otherwise

Now for Boolean expressions:
In classical Hoare logic: [B]:S - B
In probabilistic Hoare logic: (B)): 9 =D(S) - D(B).

A probabilistic program is a transformer of probabilis-
tic states.

Binary relation vs. a function: a function is a specific
case of a binary relation.

In classical Hoare logic:

[x:=FE]={(c,0[x~n])|ceS, n=[F]o}

At this point in the lecture, we began looking at the
denotational semantics of commands of probabilistic pro-
grams in the lecture notes.

Pre- & Post-Conditions of Probabilistic
H.L.

{@}P{¥}. We must somehow include probabilis-
tic data in both pre- and post-conditions. We
have yet to formally define these.


http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents/Hoare_Logic/main-post2.pdf#subsection.3.3
http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents/Hoare_Logic/main-post2.pdf#subsection.3.3

