
CS512 - Formal Methods
Thursday, March 29th, 2018
Note-taker: Glib Dolotov

Announcements: April 3, 5, 10 - Lectures by Alley Stoughton on EasyCrypt.
Assignment #7: due Tomorrow, March 30th.

Consider

P ∶ ((x ∶= 0) ⊕1/2 (x ∶= 1)) ⊕1/2 (x ∶= 2);
y ∶= 3;

SET A: countable
ϑ ∶ A→ [0,1]
ϑ is a probability distribution such that

∑
a∈A

ϑ(a) = 1.

If, however, we write

∑
a∈A

ϑ(a) ≤ 1,

then ϑ is a sub-probability distribution. We allow for an
event that we don’t know the probability of.

D(A) ≜ { ϑ ∶ A→ [0,1] ∣ ∑
a∈A

≤ 1 }

For a deterministic program P

JP K ∶ S → S

where JP K is interpreted as a “state transformer”.

Note: Previous versions of the lecture notes used “Σ” to
represent the set of possible states, we are now using “S”
instead to avoid confusing it with “summation”.
’
For a probabilistic program P

⟪P⟫ ∶ Θ→ Θ

S (formerly called Σ) is the set of states σ.

S = { σ ∶ V → Z }

V is the set of all variables.
Θ is the set of all probabilistic states ϑ.

ϑ ∈ D(S) = { S → [0,1] ∣ . . . }

Example:

V = {x, y }
σ ∶ {x, y } → Z
σ = ⟨σ(x), σ(y)⟩
S = Z ×Z

σ = ⟨m,n⟩ where m,n ∈ Z has infinitely many possible
states.

Suppose we start P from ⟨5,5⟩. What is the proba-
bilistic state when P terminates?

1. Note: we are inputting a state into a probabilistic
program. However, probabilistic programs accept
only probabilistic states. So we must first convert
the state into a probabilistic state as follows:

ϑσ(σ′) =
⎧⎪⎪⎨⎪⎪⎩

1 if σ′ = σ
0 if σ′ ≠ σ

2. Inputting ⟨5,5⟩ into P yields a distribution func-
tion ϑ1 which produces probabilities when given a
possible output state.

ϑ1(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/4 if σ = ⟨0,3⟩
1/4 if σ = ⟨1,3⟩
1/2 if σ = ⟨2,3⟩
0 otherwise

Let us now consider a slightly different probabilistic pro-
gram, P2. Differences between P and P2 are printed in
blue.

P2 ∶ ((x ∶= 0) ⊕1/2 (x ∶= 1)) ⊕1/2 (x ∶= 2);
((y ∶= 3) ⊕1/2 (y ∶= 4));
while y = 4 do

skip

od;

Working with P2, we must note that the program will
never terminate with a probability of 1/2. The yield of
P2 therefore becomes:

ϑ2(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/8 if σ = ⟨0,3⟩
1/8 if σ = ⟨1,3⟩
1/4 if σ = ⟨2,3⟩
0 otherwise

1



Consider P3 (changes between P3 and P2 are in pur-
ple):

P3 ∶ ((x ∶= 0) ⊕1/2 (x ∶= 1)) ⊕1/2 (x ∶= 2);
((y ∶= 3) ⊕2/3 (y ∶= 4));
while y = 4 do

skip

od;

The yield of P3 becomes:

ϑ2(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/6 if σ = ⟨0,3⟩
1/6 if σ = ⟨1,3⟩
1/3 if σ = ⟨2,3⟩
0 otherwise

Consider P4 (changes between P4 and P2 are in red):

P2 ∶ ((x ∶= 0) ⊕1/2 (x ∶= 1)) ⊕1/2 (x ∶= 2);
((y ∶= 3) ⊕1/2 (y ∶= 4));
while y = 4 do

(y ∶= 3) ⊕1/2 (y ∶= 4);
od;

P4 does, in fact, terminate because

lim
n→∞

pn = 0.

In other words, each iteration has a possibility of contin-
uing the program with a probability (p) of 1/2. As the
number of iterations (n) approaches infinity, the proba-
bility that the program hasn’t yet terminated collapses
to 0.

Consider integer expressions in classical Hoare logic:

E = x + y − 4

σ = ⟨2,13⟩

Recall, E is used to denote integer expressions.
JEKσ = 2 + 13 − 4 = 11 JEK ∶ S → Z

For probabilistic Hoare logic, integer expressions work
as follows:

⟪E⟫ ∶ Θ→ D(Z) note: Θ = D(S).

Therefore:
⟪E⟫ ∶ D(S) → (Z→ [0,1]).

Example: let’s work with P and it’s output

ϑ1(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/4 if σ = ⟨0,3⟩
1/4 if σ = ⟨1,3⟩
1/2 if σ = ⟨2,3⟩
0 otherwise

E ≜ x + y = 4

⟪E⟫ ϑ n = p
⟪x + y − 4⟫ϑ1(−1) = 1/4

⟪x + y − 4⟫ϑ1(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/4 if n = −1

1/4 if n = 0

1/2 if n = 1

0 otherwise

Now for Boolean expressions:
In classical Hoare logic: JBK ∶ S → B
In probabilistic Hoare logic: ⟪B⟫ ∶ ϑ = D(S) → D(B).

A probabilistic program is a transformer of probabilis-
tic states.

Binary relation vs. a function: a function is a specific
case of a binary relation.

In classical Hoare logic:

Jx ∶= EK = { (σ,σ[x↦ n]) ∣ σ ∈ S, n = JEKσ }

At this point in the lecture, we began looking at the

denotational semantics of commands of probabilistic pro-

grams in the lecture notes.

Pre- & Post-Conditions of Probabilistic
H.L.
{Φ}P{Ψ}. We must somehow include probabilis-
tic data in both pre- and post-conditions. We
have yet to formally define these.

2

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents/Hoare_Logic/main-post2.pdf#subsection.3.3
http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents/Hoare_Logic/main-post2.pdf#subsection.3.3

